
Sparse Computations on GPGPUs∗

Davide Barbieri
Dipartimento di Informatica, Sistemi e Produzione

Università di Roma “Tor Vergata”, Roma, Italy

samuelmurdoch@gmail.com

Valeria Cardellini
Dipartimento di Informatica, Sistemi e Produzione

Università di Roma “Tor Vergata”, Roma, Italy

cardellini@ing.uniroma2.it

Salvatore Filippone
Dipartimento di Ingegneria Industriale

Università di Roma “Tor Vergata”, Roma, Italy

salvatore.filippone@uniroma2.it

Università di Roma “Tor Vergata”
Dipartimento di Informatica, Sistemi e Produzione

Technical Report RR-12.90

January 12, 2012

Abstract

Sparse matrix computations are ubiquitous in scientific computing; General-Purpose computing on Graphics
Processing Units (GPGPU) is fast becoming a key component ofhigh performance computing systems. It is therefore
natural that a substantial amount of effort has been devotedto implementing sparse matrix computations on GPUs.

In this paper, we discuss our work in this field, starting withthe data structures we have employed to implement
common operations, together with the software architecture we have devised to allow interoperability with existing
software packages. To test the effectiveness of our approach we have run experiments with it on two platforms; the
experimental results show that our data structures allow usto achieve very good performance results, significantly
better than what can be obtained with the most recent versionof the CUSPARSE library.

1 Introduction

Graphics Processing Units (GPUs) have steadily entered as an attractive choice the world of scientific computing,
building the core of the most advanced supercomputers and even being offered as an infrastructure service in Cloud
computing (e.g., Amazon EC2). The GPU cards produced by NVIDIA are today among the most popular computing
platforms; their architectural model is based on a scalablearray of multi-threaded streaming multi-processors, each
composed by a fixed number of scalar processors, one dual-issue instruction fetch unit, one on-chip fast memory with
a configurable partitioning of shared memory and L1 cache plus additional special-function hardware. Each multi-
processor is capable of creating and executing concurrent threads in a completely autonomous way, with no scheduling
overhead, thanks to the hardware support for thread synchronization.

NVIDIA’s CUDA is a programming model designed for the data-parallel processing capabilities of NVIDIA
GPUs [14, 19]. A CUDA program consists of a host program that runs on the CPU host, and a kernel program
that executes on the GPU itself. The host program typically sets up the data and transfers it to and from the GPU,
while the kernel program processes that data. The CUDA programming environment specifies a set of facilities to
create, identify, and synchronize the various threads involved in the computation.

In addition to the primary use of GPUs in accelerating graphics rendering operations, there has been considerable
interest in exploiting GPUs for General Purpose computation (GPGPU) [12]. A large variety of complex algorithms

∗This Technical Report has been issued as a Research Report for early dissemination of its contents. No part of its text norany illustration can
be reproduced without written permission of the Authors.

1



can indeed exploit the GPU platform and gain tremendous performance benefits (e.g., [10, 1, 21]). With their advanced
SIMD architectures, GPUs appear also ideal candidates for performing fast operations on sparse matrices, such as the
matrix-vector multiplication; this is an essential kernelin engineering and scientific computing and hence over the last
two decades its efficient implementation on general-purpose architectures has been addressed in a significant amount
of work. Its importance stems from the fact that a matrix-vector product is the central computational step in the
execution of the most commonly used iterative solvers for linear equations, i.e., solvers based on the so called Krylov
subspace projection methods [18].

Matrix-vector multiplication on GPUs presents some new challenges, because optimization techniques applied
in general-purpose architectures cannot be directly applied on them. Moreover, sparse matrix structures introduce
additional challenges with respect to their dense counterparts, because operations on them are typically much less
regular in their access patterns. Therefore, in the last twoyears there has been a surge of interest about the efficient
implementation of sparse matrix-vector multiplication, e.g., [3, 4, 5, 13, 17, 20], NVIDIA’s CUDPP [15].

