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This paper presents a homogenization method for unidirectional periodic composite materials reinforced
by circular fibres with functionally graded coating layers. The asymptotic homogenization method is
adopted, and the relevant cell problem is addressed. Periodicity is enforced by resorting to the theory
of Weierstrass elliptic functions. The equilibrium equation in the coating domain is solved in closed form
by applying the theory of hypergeometric functions, for different choices of grading profiles. The effec-
tiveness of the present analytical procedure is proved by convergence analysis and comparison with
finite element solutions. The influence of microgeometry and grading parameters on the shear stress con-
centration at the coating/matrix interface is addressed, aimed at the composite optimization in regards to
fatigue and debonding phenomena.
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1. Introduction only a limited part of the inclusion may result in interesting advan-
Fibre reinforced composite materials are widely used in engi-
neering practice for their outstanding properties of design versatil-
ity and economic convenience (Jones, 1999). It is well known that
one of the major issues connected to such composites resides in
debonding due to stress concentration at inclusion/matrix inter-
face (Bertrand et al., 1995; Andrianov et al., 2007, 2008). A general
way to ameliorate the durability of the material with respect to
such a risk is to interpose a coating material between reinforce-
ment and matrix to ensure physical continuity between the two
components. This technology is defined as fibre sputtering (Nose
et al., 2011; Zhang et al., 2011) and has the general target of
strengthening the composite material. It also makes possible to
transfer stresses more gradually from one phase to the other, to al-
low deviation cracks, to make wettability between inclusion and
matrix easier, and to avoid chemical reactions (Bertrand et al.,
1995; Brendel et al., 2005, 2009; Du et al., 2010).

This work deals with the above introduced problem. In particu-
lar, it develops an asymptotic homogenization method to deter-
mine the effective longitudinal shear moduli of linear elastic,
periodic composites, reinforced by straight circular fibres coated
by a layer of cylindrically orthotropic functionally graded material.
The present approach permits to develop a quantitative study on
how the coating layer grading may reduce the risk of debonding
and interface failure. In particular, it is worth noting that grading
ll rights reserved.
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tages with respect to a different approach (Artioli et al., 2010)
where the hypothesis of graduation of the whole inclusion was
adopted. In such a way the present results may indicate new de-
sign criteria for optimized materials with respect to performance
and durability.

The analysis focuses on the antiplane shear deformation state.
The method implies the solution of the equilibrium field equation
in each of the three subdomains: fibre, coating, and matrix, respec-
tively. Moreover, the solution strategy requires the satisfaction of
the equilibrium and displacement continuity laws at the fibre/
coating and coating/matrix interfaces, and the satisfaction of the
periodicity boundary conditions at the unit-cell boundary as well.
Solving the equilibrium field equation is a nontrivial task in the
radially-graded coating domain, and a method previously devel-
oped by Artioli et al. (2010) is extended to the present case. Several
types of grading laws are applied and solved for in closed-form.
Such a collection of analytical profiles can be useful as a bench-
mark for numerical solutions, and to approximate experimental
profiles encountered in applications, in the field of antiplane shear
deformations, electric or thermal conduction, or electrostatics.

