Sparse Computations on GPGPUs

Davide Barbieri Valeria Cardellini
Dipartimento di Informatica, Sistemi e Produzione Dipartimento di Informatica, Sistemi e Produzione
Universita di Roma “Tor Vergata”, Roma, Italy Universita di Roma “Tor Vergata”, Roma, Italy
samuelmurdoch@gmail.com cardellini@ing.uniroma2.it

Salvatore Filippone
Dipartimento di Ingegneria Industriale
Universita di Roma “Tor Vergata”, Roma, Italy
salvatore.filippone@uniromaz2.it

Universita di Roma “Tor Vergata”
Dipartimento di Informatica, Sistemi e Produzione
Technical Report RR-12.90

January 12, 2012

Abstract

Sparse matrix computations are ubiquitous in scientific maimg; General-Purpose computing on Graphics
Processing Units (GPGPU) is fast becoming a key componérigbfperformance computing systems. It is therefore
natural that a substantial amount of effort has been devotgdplementing sparse matrix computations on GPUs.

In this paper, we discuss our work in this field, starting wita data structures we have employed to implement
common operations, together with the software architecte have devised to allow interoperability with existing
software packages. To test the effectiveness of our apprnwacave run experiments with it on two platforms; the
experimental results show that our data structures alloto @hieve very good performance results, significantly
better than what can be obtained with the most recent vedsitre CUSPARSE library.

1 Introduction

Graphics Processing Units (GPUs) have steadily enteret astactive choice the world of scientific computing,
building the core of the most advanced supercomputers agnlleeing offered as an infrastructure service in Cloud
computing (e.g., Amazon EC2). The GPU cards produced by N&Hbe today among the most popular computing
platforms; their architectural model is based on a scalabii@y of multi-threaded streaming multi-processors, each
composed by a fixed number of scalar processors, one du@iisstruction fetch unit, one on-chip fast memory with
a configurable partitioning of shared memory and L1 cache ptlditional special-function hardware. Each multi-
processor is capable of creating and executing conculre@ds in a completely autonomous way, with no scheduling
overhead, thanks to the hardware support for thread syndation.

NVIDIAs CUDA is a programming model designed for the datrglel processing capabilities of NVIDIA
GPUs [14, 19]. A CUDA program consists of a host program thasron the CPU host, and a kernel program
that executes on the GPU itself. The host program typica&tyg sp the data and transfers it to and from the GPU,
while the kernel program processes that data. The CUDA progring environment specifies a set of facilities to
create, identify, and synchronize the various threaddwedbin the computation.

In addition to the primary use of GPUs in accelerating grephéndering operations, there has been considerable
interest in exploiting GPUs for General Purpose computa@®@PGPU) [12]. A large variety of complex algorithms

*This Technical Report has been issued as a Research Repearifipdissemination of its contents. No part of its text aoy illustration can
be reproduced without written permission of the Authors.

can indeed exploit the GPU platform and gain tremendouspeence benefits (e.g., [10, 1, 21]). With their advanced
SIMD architectures, GPUs appear also ideal candidatesfdoqming fast operations on sparse matrices, such as the
matrix-vector multiplication; this is an essential kerimeéngineering and scientific computing and hence over #te la
two decades its efficient implementation on general-pueaoshitectures has been addressed in a significant amount
of work. Its importance stems from the fact that a matrixtee@roduct is the central computational step in the
execution of the most commonly used iterative solvers fardr equations, i.e., solvers based on the so called Krylov
subspace projection methods [18].

Matrix-vector multiplication on GPUs presents some newllenges, because optimization techniques applied
in general-purpose architectures cannot be directly eppin them. Moreover, sparse matrix structures introduce
additional challenges with respect to their dense couatespbecause operations on them are typically much less
regular in their access patterns. Therefore, in the lastywass there has been a surge of interest about the efficient
implementation of sparse matrix-vector multiplicatiory.e[3, 4, 5, 13, 17, 20], NVIDIA's CUDPP [15].