In this paper, we consider thesparse matrix-vector multiply (SpMV) operationy ← αAx + βy whereA is large
and sparse andx andy are column vectors. The storage format used for the matrixA is a crucial factor in determining
the performance of sparse matrix computations.

To address this issue, we have designed and developed a GPU-friendly storage format for sparse matrices and we
have integrated it in our software libraries [8, 6] to extendthe support provided by the GPU platform. The GPU-
friendly storage format we propose is a variant of the standard ELLPACK (or ELL) format, which was previously
designed for vector architectures, and is therefore named as ELLG. To test the effectiveness of our approach, we
have run experiments with it on two different platforms, a desktop machine and a cluster, and we have compared
the performance attained by our ELLG format to that of the CSRstorage format of the CUDA CUSPARSE library,
wrapping both the GPU side kernels in an existing library forparallel sparse applications. Our results show that the
proposed ELLG format outperforms the CSR storage format of CUSPARSE.

The remaining of this paper is organized as follows. In Section 2 we present our GPU-friendly sparse matrix
format. In Section 3 we describe the software architecture we have devised to allow interoperability with existing
software packages. In Section 4 we discuss our experimentalresults. Finally, we draw some conclusions and give
hints for future work in Section 5.

2 A GPU friendly sparse matrix format

According to the definition given by Wilkinson:

A matrix is sparse when there are so many non-zeros that it pays off to take advantage of them in the
computer representation.

It should therefore not be surprising that the performance of sparse matrix computations depends critically on the
specific representation chosen. There are multiple factorsthat contribute in determining the overall performance:

• the match between the data structure and the underlying computing architecture, including the possibility of
exploiting special hardware instructions;

• the amount of overhead due to the explicit storage of indices;

• the amount of padding with explicit zeros that may be necessary.

Many storage formats have been invented over the years; a number of attempts have also been directed at standardizing
the interface to these data formats for convenient usage (see e.g., [7]).

Three widely-used data formats for representing sparse matrices are COOrdinate (COO), Compressed Sparse Row
(CSR), and Compressed Sparse Column (CSC).

The COO format is a particularly simple storage scheme. As shown in Figure 2, three arrays (Elements, Col
idx, andRow idx) store the values, column indices, and row indices, respectively, of the non-zero entries.

The CSR format is perhaps the most popular general-purpose sparse matrix representation. It explicitly stores
column indices and non-zero values in two arrays (Elements andCol idx in Figure 3). A third array of row
pointers (Row Pointer in Figure 3) allows the CSR format to represent rows of varying length. The name is based
on the fact that the row index information is compressed withrespect to the COO format. Figure 3 illustrates the CSR
representation of the example matrix shown in Figure 1.

2



Figure 1: Example of sparse matrix

Figure 2: COO compression of matrix in Figure 1

Finally, the CSC format is similar to CSR except that the matrix values are read first by column, a row index is
stored for each value, and column pointers are stored.

The previous data formats can be thought of as “general-purpose”, at least to some extent, in that they can be
used on most computing platforms with little changes. Additional (and somewhat esoteric) formats become necessary
when moving onto special computing architectures. Many examples of these formats are available from the vector
computing era, including the ELLPACK (or ELL) and Jagged Diagonals (JAD) formats. For example, the latter
represents the (compressed) diagonals occurring in the matrix obtained by sorting the CSR index arrays according
to their population. The main issue with vector computers was to find a good compromise between the amount of
overhead and the introduction of a certain amount of “regularity” in the data structure allowing the use of vector
instructions.

The situation in the case of GPUs bears both resemblances anddifferences: we have to accommodate for the
coordinated action of multiple threads in an essentially SIMD fashion; however, we have to make sure that we have
many independent threads available, the number of threads in action at any given time being much larger than the
typical vector lengths of vector computers.

Figure 3: CSR compression of matrix in Figure 1

3



The ELLPACK/ITPACK format (shown in Figure 4) in its original conception comprises two 2-dimensional arrays
(Elements andCol idx) containingn ∗ kmax elements, wheren is the number of rows andkmax is the maximum
number of non-zeros on the same row [11]. The rows of these arrays contain:

• the non-zero elements (inElements) ;

• their respective column indices (inCol idx);

• padding with zeros, where necessary.