Many procedures for estimating the effective moduli of com-
posites are available in the literature. Some of them are based on
the solution for dilute suspensions, whereas others take into ac-
count interactions among fibres (see, e.g., Mura, 1987; Milton,
2004; Buryachenko, 2007 and the references cited therein). For
periodic microstructures, these interactions are taken into account
by imposing periodic boundary conditions at the unit-cell bound-
ary. This issue can be accomplished by using different methods,
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Fig. 1. (a) Geometrical setting of the problem at the macroscale: cross section of the
fibrous composite (the fibre size is exaggerated with respect to the sample size, for
illustrative purposes). (b) Geometrical setting of the cell (or local) problem at the
microscale.
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including Fourier transform (Iwakuma and Nemat-Nasser, 1983;
Michel et al., 1999; Bonnet, 2007), elastostatic resonances (Kantor
and Bergman, 1982), boundary elements (Helsing, 1995), finite ele-
ments (Michel et al., 1999; Wang et al., 2006) or more involved
techniques such as the boundary shape perturbation method
(Andrianov et al., 2007, 2008), the mean-field homogenization
method (Friebel et al., 2006), the average inclusion method (Xun
et al., 2004), and the extended electromechanical equivalent inclu-
sion method (Hashemi and Kargarnovin, 2011). In this work, peri-
odicity is enforced following the classical multipole expansion
method (Lord Rayleigh, 1892), quite popular in the literature
(Perrins et al., 1979; Kalamkarov, 1992; Meguid and Kalamkarov,
1994; Rodríguez-Ramos et al., 2001; Jiang et al., 2004; Chen and
Kuo, 2005; Parnell and Abrahams, 2006; Bisegna and Caselli,
2008; Kushch et al., 2008; Artioli et al., 2010). In particular, the cell
function over the matrix domain is represented by a linear combi-
nation of functions defined in terms of the doubly-periodic
Weierstrass f function and its derivatives (Whittaker and Watson,
1927; Apostol, 1997), naturally satisfying the periodicity condition
at the cell boundary. The actual solution is then computed through
the identification of the latter representation, with the Fourier-ser-
ies representation arising after satisfying the equilibrium field
equations in the fibre, coating, and matrix domains, and enforcing
the equilibrium and displacement continuity laws at the interfaces.
An infinite system of linear algebraic equations is thus obtained,
which is truncated to a finite order N and solved.

The paper is organized as follows. In Section 2 the mathematical
problem of asymptotic homogenization is introduced and the equi-
librium homogenized equation is obtained for the composite mate-
rial under investigation. Section 3 is the corner stone of the work
and is mainly devoted to the cell problem solution based on the
use of Fourier series. The relative interface and periodicity bound-
ary condition satisfaction technique is presented as well. The expli-
cit form of the effective constitutive tensor and some
considerations on the limit situation of zero-thickness coating
close the section. Section 4 reports numerical evidence of the pro-
posed method reliability and of the capability of predicting the
influence of grading features and unit cell geometry on the homog-
enized properties of the composite. Moreover, a comparison with
other homogenization approaches available in the literature
(Sevostianov et al., 2012) is presented. Finally, the ability to reduce
the shear stress concentration at the inclusion/matrix interface by
properly designing the coating grading profile is assessed. In
Appendix A closed-form solutions are presented for different types
of coating grading profiles.
2. Statement of the problem

Reference is made to a composite material constituted of long,
parallel fibres with circular cross section, embedded into a sur-
rounding matrix. Fibres are arranged in a regular lattice deter-
mined by two families of parallel lines, respectively parallel to
the x1 axis, and forming an angle u with the latter, as sketched
in Fig. 1(a). This geometrical set up can be interpreted as a two
dimensional array of unit cells, developing periodically along the
x1 and u directions. The unit cell, i.e. the microstructure of the
composite, can be appreciated in Fig. 1(b). The cell sides measure
L1 and L2 respectively, and the fibre radius is R. Fibres present a cir-
cular coating constituted by a layer of constant thickness d, made
of functionally graded material (Fig. 1(b)).

The effective material shear moduli are obtained here by
asymptotic homogenization: to this end, a family of problems is
introduced, indexed by a parameter e scaling the microstructure
(Fig. 1(a)). The homogenization limit is obtained by letting e go
to zero.
In the framework of antiplane shear deformations, the problem
of determining the longitudinal displacement field we in the com-
posite domain is stated as follows:

divðGrweÞ ¼ 0; in Xf
e [Xc

e [Xm
e ; ð1Þ

sGrwe � mt ¼ 0; on Cf ;c
e [ Cc;m

e ; ð2Þ
swet ¼ 0; on Cf ;c

e [ Cc;m
e : ð3Þ

Here Xf
e, Xc

e and Xm
e denote fibre, coating and matrix domains

respectively. Moreover Cf ;c
e and Cc;m

e indicate the ensemble of fi-
bre/coating and coating/matrix interfaces, m is the outward unit
vector normal to Cf;c

e and Cc;m
e , respectively. Square brackets sð�Þt de-

note the jump of the enclosed quantity across the interface, defined
as ½ð�Þc � ð�Þf � on Cf ;c

e [respectively, ½ð�Þm � ð�Þc� on Cc;m
e ].