In this paper, we consider thsparse matrix-vector multiply (SpMV) operationy < oAz + By whereA is large
and sparse andandy are column vectors. The storage format used for the madtisa crucial factor in determining
the performance of sparse matrix computations.

To address this issue, we have designed and developed a1@Rdl storage format for sparse matrices and we
have integrated it in our software libraries [8, 6] to extehd support provided by the GPU platform. The GPU-
friendly storage format we propose is a variant of the stech@ LPACK (or ELL) format, which was previously
designed for vector architectures, and is therefore namdflLadG. To test the effectiveness of our approach, we
have run experiments with it on two different platforms, aktep machine and a cluster, and we have compared
the performance attained by our ELLG format to that of the G8Rage format of the CUDA CUSPARSE library,
wrapping both the GPU side kernels in an existing librarydarallel sparse applications. Our results show that the
proposed ELLG format outperforms the CSR storage format 4 PARSE.

The remaining of this paper is organized as follows. In ®&cfl we present our GPU-friendly sparse matrix
format. In Section 3 we describe the software architectizehewve devised to allow interoperability with existing
software packages. In Section 4 we discuss our experimedalts. Finally, we draw some conclusions and give
hints for future work in Section 5.

2 A GPU friendly sparse matrix format

According to the definition given by Wilkinson:

A matrix is sparse when there are so many non-zeros that & gfiyo take advantage of them in the
computer representation.

It should therefore not be surprising that the performarfcgparse matrix computations depends critically on the
specific representation chosen. There are multiple fathatscontribute in determining the overall performance:

e the match between the data structure and the underlying atimgparchitecture, including the possibility of
exploiting special hardware instructions;

¢ the amount of overhead due to the explicit storage of inglices
e the amount of padding with explicit zeros that may be neagssa

Many storage formats have been invented over the years; benohattempts have also been directed at standardizing
the interface to these data formats for convenient usages(se, [7]).

Three widely-used data formats for representing sparseaastire COOrdinate (COO), Compressed Sparse Row
(CSR), and Compressed Sparse Column (CSC).

The COO format is a particularly simple storage scheme. Asvalin Figure 2, three array&l(enent s, Col
i dx, andRow i dx) store the values, column indices, and row indices, regmgtof the non-zero entries.

The CSR format is perhaps the most popular general-purgmsses matrix representation. It explicitly stores
column indices and non-zero values in two arraglsgnment s andCol i dx in Figure 3). A third array of row
pointers Row Poi nt er in Figure 3) allows the CSR format to represent rows of vayyémgth. The name is based
on the fact that the row index information is compressed vapect to the COO format. Figure 3 illustrates the CSR
representation of the example matrix shown in Figure 1.

(8% e 1|
B .‘.'}

Figure 1: Example of sparse matrix
ElementsArray O Q@ DO D0 S @ ---
ColidxArray 1 28 139 2 8 --
RowidxArray 1 1 12 2 2 3 3 --
Figure 2: COO compression of matrix in Figure 1

Finally, the CSC format is similar to CSR except that the matalues are read first by column, a row index is
stored for each value, and column pointers are stored.

The previous data formats can be thought of as “generalgzep at least to some extent, in that they can be
used on most computing platforms with little changes. Addal (and somewhat esoteric) formats become necessary
when moving onto special computing architectures. Manyrgtas of these formats are available from the vector
computing era, including the ELLPACK (or ELL) and Jagged d@inals (JAD) formats. For example, the latter
represents the (compressed) diagonals occurring in thexnadtained by sorting the CSR index arrays according
to their population. The main issue with vector computers teafind a good compromise between the amount of
overhead and the introduction of a certain amount of “retfylain the data structure allowing the use of vector
instructions.