Figure 4: ELLPACK compression of matrix in Figure 1

For our CUDA implementation, we searched for the matrix format that allows to reach the maximum performance
of one of the most frequent building blocks in linear algebra’s applications, that is the sparse matrix-vector multiply
routine. Sparse matrix-vector multiply is a data-parallelroutine of course, but it is memory-bounded anyway, since
we have a little amount (in CUDA scale) of floating point operations per memory access, and we cannot provide an
efficient memory access pattern on GPU to both sparse matrix and input vectors. Therefore, our solution was to adapt
the ELLPACK format to a GPU implementation, since it provides a straightforward way to read the sparse matrix
values and one of the input vectors in a efficient manner (i.e., using coalesced accesses on NVIDIA GPUs), provided
that we choose a pitch for arrays that makes them aligned to the appropriate boundaries in memory (128B is a good
choice for all compute capabilities). This is possible if every thread computes one of the resulting elements, and
thus reads a whole compressed row (assuming a column-major order). To deal with the different number of non-zero
elements per row, a simple solution is to introduce padding (elements equal to zero) to fill unused locations of the
elements array. An even better solution is to create an additional array of row lengths, at the cost of just one more
access per row; this is similar to CSR storage, except that weare keeping the regular memory occupancy per row
implied by the usage of 2-dimensional arrays. We found that other groups have used a similar solution, e.g., in the
ELLPACK-R format described in [20].

The code that uses the format is listed below:

{ y = A∗x }
procedure spMV( ValuesA , Ind icesA , RowsDim , x , y )

i dx = t h r e a d I d x + b lock Idx∗ b l o c k S i z e
r e s = 0 ;
f o r i =0 to RowsDim ( i dx )
begin

i nd = Ind i cesA ( i , i dx )
v a l = ValuesA ( i , i dx )
r e s = r e s + v a l∗x [ i nd ]

end
y ( i dx ) = r e s

end

For this code, memory accesses to arrayx were implemented in order to use the full L1+L2 caches hierarchy on
the NVIDIA’s Fermi GPU architecture, whereas thetexture cache on GPU devices with previous compute capabilities.
Such implementation still approaches to inefficiency when the non-zero elements are spread to the whole row, so that

4



we cannot take advantage from the caching values from arrayx (because we have highly varying indices). Another
main advantage of the integration of a non-zero elements counter array is that we know from the beginning of the
main loop the length of the processing row, so we can operate programming techniques such as loop unrolling and
prefetching. Listed below we report the complete kernel forthe single precisionspMV routine:

# d e f i n e THREAD BLOCK 128

/ / O p e r a t i o n i s y = alpha ∗Ax+b e t a ∗y
/ / x and y are v e c t o r s
/ / cM i s t h e e l e m e n t s a r r a y
/ / rP i s t h e column p o i n t e r a r r a y
/ / rS i s t h e non−z e r o c o u n t a r r a y
/ / n i s t h e number o f rows

g l o b a l void
S spmvm gpu unro l l 2 k rn ( f l o a t ∗y , f l o a t a lpha ,

f l o a t ∗ cM, i n t ∗ rP , i n t ∗ rS , i n t n ,
i n t p i t c h , f l o a t ∗x , f l o a t b e t a )

{
i n t i = t h r e a d I d x . x+ b lock Idx . x∗THREAD BLOCK;
i f ( i >= n ) re tu rn ;

f l o a t y prod = 0 .0 f ;
i n t r o w s i z e = rS [ i ] ;

rP += i ;
cM += i ;

f o r ( i n t j = 0 ; j < r o w s i z e / 2 ; j ++)
{

i n t p o i n t e r s [ 2 ] ;
f l o a t v a l u e s [ 2 ] ;
f l o a t f e t c h e s [ 2 ] ;