Eq. (1) is the field equilibrium equation; (2) accounts for equi-
librium at Cf ;c

e and Cc;m
e , stipulating the continuity of the normal-

to-interface component of the shear stress; (3) prescribes continu-
ity of the displacement field across Cf ;c

e and Cc;m
e , respectively.

These equations must be complemented by suitable boundary con-
ditions on the boundary of the domain X ¼ Xf

e [ Cf ;c
e

[Xc
e [ Cc;m

e [Xm
e , though their specification is immaterial for the

present treatment.
Fibres, coatings, and matrix are assumed to be linear elastic, and

their shear moduli are collected in the constitutive tensor G, which
specializes in

G ¼ Gf in Xf
e; G ¼ Gc in Xc

e; G ¼ Gm in Xm
e : ð4Þ

Both fibres and matrix are homogeneous and isotropic, so that
Gf ¼ Gf I and Gm ¼ GmI, with I the second order identity tensor,
being Gf and Gm the fibre and matrix shear modulus, respectively.
Fibre coatings are made of a cylindrically-orthotropic material
whose moduli are functionally-graded along the radial coordinate
(i.e., radially graded). Introducing a polar coordinate system
ðO; r; hÞ as depicted in Fig. 1(b), the coating elasticity tensor is:

Gc ¼ ðGrer � er þ Gheh � ehÞgðqÞ; ð5Þ

where

q ¼ r
R

ð6Þ

is the radial dimensionless coordinate. The symbols er and eh indi-
cate the radial and tangential unit vectors, respectively, � denotes
the tensor product, and the dimensionless function gðqÞ expresses
the material grading law along the radial direction of the coating.
Accordingly, setting t ¼ d=R, Grgð1Þ and Ghgð1Þ [respectively,
Grgð1þ tÞ and Ghgð1þ tÞ] are the radial and tangential shear moduli
at Cf;c

e [respectively, Cc;m
e ]. Perfect fibre/coating and coating/matrix

interfaces are assumed.
In order to guarantee the well posedness of the above problem,

the following hypotheses are made:
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Gf > 0; Gr > 0; Gh > 0; Gm > 0; gðqÞ > 0 in ½1;1þ t�: ð7Þ
2.1. Homogenized equilibrium equation

The asymptotic homogenization method is employed to derive
the homogenized or effective constitutive tensor of the composite
material. It is only sketched here for the sake of completeness. The
interested Reader may refer, e.g., to Bensoussan et al. (1978) and
Sanchez-Palencia (1980).

As shown in Fig. 1(a), two different length scales characterize
the problem under consideration. Hence, two different space vari-
ables are introduced: the macroscopic one, x, and the microscopic
one, y ¼ x=e, y 2 Q , being Q the unit cell (see Fig. 1(b)), whose intra-
fibre space, fibre-coating interface, coating space, coating-matrix
interface and matrix space are denoted by Q f , Cf ;c, Q c, Cc;m, and
Qm, respectively. Accordingly, the divergence and gradient opera-
tors are given by the following relations:

div ¼ divx þ
1
e

divy; r ¼ rx þ
1
e
ry: ð8Þ

An asymptotic expansion of the unknown displacement field is con-
sidered in the form:

weðx; yÞ ¼ w0ðx; yÞ þ ew1ðx; yÞ þ e2w2ðx; yÞ þ � � � ; ð9Þ
where w0;w1;w2 are Q-periodic functions in y, and w1;w2 have null
integral average over Q. Substituting (9) into Problem (1)–(3) and
equating the power-like terms of e, three differential problems for
w0;w1 and w2 are obtained, respectively. The problem for w0 is:

divyðGryw0Þ ¼ 0; in Q f [ Q c [ Q m; ð10Þ
sGryw0 � mt ¼ 0; on Cf ;c [ Cc;m; ð11Þ
sw0t ¼ 0; on Cf ;c [ Cc;m: ð12Þ