The situation in the case of GPUs bears both resemblancedifimnces: we have to accommodate for the
coordinated action of multiple threads in an essentialMSIfashion; however, we have to make sure that we have
many independent threads available, the number of thre@adstion at any given time being much larger than the
typical vector lengths of vector computers.

ElementsArray O Q DO P 0 S @ ---
Col idx Array ’1’2_8:1’3 928

-

Row Pointer ,4.7:10i14,"'
Figure 3: CSR compression of matrix in Figure 1

The ELLPACK/ITPACK format (shown in Figure 4) in its origiheonception comprises two 2-dimensional arrays

(El enent s andCol i dx) containingn x k..., €elements, where is the number of rows ankl,, ... is the maximum
number of non-zeros on the same row [11]. The rows of thesgygoontain:

e the non-zero elements (E erment s) ;
o their respective column indices (@ol i dx);

e padding with zeros, where necessary.

Elements Array Col idx Array
0 ®0 28
080 139
See 2810

3

000 4710

Figure 4: ELLPACK compression of matrix in Figure 1

For our CUDA implementation, we searched for the matrix farthat allows to reach the maximum performance
of one of the most frequent building blocks in linear algé&bagplications, that is the sparse matrix-vector multiply
routine. Sparse matrix-vector multiply is a data-paraibeltine of course, but it is memory-bounded anyway, since
we have a little amount (in CUDA scale) of floating point ogiEnas per memory access, and we cannot provide an
efficient memory access pattern on GPU to both sparse maiiinput vectors. Therefore, our solution was to adapt
the ELLPACK format to a GPU implementation, since it prowdestraightforward way to read the sparse matrix
values and one of the input vectors in a efficient manner, (istng coalesced accesses on NVIDIA GPUSs), provided
that we choose a pitch for arrays that makes them alignecetagpropriate boundaries in memory (128B is a good
choice for all compute capabilities). This is possible iEgvthread computes one of the resulting elements, and
thus reads a whole compressed row (assuming a column-nrdg@noTo deal with the different number of non-zero
elements per row, a simple solution is to introduce paddatgnients equal to zero) to fill unused locations of the
elements array. An even better solution is to create aniadditarray of row lengths, at the cost of just one more
access per row; this is similar to CSR storage, except thare&keeping the regular memory occupancy per row

implied by the usage of 2-dimensional arrays. We found titfa¢rogroups have used a similar solution, e.g., in the
ELLPACK-R format described in [20].

The code that uses the format is listed below:

{y=Ax}

procedure spMV(ValuesA , IndicesA ,RowsDim,x,y)
idx = threadldx + blockldxblockSize

res = 0;

for i=0 to RowsDim(idx)
begin
ind ndicesA (i, idx)

val = ValuesA(i, idx)
res =

end

y(idx) = res
end

|
res + vakx[ind]

For this code, memory accesses to atrayere implemented in order to use the full L1+L2 caches hamaon
the NVIDIA's Fermi GPU architecture, whereas tieeture cache on GPU devices with previous compute capabilities.
Such implementation still approaches to inefficiency whenron-zero elements are spread to the whole row, so that

we cannot take advantage from the caching values from ar(@gcause we have highly varying indices). Another
main advantage of the integration of a non-zero elementsateoarray is that we know from the beginning of the
main loop the length of the processing row, so we can operatg@nming techniques such as loop unrolling and
prefetching. Listed below we report the complete kernettiersingle precisiospMV routine:

#define THREADBLOCK 128

/] Operation is y = alphaxAx+betaxy

/I x and y are vectors

/I c™M is the elements array

/Il rP is the column pointer array

/I rS is the non—zero count array

/Il n is the number of rows

__global__ void

Sspmvmgpu-unroll_2_krn(float =xy,float alpha,
floatx cM,intx rP,intx rS,int n,
int pitch ,float xx,float beta)

{

int i=threadldx.x+blockldx .xTHREADBLOCK;

if (i >=n) return;