/ / P r e f e t c h i n g p o i n t e r s and v e c t o r v a l u e s
p o i n t e r s [ 0 ] = rP [ 0 ] ;
f e t c h e s [ 0 ] = t e x 1 D f e t c h ( xtex , p o i n t e r s [ 0 ] ) ;
p o i n t e r s [ 1 ] = rP [ p i t c h ] ;
f e t c h e s [ 1 ] = t e x 1 D f e t c h ( xtex , p o i n t e r s [ 1 ] ) ;
v a l u e s [ 0 ] = cM [ 0 ] ;
v a l u e s [ 1 ] = cM[ p i t c h ] ;

cM += 2∗ p i t c h ;
rP += 2∗ p i t c h ;

y p rod += f m u l r n ( v a l u e s [ 0 ] , f e t c h e s [ 0 ] ) ;
y p rod += f m u l r n ( v a l u e s [ 1 ] , f e t c h e s [ 1 ] ) ;

}

/ / odd row s i z e
i f ( r o w s i z e % 2) {

i n t p o i n t e r = rP [ 0 ] ;
f l o a t f e t c h = t e x 1 D f e t c h ( xtex , p o i n t e r ) ;
f l o a t va lue = cM [ 0 ] ;
y p rod += f m u l r n ( va lue , f e t c h ) ;

}

i f ( b e t a == 0 .0 f )
y [ i ] = ( a l pha ∗ y prod ) ;

e l s e

5



y [ i ] = f m u l r n ( beta , y [ i ] )
+ f m u l r n ( a lpha , y p rod ) ;

}

3 Interfacing with library code

The usage of sparse matrix packages has always been a major issue confronting both the user community and the
software designers.

Ideally, each new data storage should be simply pluggable into an existing software framework without any undue
effort. This has been obtained by embedding the GPU side datastructures in an existing framework based on the
Fortran 2003 language.

The basic ideas of the embedding are as follows:

• each sparse matrix has a dual representation, in main memoryas well as in the GPU device memory;

• the sparse matrix is usually built in an incremental manner on the CPU side; it is only at the finalization step
that the resulting data structure is copied on the GPU devicememory;

• the sparse matrix is layered according to the “STATE” designpattern [9], with an outer shell and an inner object
whose dynamic type can change to accommodate the needs of theapplication.

A more detailed discussion of the interfacing issues may be found in [2]. This scheme has also been replicated by
devising an interface to the sparse matrix structure available in the CUSPARSE library from the CUDA development
toolkit version 4.0 [16]; the principle is the same, but the details are slightly different since the CUDA matrix is based
on the CSR storage format.

The major issue in interfacing the inner data structures is the need to avoid as much as possible data movement
between the host main memory and the GPU device memory (e.g.,see [22]); each data movement entails a substantial
overhead that, for the kind of operations we are considering, is capable of overcoming any performance advantage
accrued by using the GPU device. This is achieved for the sparse matrix data structures by copying them from main
memory to the GPU memory at the time of assembly (i.e., when the storage representation is fixed at the end of the
coefficient build loop); the appropriate data structure is passed to the assembly code via a “mold” variable, according
to the “prototype” design pattern [9].

do i =1 , n
i f ( < t h i s i ndex be longs to me> ) then

nz = <number of e n t r i e s in e q u a t i o n i>
i a ( 1 : nz ) = i
j a ( 1 : nz ) = < l i s t o f n e i g h b o u r s of i>
v a l ( 1 : nz ) = <c o e f f i c i e n t s A i j >
c a l l s p i n s ( nz , ia , ja , va l , a , desca , i n f o )

e n d i f
enddo
c a l l spasb ( a , desca , i n fo , mold= a e l l g )

A similar strategy has been also applied for the vectors involved in the matrix-vector product and in the other operations
typical of the sparse linear system solvers commonly in use.Each vector object has two images, one in main memory
and one in the GPU memory. Whenever an operation is invoked that involves these objects, the code keeps track of
whether the GPU memory holds an up-to-date copy of the data; operations on the vectors are executed preferentially
on the GPU side, and the GPU acts as a sort of “magnet” in that the data remains there until the user explicitly requires
a synchronization with the CPU main memory (e.g., by requesting a copy to a normal array). Thus, we have a kind of
“on demand” placement of data that acts in a completely transparent manner, without changing the linear solver code.
The relevant methods are theis_host() method which signals that the up-to-date copy of the vector is in the host
memory, theset_dev() method which signals that an operation occurred such that the up-to-date copy is the one
on the device side, and thesync() method which copies the host image onto the device, or viceversa, as necessary
to make sure the two copies of the data are synchronized.