Problem (10)–(12), taking into account (7), implies that w0 ¼ w0ðxÞ
(Lene and Leguillon, 1982). The problem for w1 is:

divy½Gðryw1 þrxw0Þ� ¼ 0; in Q f [ Q c [ Q m; ð13Þ
sGðryw1 þrxw0Þ � mt ¼ 0; on Cf ;c [ Cc;m; ð14Þ
sw1t ¼ 0; on Cf ;c [ Cc;m: ð15Þ

The unknown function w1 is represented in the form (Bensoussan
et al., 1978; Sanchez-Palencia, 1980):

w1ðx; yÞ ¼ �vðyÞ � rxw0ðxÞ; ð16Þ

where the cell function vðyÞ has been introduced. Its components
vh;h ¼ 1;2, are the unique, null average, Q-periodic solutions of
the cell problem:

divy½Gðryvh � ehÞ� ¼ 0; in Q f [ Q c [ Q m; ð17Þ
sGðryvh � ehÞ � mt ¼ 0; on Cf ;c [ Cc;m; ð18Þ
svht ¼ 0; on Cf ;c [ Cc;m; ð19Þ

where eh is the unit vector parallel to the yh axis.
Finally, the problem for w2 is obtained:

divy½Gðryw2 þrxw1Þ� ¼ �divx½Gðryw1 þrxw0Þ�;
in Q f [ Q c [ Q m; ð20Þ

sGðryw2 þrxw1Þ � mt ¼ 0; on Cf ;c [ Cc;m; ð21Þ
sw2t ¼ 0; on Cf ;c [ Cc;m: ð22Þ

Integrating (20) in Q f [ Q c [ Qm, using the Gauss–Green Lemma,
adding the three contributions and exploiting (21), the following
equation is obtained:

1
jQ j

Z
Q f[Qc[Qm

divx½Gðryw1 þrxw0Þ�da ¼ 0; ð23Þ
where da is the area element of Q f [ Q c [ Qm and j � j is the Lebesgue
measure. Substituting (16) into (23), the homogenized equation for
the macroscopic displacement w0 is finally derived:

divxðG#rxw0Þ ¼ 0: ð24Þ

Here rxw0 is the macroscopic shear strain, and

G# ¼ 1
jQ j

Z
Q f[Qc[Qm

GðI �rt
yvÞda ð25Þ

is the effective constitutive tensor, where the superscript ‘t’ denotes
the transpose. Using the Gauss–Green Lemma, (25) is transformed
into:

G# ¼Gmð1� f Þþ Gf f

ð1þ tÞ2
þ 1
jQ j

Z
Qc

Gc daþ
Z

Qc
ðdivyGcÞ�vdaþ

Z
Cf ;c[Cc;m

sGm�vtdl
� �

;

ð26Þ

where dl is the line element of Cf ;c and of Cc;m, and f ¼ pðRþ dÞ2=jQ j
is the total inclusion (fibre plus coating) volume fraction. The pre-
ceding equation for G# can be rewritten in terms of the auxiliary
cell function:

~v ¼ v� ðy1e1 þ y2e2Þ; ð27Þ

as follows:

G# ¼ Gm þ 1
jQ j

Z
Qc
ðdivyGcÞ � ~vdaþ 1

jQ j

Z
Cf;c[Cc;m

sGm � ~vtdl: ð28Þ

Eq. (28) yields the effective shear moduli of the composite material
in terms of the solution v of the cell problem. The cell function de-
pends on the form assumed for Gc and is derived in closed form for
different choices of the coating constitutive law.