0.0f;

float y_prod
e rS[i];

int row_size =
re += i;
cM += i;

for (int j = 0; j < row_size / 2; j++)
{

int pointers[2];

float values[2];

float fetches[2];

/I Prefetching pointers and vector values
pointers[0] = rP[O];

fetches[0] = tex1lDfetch(xtex ,pointers[0]);
pointers[1] = rP[pitch];

fetches[1l] = tex1lDfetch(xtex ,pointers[1]);
values [0] = cM[O];

values[1] = cM[pitch];

cM += 2xpitch;
rP += 2«pitch;

y_prod += __fmul_rn(values[0],fetches[0]);
y_prod += __fmul_rn(values[1],fetches[1]);

}

// odd row size

if (row_size % 2) {

int pointer = rP[0];

float fetch = tex1Dfetch(xtex , pointer);
float value = cM[0];

y_prod += __fmul_rn(value ,fetch);

}

if (beta == 0.0f)

y[i] = (alpha % y_prod);
else

y[i] = __fmul_rn(beta ,y[i])
+__fmul_rn(alpha,hyprod);

3 Interfacing with library code

The usage of sparse matrix packages has always been a nzajercisnfronting both the user community and the
software designers.

Ideally, each new data storage should be simply pluggatdesim existing software framework without any undue
effort. This has been obtained by embedding the GPU sideddiatetures in an existing framework based on the
Fortran 2003 language.

The basic ideas of the embedding are as follows:

e each sparse matrix has a dual representation, in main meaaavgll as in the GPU device memory;

e the sparse matrix is usually built in an incremental manmethe CPU side; it is only at the finalization step
that the resulting data structure is copied on the GPU dex&mory;

e the sparse matrix is layered according to the “STATE” degigttern [9], with an outer shell and an inner object
whose dynamic type can change to accommodate the needsapfjheation.

A more detailed discussion of the interfacing issues mayobed in [2]. This scheme has also been replicated by
devising an interface to the sparse matrix structure evailim the CUSPARSE library from the CUDA development
toolkit version 4.0 [16]; the principle is the same, but tletadls are slightly different since the CUDA matrix is based
on the CSR storage format.

The major issue in interfacing the inner data structurelasnieed to avoid as much as possible data movement
between the host main memory and the GPU device memorygea[22]); each data movement entails a substantial
overhead that, for the kind of operations we are consideithgapable of overcoming any performance advantage
accrued by using the GPU device. This is achieved for thesspaatrix data structures by copying them from main
memory to the GPU memory at the time of assembly (i.e., wherstbrage representation is fixed at the end of the
coefficient build loop); the appropriate data structuresisged to the assembly code via a “mold” variable, according
to the “prototype” design pattern [9].

do i=1, n
if (<this index belongsto me-) then
nz = <number of entries in equation
ia(l:nz) =i
ja(l:nz) =<list of neighbours of b
val(l:nz) =<coefficients Aij >
call spins(nz,ia,ja,val,a,desa,info)
endif
enddo
call spasb(a,des@a,info, mold=aellg)

A similar strategy has been also applied for the vectorduebin the matrix-vector product and in the other operation
typical of the sparse linear system solvers commonly in Baeh vector object has two images, one in main memory
and one in the GPU memory. Whenever an operation is involadntiolves these objects, the code keeps track of
whether the GPU memory holds an up-to-date copy of the datrations on the vectors are executed preferentially
on the GPU side, and the GPU acts as a sort of “magnet” in thatdata remains there until the user explicitly requires
a synchronization with the CPU main memory (e.g., by redugst copy to a normal array). Thus, we have a kind of
“on demand” placement of data that acts in a completely parent manner, without changing the linear solver code.
The relevant methods are the _host () method which signals that the up-to-date copy of the vestor the host
memory, theset _dev() method which signals that an operation occurred such tleatiphto-date copy is the one
on the device side, and tlss/nc() method which copies the host image onto the device, or visay@s necessary
to make sure the two copies of the data are synchronized.