As an example, the code for the matrix-vector product is (slightly simplified) as follows:

6



su b rou t in e d e l g v e c t m v ( a lpha , a , x , be ta , &
& y , i n fo , t r a n s )

use i s o c b i n d i n g
i m p l i c i t none
c l a s s ( d e l g s p a r s e m a t ) , i n t e n t ( in ) : : a
r e a l ( dpk ) , i n t e n t ( in ) : : a lpha , b e t a
c l a s s ( d v e c t ) , i n t e n t ( i n o u t ) : : x
c l a s s ( d v e c t ) , i n t e n t ( i n o u t ) : : y
i n t e g e r , i n t e n t ( out ) : : i n f o
ch aracter , o p t i o n a l , i n t e n t ( in ) : : t r a n s

i f ( x%i s h o s t ( ) ) c a l l x%sync ( )
i f ( b e t a /= dze ro ) then

i f ( y%i s h o s t ( ) ) c a l l y%sync ( )
end i f
i n f o = spmvEl lDev ice ( a%deviceMat ,&

& alpha , x%dev iceVect ,&
& beta , y%dev i ceVec t )

c a l l y%s e t d e v ( )

With the appropriate support we can then have a sparse linearsolver such as Conjugate Gradient (CG) to run unchanged
on the GPU, by simply feeding the appropriate data objects:

c a l l psb geaxpby ( one , b , zero , r , d e s ca )
c a l l psb spmm(−one ,A, x , one , r , d e s ca )
rho = ze ro
i t e r a t e : do i t = 1 , i tmax

c a l l prec%app l y ( r ,w, d e s ca )
r h o o l d = rho
rho = p s b g e d o t ( r , z , d e s ca )
i f ( i t == 1) then

c a l l psb geaxpby ( one , z , zero , p , d e s ca )
e l s e

b e t a = rho / r h o o l d
c a l l psb geaxpby ( one , z , be ta , p , d e s ca )

e n d i f
c a l l psb spmm ( one ,A, p , zero , q , d e s ca )
s igma = p s bg e d o t ( p , q , d e s ca )
a lpha = rho / s igma
c a l l psb geaxpby ( a lpha , p , one , x , d e s ca )
c a l l psb geaxpby (−a lpha , q , one , r , d e s ca )
rn2 = psb genrm2 ( r , d e s ca )
bn2 = psb genrm2 ( b , d e s ca )
err = rn2 / bn2
i f ( err . l t . eps ) e x i t i t e r a t e

enddo i t e r a t e
c a l l x%sync ( )

4 Experimental results

To test the effectiveness of our approach we have selected a set of test cases and we have run experiments with it
on two platforms. The first platform is a desktop machine installed at our university; it is equipped with an AMD
AthlonTM7750 Dual-Core Processor, and an NVIDA GTX-285 graphics card. The second platform is a cluster of the
CASPUR supercomputing center, each node of which hosts an Intel Xeon X5650, with NVIDIA Tesla C2050 graphics
card. In the following, the two platforms are referred to as GTX 285 and C2050, respectively.