In applications, a central role is played by the local shear stress
se ¼ Grwe in the composite. The leading-order term of its asymp-
totic expansion turns out to be:

s0 ¼ Gðrxw0 þryw1Þ ¼ GðI �rt
yvÞ½rxw0�: ð29Þ
3. Cell problem

3.1. Fourier series representation

The general solution of the field Eq. (17) is obtained via the fol-
lowing Fourier series representation:

� in the isotropic, homogeneous fibre subdomain Q f
vhðr; hÞjQ f :¼ vf
hðr; hÞ ¼ yh þR

Xþ1
k¼1

oakhqkeikh

" #
; ð30Þ
� in the cylindrically orthotropic, radially-graded coating subdo-
main Q c
vhðr; hÞjQc :¼ vc
hðr; hÞ ¼ yh þR

Xþ1
k¼�1

obkh WkðqÞeikh

" #
; ð31Þ
� in the isotropic, homogeneous matrix subdomain Q m
vhðr; hÞjQm :¼ vm
h ðr; hÞ ¼ yh þR

Xþ1
k¼�1

ockhqkeikh

" #
: ð32Þ
Here i ¼
ffiffiffiffiffiffiffi
�1
p

; the symbol R denotes the real part; the sums
affected by the apex o are extended over odd indices only, since
the microstructure considered herein (Fig. 1) is centre symmetric
with respect to the origin O, so that the solution v satisfies the
property:
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vðr; hÞ ¼ �vðr; hþ pÞ: ð33Þ

Moreover, the sum in (30) is extended over positive indices only, in
order to enforce the regularity of vh at O 2 Q f . The functions W�kðqÞ,
k ¼ 1; . . . ;þ1, odd k, are any two independent integrals of the
equation:

W 00
�k þ

g0

g
þ 1

q

� �
W 0
�k �

r2k2

q2 W�k ¼ 0; in ð1;1þ tÞ; ð34Þ

where r2 ¼ Gh=Gr is the anisotropy ratio, and an apex denotes dif-
ferentiation with respect to q. Finally, the quantities akh, bkh, bð�kÞh,
ckh, cð�kÞh, k ¼ 1; . . . ;þ1, odd k, are complex constants which are
determined in the following, by exploiting the interface boundary
conditions (18) and (19) on Cf ;c [ Cc;m and the periodicity require-
ment on @Q .

3.2. Interface boundary condition

Substituting representations (30)–(32) into the interface
boundary conditions (18) and (19), the following equations are ob-
tained, for odd k, and h ¼ 1;2:

Gf kakh ¼ Grgð1Þ½bkhW 0
kð1Þ þ �bð�kÞhW 0

ð�kÞð1Þ�; ð35Þ

Grgð1þ tÞ½bkhW 0
kð1þ tÞ þ �bð�kÞhW 0

ð�kÞð1þ tÞ�

¼ Gmk½ckhð1þ tÞk�1 � �cð�kÞhð1þ tÞ�k�1�; ð36Þ

akh ¼ bkhWkð1Þ þ �bð�kÞhW ð�kÞð1Þ; ð37Þ

bkhWkð1þ tÞ þ �bð�kÞhW ð�kÞð1þ tÞ

¼ ckhð1þ tÞk þ �cð�kÞhð1þ tÞ�k
; ð38Þ

where an overbar denotes the complex conjugate. Eqs. (35)–(38) al-
low to express the unknown coefficients akh, bkh, bð�kÞh and ckh as
functions of cð�kÞh as follows:

akh ¼ ca
k
�cð�kÞh; bkh ¼ cb

k
�cð�kÞh;

�bð�kÞh ¼ c�b
k
�cð�kÞh; ckh ¼ cc

k
�cð�kÞh;