As an example, the code for the matrix-vector product igkisly simplified) as follows:

subroutine d_elg_.vect.mv (alpha,a,x,beta, &
& vy,info,trans)
use iso_c_binding
implicit none

class(delg_-sparsemat), intent(in) :: a
real (dpk.), intent(in) :: alpha, beta
class(dvect), intent(inout) :: X
class(dvect), intent(inout) :: vy
integer , intent(out) ;. info
character , optional, intent(in) :: trans

if (x%is_host()) call x%sync ()
if (beta /= dzero)then
if (y%is_host()) call y%sync ()

end if

info = spmvElIDevice (a%deviceMat ,&
& alpha ,x%deviceVect ,&
& beta ,ybdeviceVect)

call ywsetdev ()

With the appropriate support we can then have a sparse Bobaar such as Conjugate Gradient (CG) to run unchanged
on the GPU, by simply feeding the appropriate data objects:

call psb_geaxpby(one,b,zero,r,desa)
call psb.spmm{one ,A,x,one,r,desa@)
rho = zero
iterate: do it = 1, itmax
call prec%apply(r,w,des@)
rho_old = rho
rho = pshgedot(r,z,desca)

if (it == 1) then
call psb.geaxpby(one,z,zero,p,desx)
else

beta = rho/rhaold
call psb.geaxpby(one,z,beta,p, desx)
endif
call psh.spmm(one ,A,p,zero,q, desa)
sigma = pshgedot(p,q,desca)
alpha = rho/sigma
call psh.geaxpby (alpha,p,one, x,desx)
call pshb.geaxpby¢alpha,q,one,r,desa)
rn2 pshgenrm2 (r,desca)
bn2 pshgenrm2 (b, desca)
err = rn2/bn2
if (err.lt.eps) exit iterate
enddo iterate
call x%sync ()

4 Experimental results

To test the effectiveness of our approach we have selectetiaf sest cases and we have run experiments with it
on two platforms. The first platform is a desktop machineathstl at our university; it is equipped with an AMD
Athlon™7750 Dual-Core Processor, and an NVIDA GTX-285 graphicd.c&he second platform is a cluster of the
CASPUR supercomputing center, each node of which hostsei{deon X5650, with NVIDIA Tesla C2050 graphics
card. In the following, the two platforms are referred to &X&@85 and C2050, respectively.

Card model Clock | Bus speed Bus width Peak DP
GTX 285 648 MHz | 159 GB/s 512b| 90 GFLOPS
C2050 575MHz | 144 GB/s 348 b | 515 GFLOPS

Table 1: The GPU models employed

matrix N NZ MFLOPS Speedup
CPU | xGPU | GPU

pde05 125 725 | 414 21 55 0.13

pdel0 1000 6400| 723 154 481 0.67

pde20 8000 53600| 794 624 | 3610 4.55

pde30 27000| 183600(545 881 | 7784 14.27
pde40 64000| 438400| 439 791 | 10380 23.63
pde50 125000 860000| 436 848 | 12452 28.54
pde60 216000| 1490400 444 981 | 13842 31.18
pde80 512000| 3545600 454 | 1162 | 15250 33.63
pde90 729000| 5054400| 449 | 1223 15354 34.20
pdel00| 1000000| 6940000 443 | 1273| 15664 35.35

Table 2: ELLG matrix-vector product performance on platidr — GTX-285

On both platforms we have compiled the inner GPU computatikernels with the CUDA toolkit version 4.0,
whereas the outer layers were compiled with the GNU Comfitglection 4.6.1, employing the Fortran, C and C++
drivers for various parts of the system. To position our waekhave also considered the CUSPARSE library that is
part of the CUDA toolkit version 4.0 [16]; it proposes a stpedormat that is essentially identical to the CSR format
(in the following, referred to as CSRG). We have wrapped tR&Gide kernels in a manner similar to our own ELLG
kernels, so as to be able to use exactly the same test progherefore all overhead factors are the same for both sets
of kernels. All experiments have been run in double prenisis this is usually necessary for the problems that are
typically encountered in contemporary scientific applamas.