7



Card model Clock Bus speed Bus width Peak DP
GTX 285 648 MHz 159 GB/s 512 b 90 GFLOPS
C2050 575 MHz 144 GB/s 348 b 515 GFLOPS

Table 1: The GPU models employed

matrix N NZ MFLOPS Speedup
CPU xGPU GPU

pde05 125 725 414 21 55 0.13
pde10 1000 6400 723 154 481 0.67
pde20 8000 53600 794 624 3610 4.55
pde30 27000 183600 545 881 7784 14.27
pde40 64000 438400 439 791 10380 23.63
pde50 125000 860000 436 848 12452 28.54
pde60 216000 1490400 444 981 13842 31.18
pde80 512000 3545600 454 1162 15250 33.63
pde90 729000 5054400 449 1223 15354 34.20
pde100 1000000 6940000 443 1273 15664 35.35

Table 2: ELLG matrix-vector product performance on platform 1 — GTX–285

On both platforms we have compiled the inner GPU computational kernels with the CUDA toolkit version 4.0,
whereas the outer layers were compiled with the GNU CompilerCollection 4.6.1, employing the Fortran, C and C++
drivers for various parts of the system. To position our workwe have also considered the CUSPARSE library that is
part of the CUDA toolkit version 4.0 [16]; it proposes a storage format that is essentially identical to the CSR format
(in the following, referred to as CSRG). We have wrapped the GPU side kernels in a manner similar to our own ELLG
kernels, so as to be able to use exactly the same test programs; therefore all overhead factors are the same for both sets
of kernels. All experiments have been run in double precision, as this is usually necessary for the problems that are
typically encountered in contemporary scientific applications.

The main features of the two graphics cards are shown in Table1; for the interpretation of our subsequent results it
is very important to look carefully at the various performance metrics. In particular, the Tesla C2050 has a much better
execution rate for double precision floating point arithmetic; however, and somewhat counterintuitively, it also shows
a lower clock rate and a lower bus speed. As we shall see, sinceour sparse computations are latency and memory
bound, the peak performance indicator is not necessarily accurate, and indeed the older GTX-285 card actually does
outperform the newer C2050.

Table 2 shows the performance of the matrix-vector product in MFLOPS for the first platform. The matrices have
been generated from the finite difference discretization ofPartial Differential Equation (PDE) on a cubic domain with
a uniform step size; the name of the matrix in the first column refers to the length of the cube edge in the discrete
units. The second column reports the number of rows and columns in the matrix, whereas the third column the number
of non-zero elements; most rows in each matrix contain 7 non-zero elements. The column labeled CPU shows the
performance of the matrix-vector product as implemented onthe CPU with the CSR storage format; the column
labeled xGPU is the performance with the product executed onthe GPU but including the overhead of transferring
thex andy vectors from main memory to the device; the GPU column shows the performance data when thex and
y vectors are in the GPU memory from the beginning, and finally we also list a speedup of the GPU vs the CPU
computation. The measurements were obtained by performing2000 products in sequence, and computing the overall
execution rate. Table 3 is built in exactly the same way, but the data have been gathered on the second platform.

As we can see, in both cases for the CPU column there is a surge in performance at low to medium sizes, then
followed by a levelling off for large matrix cases; this is due to the memory occupation of the matrix overflowing the
cache memory, which is larger for platform 2. Performing thematrix-vector products in a sequence, with a warm cache,
is consistent with the usage within the iterative linear system solvers which are our target applications, where one or
more products are performed within each iteration. The CPU performance is better for platform 2; however exactly
the opposite is true for the GPU performance; since the sparse matrix-vector computation is bound by the accesses to

8



matrix N NZ MFLOPS Speedup
CPU xGPU GPU

pde05 125 725 542 6 28 0.05
pde10 1000 6400 959 61 187 0.20
pde20 8000 53600 1091 370 2147 1.97
pde30 27000 183600 1018 791 4319 4.25
pde40 64000 438400 1127 907 6394 5.67
pde50 125000 860000 1059 1098 8237 7.78
pde60 216000 1490400 875 1404 9442 10.80
pde80 512000 3545600 861 1746 10396 12.08
pde90 729000 5054400 844 1821 10812 12.81
pde100 1000000 6940000 867 1924 10859 12.52