ð39Þ
where

ca
k ¼ �2kGmGrgð1Þ½W 0

kð1ÞW ð�kÞð1Þ �W 0
ð�kÞð1ÞWkð1Þ�=wksum

; ð40Þ

cb
k ¼ �2kGm½kGf W ð�kÞð1Þ � Grgð1ÞW 0

ð�kÞð1Þ�=wksum
; ð41Þ

c�b
k ¼ 2kGm½kGf Wkð1Þ � Grgð1ÞW 0

kð1Þ�=wksum
; ð42Þ

cc
k ¼ ð1þ tÞ�2kðwkM þ wk� � wkH

� wk� Þ=wksum
; ð43Þ

being

wkH
¼ ð1þ tÞðkþ1ÞðGrÞ2gð1Þgð1þ tÞ½W 0

kð1ÞW
0
ð�kÞð1þ tÞ

�W 0
ð�kÞð1ÞW

0
kð1þ tÞ�; ð44Þ

wkM ¼ �k2ð1þ tÞkGf Gm½Wkð1þ tÞW ð�kÞð1Þ �W ð�kÞð1
þ tÞWkð1Þ�; ð45Þ

wk� ¼ kð1þ tÞkþ1Gf Grgð1þ tÞ½W 0
kð1þ tÞW ð�kÞð1Þ �W 0

ð�kÞð1
þ tÞWkð1Þ�; ð46Þ

wk� ¼ �kð1þ tÞkGmGrgð1Þ½W 0
kð1ÞW ð�kÞð1þ tÞ

�W 0
ð�kÞð1ÞWkð1þ tÞ�; ð47Þ

wksum
¼ wkH

þ wkM þ wk� þ wk� : ð48Þ
3.3. Periodicity condition

The cell function v is Q-periodic, i.e., it satisfies:

vmðy1 þ L1; y2Þ ¼ vmðy1; y2Þ
¼ vmðy1 þ L2 cos u; y2 þ L2 sinuÞ: ð49Þ

This periodicity requirement is enforced by identifying the repre-
sentation (32) valid in the matrix domain with a linear combination
of doubly-periodic basis functions defined in terms of the complex
variable

z ¼ y1 þ iy2

L1
¼ reih

L1
¼ bRqeih; ð50Þ

where bR ¼ R=L1 is the dimensionless fibre radius. Accordingly, the
relevant semi-periods are:

x1 ¼
1
2
; x2 ¼

j
2

eiu; ð51Þ

where j ¼ L2=L1 is the side ratio of the unit cell. More specifically,
the following equation is implemented:

vm
h ¼

Xþ1
s¼1

o
X2

l¼1

wslh R½BslðzÞ�; ð52Þ

where the coefficients wslh are real unknowns. The functions BslðzÞ
are chosen following an approach tracing back to the classical
Rayleigh multipole expansion method (Lord Rayleigh, 1892; Perrins
et al., 1979) and relying on the theory of elliptic functions
(Whittaker and Watson, 1927). More specifically, the following
choice is made (Kalamkarov, 1992; Meguid and Kalamkarov,
1994; Rodríguez-Ramos et al., 2001; Bisegna and Caselli, 2008;
Artioli et al., 2010):

BslðzÞ ¼
�glzþxlfðzÞ; if s ¼ 1; l ¼ 1;2;

xl
fðs�1ÞðzÞ
ðs�1Þ! ; for s > 1; odd s; l ¼ 1;2;

(
ð53Þ

where fðzÞ denotes the Weierstrass Zeta function of semiperiods
x1;x2. It is odd and quasi-periodic, that is:

fðzþ 2xkÞ ¼ fðzÞ þ 2gk; ð54Þ

with k ¼ 1;2 and gk ¼ fðxkÞ. The latter quantities are linked to the
semiperiods x1;x2 by Legendre’s relationship:

g1x2 � g2x1 ¼
1
2
pi: ð55Þ

Using (54) and (55), and recalling that the derivatives of fðzÞ are
elliptic functions, it is easy to verify that the basis functions
R½BslðzÞ� are indeed doubly periodic, with semiperiods x1;x2. Only
odd functions BslðzÞ are introduced here, due to condition (33).

In the cited literature, the unit cell is symmetric with respect to
the y1 and y2 axes. This implies evenness or oddness properties for
the cell function vm

h , which is consequently represented by the sub-
set of the functions (53) corresponding to l ¼ 1 or l ¼ 2 only. In this
work no such symmetry is assumed, and hence the whole set (53)
is considered.