The main features of the two graphics cards are shown in Talfde the interpretation of our subsequent results it
is very important to look carefully at the various perforrmametrics. In particular, the Tesla C2050 has a much better
execution rate for double precision floating point arithigcigtowever, and somewhat counterintuitively, it also seow
a lower clock rate and a lower bus speed. As we shall see, sincgparse computations are latency and memory
bound, the peak performance indicator is not necessarlyrate, and indeed the older GTX-285 card actually does
outperform the newer C2050.

Table 2 shows the performance of the matrix-vector produbtiFLOPS for the first platform. The matrices have
been generated from the finite difference discretizatioRaotial Differential Equation (PDE) on a cubic domain with
a uniform step size; the name of the matrix in the first coluefens to the length of the cube edge in the discrete
units. The second column reports the number of rows and aunthe matrix, whereas the third column the number
of non-zero elements; most rows in each matrix contain 7 zevn-elements. The column labeled CPU shows the
performance of the matrix-vector product as implementedhenCPU with the CSR storage format; the column
labeled xGPU is the performance with the product executetherGPU but including the overhead of transferring
the x andy vectors from main memory to the device; the GPU column shbwsperformance data when theand
y vectors are in the GPU memory from the beginning, and finakyalso list a speedup of the GPU vs the CPU
computation. The measurements were obtained by perfor2iil products in sequence, and computing the overall
execution rate. Table 3 is built in exactly the same way, Ihaittata have been gathered on the second platform.

As we can see, in both cases for the CPU column there is a supggerformance at low to medium sizes, then
followed by a levelling off for large matrix cases; this isedio the memory occupation of the matrix overflowing the
cache memory, which is larger for platform 2. Performingrttegrix-vector products in a sequence, with a warm cache,
is consistent with the usage within the iterative lineateyssolvers which are our target applications, where one or
more products are performed within each iteration. The CBtfopmance is better for platform 2; however exactly
the opposite is true for the GPU performance; since the epaadrix-vector computation is bound by the accesses to

matrix N NZ MFLOPS Speedup)
CPU | xGPU | GPU

pde05 125 725 | 542 6 28 0.05
pdel0 1000 6400 | 959 61 187 0.20
pde20 8000 53600 | 1091 370 | 2147 1.97

pde30 27000| 183600| 1018 791 | 4319 4.25
pde40 64000| 438400 1127 907 | 6394 5.67
pde50 125000| 860000| 1059 | 1098 | 8237 7.78
pde60 216000| 1490400| 875| 1404| 9442 10.80
pde80 512000| 3545600| 861 | 1746| 10396 12.08
pde90 729000| 5054400 844 | 1821 | 10812 12.81
pdel00| 1000000| 6940000| 867 | 1924| 10859 12.52

Table 3: ELLG matrix-vector product performance on platict — C2050

matrix N NZ MFLOPS Speedup
CPU | xGPU | GPU

pde05 125 725 | 402 20 40 0.10

pdel0 1000 6400| 733 149 | 434 0.59

pde20 8000 53600| 782 454 | 1807 2.31

pde30 27000| 183600| 564 665 | 2562 4.55
pde40 64000| 438400| 446 601 | 2898 6.49
pde50 125000 860000| 436 697 | 3035 6.97
pde60 216000| 1490400 454 827 | 3135 6.91
pde80 512000| 3545600, 451 900 | 3220 7.14
pde90 729000| 5054400| 454 939 | 3232 7.12
pdel100| 1000000| 6940000| 445 957 | 3175 7.14

Table 4: CSRG Matrix-vector product performance on platfdr— GTX-285

the memory subsystem, the superior floating point perfooaari the C2050 platform does not compensate for the
higher clock rate and bus speed of the GTX-285 platform. th bases the sparse kernel execution rate is much lower
than the peak execution rate, which is known to be achiewsibthea good approximation when running kernels for
dense matrices, such as the matrix-matrix product DGEMM.