Table 3: ELLG matrix-vector product performance on platform 2 — C2050

matrix N NZ MFLOPS Speedup
CPU xGPU GPU

pde05 125 725 402 20 40 0.10
pde10 1000 6400 733 149 434 0.59
pde20 8000 53600 782 454 1807 2.31
pde30 27000 183600 564 665 2562 4.55
pde40 64000 438400 446 601 2898 6.49
pde50 125000 860000 436 697 3035 6.97
pde60 216000 1490400 454 827 3135 6.91
pde80 512000 3545600 451 900 3220 7.14
pde90 729000 5054400 454 939 3232 7.12
pde100 1000000 6940000 445 957 3175 7.14

Table 4: CSRG Matrix-vector product performance on platform 1 — GTX–285

the memory subsystem, the superior floating point performance of the C2050 platform does not compensate for the
higher clock rate and bus speed of the GTX-285 platform. In both cases the sparse kernel execution rate is much lower
than the peak execution rate, which is known to be achievablewith a good approximation when running kernels for
dense matrices, such as the matrix-matrix product DGEMM.

Tables 4 and 5 report the results of the same measurements, with the same program but using the data structures
and inner kernels from the CUSPARSE library. As we can see, wehave a very different behaviour, in that:

1. the attained GPU performance is significantly lower in both cases;

2. platform 2 (the Tesla C2050) is slightly better than platform 1 (the GTX-285).

Especially in the GTX-285 case, the regularity of memory accesses in our data structure as opposed to the more
irregular accesses in memory that are intrinsic to CSR makesa large difference in the attained performance; this is
still true on the C2050, albeit to a much lesser extent, sincethe underlying Fermi architecture is substantially different
from that of the older card, and in particular it suffers muchless from uncoalesced accesses to memory.

5 Conclusions

In this paper, we have discussed the implementation issues of the sparse matrix by dense vector product kernel on
GPU devices, specifically on the NVIDIA GPUs. We have presented the ELLG format, which is derived from the
ELLPACK format and properly adapted to a GPU implementation, and described how the proposed data storage can
be simply plugged into existing software frameworks for parallel sparse applications. We have shown that how our

9



matrix N NZ MFLOPS Speedup
CPU xGPU GPU

pde05 125 725 556 7 30 0.05
pde10 1000 6400 933 58 178 0.19
pde20 8000 53600 1102 340 1588 1.44
pde30 27000 183600 1020 702 2923 2.87
pde40 64000 438400 1033 794 3833 3.71
pde50 125000 860000 967 953 4094 4.23
pde60 216000 1490400 863 1175 4431 5.14
pde80 512000 3545600 851 1408 4628 5.44
pde90 729000 5054400 842 1470 4618 5.48
pde100 1000000 6940000 858 1518 4640 5.41

Table 5: CSRG Matrix-vector product performance on platform 2 — C2050

data structures allow us to achieve very good performance results, significantly better than what can be obtained with
the CUSPARSE library version 4.0.

The overall software infrastructure in which this work is embedded has been described in other papers [X,Y], and
is an ongoing effort. Since the final objective is to enable applications to run on the GPU, future work will include:

• Further tuning of the kernels;

• Testing in the context of a complete iterative solver;

• Studying the various possibilities for implementing suitable preconditioners for the Krylov methods;

• Exploring the possibility of interfacing our software fromhigh-level environment such as MATLAB or Octave;

• Extending our GPU-enablement to the full MPI version of our software.

Much work lies still ahead of us; moreover, a lot of work will be needed to keep pace with the changes in the architec-
tural landscape. This is very reminiscent of the situation during the various development cycles in High Performance
Computing platforms, first with vector computers from the early 70s into the 90s, then with RISC machines and
clusters from the late 80s onwards.

Acknowledgments

We wish to acknowledge the organization of the CASPUR supercomputing center for awarding us with a grant for
access to the experimental platform 2 under the HPC-Grant 2011 program.

References

[1] D. Barbieri, V. Cardellini, and S. Filippone. Generalized GEMM applications on GPGPUs: Experiments and
applications. InProc. of 2009 Int’l Conf. on Parallel Computing, ParCo ’09. IOS Press, 2009.