Tables 4 and 5 report the results of the same measuremetiigh&isame program but using the data structures
and inner kernels from the CUSPARSE library. As we can sedave a very different behaviour, in that:

1. the attained GPU performance is significantly lower irhlzases;
2. platform 2 (the Tesla C2050) is slightly better than @ati 1 (the GTX-285).

Especially in the GTX-285 case, the regularity of memoryeases in our data structure as opposed to the more
irregular accesses in memory that are intrinsic to CSR makagye difference in the attained performance; this is
still true on the C2050, albeit to a much lesser extent, sine@inderlying Fermi architecture is substantially difetr
from that of the older card, and in particular it suffers mieds from uncoalesced accesses to memory.

5 Conclusions

In this paper, we have discussed the implementation issutbe sparse matrix by dense vector product kernel on
GPU devices, specifically on the NVIDIA GPUs. We have preseéithe ELLG format, which is derived from the

ELLPACK format and properly adapted to a GPU implementatéord described how the proposed data storage can
be simply plugged into existing software frameworks forghlat sparse applications. We have shown that how our

matrix N NZ MFLOPS Speedup)
CPU | xGPU | GPU

pde05 125 725| 556 7 30 0.05
pdel0 1000 6400 | 933 58 | 178 0.19
pde20 8000 53600| 1102 340 | 1588 1.44

pde30 27000| 183600(1020 702 | 2923 2.87
pde40 64000| 438400| 1033 794 | 3833 3.71
pde50 125000| 860000 967 953 | 4094 4.23
pde60 216000| 1490400f 863 | 1175| 4431 5.14
pde80 | 512000| 3545600 851 | 1408| 4628 5.44
pde90 729000| 5054400| 842 | 1470 4618 5.48
pdel00| 1000000| 6940000 858 | 1518| 4640 541

Table 5: CSRG Matrix-vector product performance on platf@— C2050

data structures allow us to achieve very good performarsedtse significantly better than what can be obtained with
the CUSPARSE library version 4.0.

The overall software infrastructure in which this work isledded has been described in other papers [X,Y], and
is an ongoing effort. Since the final objective is to enablgligptions to run on the GPU, future work will include:

e Further tuning of the kernels;

Testing in the context of a complete iterative solver;

Studying the various possibilities for implementing shigpreconditioners for the Krylov methods;

Exploring the possibility of interfacing our software frdmwgh-level environment such as MATLAB or Octave;

Extending our GPU-enablement to the full MPI version of aftware.

Much work lies still ahead of us; moreover, a lot of work wiét heeded to keep pace with the changes in the architec-
tural landscape. This is very reminiscent of the situatiorirdy the various development cycles in High Performance
Computing platforms, first with vector computers from thelye&0s into the 90s, then with RISC machines and
clusters from the late 80s onwards.

Acknowledgments

We wish to acknowledge the organization of the CASPUR supepaiting center for awarding us with a grant for
access to the experimental platform 2 under the HPC-Gralit pbgram.

References

[1] D. Barbieri, V. Cardellini, and S. Filippone. Generaiz GEMM applications on GPGPUs: Experiments and
applications. IrProc. of 2009 Int’| Conf. on Parallel Computing, ParCo '09. 10S Press, 2009.

[2] D. Barbieri, V. Cardellini, S. Filippone, and D. Rousdbesign Patterns for Scientific ComputationsEbropar
2011, Bordeaux, France, 2011.

[3] M. M. Baskaran and R. Bordawekar. Optimizing sparse imatector multiplication on GPUs. Technical Report
RC24704, IBM Research, Apr. 2009.

[4] N. Bell and M. Garland. Implementing sparse matrix-wgchultiplication on throughput-oriented processors.
In Proc. of Int’| Conf. on High Performance Computing Networking, Sorage and Analysis, SC '09. ACM, 2009.

10

[5] J. W. Choi, A. Singh, and R. W. Vuduc. Model-driven autuing of sparse matrix-vector multiply on GPUs.
SIGPLAN Not., 45:115-126, Jan. 2010.

[6] P. D’Ambra, D. di Serafino, and S. Filippone. MLD2P4: a kage of parallel algebraic multilevel domain
decomposition preconditioners in Fortran &M Trans. Math. Softw., 37(3):7-23, Sept. 2010.

[7] 1. Duff, M. Marrone, G. Radicati, and C. Vittoli. Level 3dsic linear algebra subprograms for sparse matrices: a
user level interfaceACM Trans. Math. Softw., 23(3):379-401, Sept. 1997.

[8] S. Filippone and M. Colajanni. PSBLAS: a library for pbealinear algebra computations on sparse matrices.
ACM Trans. on Math Software, 26:527-550, 2000.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissid&esign Patterns. Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[10] W.-M. Hwu. GPU computing gems emerald edition. Morgan Kaufmann, first edition, 2011.

[11] D. R. Kincaid, T. C. Oppe, and D. M. Young. ITPACKV 2D UseBGuide. htt p: //rene. ma. ut exas.
edu/ CNA/ | TPACK/ manual s/ userv2d/ .

[12] D. Luebke, M. Harris, N. Govindaraju, A. Lefohn, M. Hdos, J. Owens, M. Segal, M. Papakipos, and I. Buck.
GPGPU: general-purpose computation on graphics hardwmaiRroc. of 2006 ACM/IEEE Conf. on Supercom-
puting, SC '06. ACM, 2006.

[13] A. Monakov, A. Lokhmotov, and A. Avetisyan. Automatiatuning sparse matrix-vector multiplication for
GPU architectures. IHigh Performance Embedded Architectures and Compilers, volume 5952 of NCS, pages
111-125. Springer, 2010.

[14] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scaégparallel programming with CUDAQueue, 6:40-53,
March 2008.

[15] NVIDIA Corp. CUDPP: CUDA data parallel primitives liary. htt p:// gpgpu. or g/ devel oper/
cudpp/ .

[16] NVIDIA Corp. CUDA CUSPARSE library version 4.0, 201t t p: / / devel oper. downl oad. nvi di a.
coni conmput e/ cuda/ 4_0_r c2/t ool ki t/ docs/ CUSPARSE Li brary. pdf.

[17] J. C. Pichel, F. F. Rivera, M. Fernandez, and A. Ragleig Optimization of sparse matrix-vector multiplication
using reordering techniques on GPWA4icroprocessors and Microsystems, In Press, 2011.

[18] Y. Saad.lterative methods for sparse linear systems. Society for Industrial and Applied Mathematics, Philadel
phia, PA, second edition, 2003.

[19] J. Sanders and E. Kandr@UDA by example: Anintroduction to general-purpose GPU programming. Addison-
Wesley, first edition, 2010.

[20] F. Vazquez, G. Ortega, J. J. Fernandez, and E. M. Garhdmproving the performance of the sparse matrix
vector product with GPUs. IRroc. of 10th IEEE Int’'| Conf. on Computer and Information Technology, pages
1146-1151, 2010.

[21] V. Volkov and J. W. Demmel. Benchmarking GPUs to tunesgelinear algebra. IRroc. of 2008 ACM/IEEE
Conf. on Supercomputing, SC '08. IEEE Press, 2008.

[22] R. Vuduc, A. Chandramowlishwaran, J. W. Choi, M. E. Gygrend A. Shringarpure. On the limits of GPU
acceleration. IProc. of 2nd USENIX Workshop on Hot Topicsin Parallelism (HotPar ' 10), June 2010.

11