[2] D. Barbieri, V. Cardellini, S. Filippone, and D. Rouson.Design Patterns for Scientific Computations. InEuropar
2011, Bordeaux, France, 2011.

[3] M. M. Baskaran and R. Bordawekar. Optimizing sparse matrix-vector multiplication on GPUs. Technical Report
RC24704, IBM Research, Apr. 2009.

[4] N. Bell and M. Garland. Implementing sparse matrix-vector multiplication on throughput-oriented processors.
In Proc. of Int’l Conf. on High Performance Computing Networking, Storage and Analysis, SC ’09. ACM, 2009.

10



[5] J. W. Choi, A. Singh, and R. W. Vuduc. Model-driven autotuning of sparse matrix-vector multiply on GPUs.
SIGPLAN Not., 45:115–126, Jan. 2010.

[6] P. D’Ambra, D. di Serafino, and S. Filippone. MLD2P4: a package of parallel algebraic multilevel domain
decomposition preconditioners in Fortran 95.ACM Trans. Math. Softw., 37(3):7–23, Sept. 2010.

[7] I. Duff, M. Marrone, G. Radicati, and C. Vittoli. Level 3 basic linear algebra subprograms for sparse matrices: a
user level interface.ACM Trans. Math. Softw., 23(3):379–401, Sept. 1997.

[8] S. Filippone and M. Colajanni. PSBLAS: a library for parallel linear algebra computations on sparse matrices.
ACM Trans. on Math Software, 26:527–550, 2000.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[10] W.-M. Hwu. GPU computing gems emerald edition. Morgan Kaufmann, first edition, 2011.

[11] D. R. Kincaid, T. C. Oppe, and D. M. Young. ITPACKV 2D Users Guide. http://rene.ma.utexas.
edu/CNA/ITPACK/manuals/userv2d/.

[12] D. Luebke, M. Harris, N. Govindaraju, A. Lefohn, M. Houston, J. Owens, M. Segal, M. Papakipos, and I. Buck.
GPGPU: general-purpose computation on graphics hardware.In Proc. of 2006 ACM/IEEE Conf. on Supercom-
puting, SC ’06. ACM, 2006.

[13] A. Monakov, A. Lokhmotov, and A. Avetisyan. Automatically tuning sparse matrix-vector multiplication for
GPU architectures. InHigh Performance Embedded Architectures and Compilers, volume 5952 ofLNCS, pages
111–125. Springer, 2010.

[14] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming with CUDA.Queue, 6:40–53,
March 2008.

[15] NVIDIA Corp. CUDPP: CUDA data parallel primitives library. http://gpgpu.org/developer/
cudpp/.

[16] NVIDIA Corp. CUDA CUSPARSE library version 4.0, 2011.http://developer.download.nvidia.
com/compute/cuda/4_0_rc2/toolkit/docs/CUSPARSE_Library.pdf.

[17] J. C. Pichel, F. F. Rivera, M. Fernández, and A. Rodrı́guez. Optimization of sparse matrix-vector multiplication
using reordering techniques on GPUs.Microprocessors and Microsystems, In Press, 2011.

[18] Y. Saad.Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, second edition, 2003.

[19] J. Sanders and E. Kandrot.CUDA by example: An introduction to general-purpose GPU programming. Addison-
Wesley, first edition, 2010.

[20] F. Vazquez, G. Ortega, J. J. Fernández, and E. M. Garzon. Improving the performance of the sparse matrix
vector product with GPUs. InProc. of 10th IEEE Int’l Conf. on Computer and Information Technology, pages
1146–1151, 2010.

[21] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune dense linear algebra. InProc. of 2008 ACM/IEEE
Conf. on Supercomputing, SC ’08. IEEE Press, 2008.

[22] R. Vuduc, A. Chandramowlishwaran, J. W. Choi, M. E. Guney, and A. Shringarpure. On the limits of GPU
acceleration. InProc. of 2nd USENIX Workshop on Hot Topics in Parallelism (HotPar ’10), June 2010.

11