The identification of (32) and (52) is easily obtained by consid-
ering the Laurent series of each function BslðzÞ, having a pole of or-
der s at z ¼ 0, as follows:

BslðzÞ ¼
Xs

k¼1

o mksl

zk
þ
Xþ1
k¼1

onkslz
k; ð56Þ

where mksl and nksl are the series coefficients of the singular and reg-
ular part of BslðzÞ, respectively. Those coefficients turn out to be
(Artioli et al., 2010):

mksl ¼ xldks; nksl ¼ �xllks � gldk1ds1: ð57Þ

where dks is the Krönecker symbol, and, for odd natural numbers k, s,
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lks ¼
1

kþ s� 1
kþ s� 1

s� 1

� �
dkþs

2
: ð58Þ

Here round brackets denote the binomial coefficient, it has been
stipulated that d1 ¼ 0 for ease of notation, and the coefficients dk,
k P 2, are defined by the Laurent series expansion of fðzÞ:

fðzÞ ¼ 1
z
�
Xþ1
k¼2

dk
z2k�1

2k� 1
: ð59Þ

They can be easily computed using the following rapidly convergent
Fourier series (Apostol, 1997):

dk

2k� 1
¼ 2ð2x1Þ�2k fRð2kÞ þ ð2piÞ2k

ð2k� 1Þ!
Xþ1
n¼1

r2k�1ðnÞe2pinx2=x1

" #
;

ð60Þ

where fRðaÞ ¼
Pþ1

n¼1n�a is the Riemann Zeta function, and
raðnÞ ¼

P
ljnla is the divisor function.

Using (56) and (57), (52) is transformed into:

vm
h ¼R

Xþ1
k¼1

o
X2

l¼1

xlwklh

 !
z�k�

Xþ1
k¼1

o
Xþ1
s¼1

o
X2

l¼1

xllkswslh

 !
zk�

X2

l¼1

glw1lhz

" #
;

ð61Þ

which, recalling (50), is compared term-by-term to (32) and yields,
for odd natural numbers k:

bRkcð�kÞh ¼
X2

l¼1

xlwklh; ð62Þ

bR�kckh þ L1ghdk1 ¼ �
Xþ1
s¼1

o
X2

l¼1

xllkswslh �
X2

l¼1

gldk1w1lh; ð63Þ

where

gh ¼
1; if h ¼ 1;
�i; if h ¼ 2;

�
ð64Þ

so that yh ¼ RðghreihÞ.

3.4. Solution of the cell problem and effective constitutive tensor

The solution of the cell problem is achieved by substituting (62)
and (63) into the interface boundary condition (39)4, leading to:

�bRk
Xþ1
s¼1

o
X2

l¼1

xllkswslh � bRX2

l¼1

gldk1w1lh � Rghdk1 ¼ cc
k
bR�k
X2

l¼1

xlwklh:

ð65Þ

Making the position (Nicorovici et al., 1993)

qslh ¼
ffiffi
s
p

bRs
wslh; ð66Þ

the following infinite set of linear algebraic equations is obtained,
for odd natural numbers k:

cc
k

X2

l¼1

xlqklh þ
Xþ1
s¼1

oSks

X2

l¼1

xlqslh þ dk1
bR2
X2

l¼1

glq1lh ¼ �Rghdk1; ð67Þ

where Sks ¼ lks
bRkþs

ffiffiffiffiffiffiffi
k=s

p
turns out to be a symmetric matrix (Nicor-

ovici et al., 1993). Taking the real and imaginary parts of the latter
allows to compute the real unknowns qslh, which in turn determine
wslh via (66), cð�kÞh via (62), ckh; bð�kÞh, bkh and akh via (39). Hence, the
cell functions vm

h , vf
h are computed by (30)–(32).

Of course, it is necessary to truncate the system (67) to a finite
order N, amounting to taking into account a finite number of coef-
ficients in the representations (30)–(32). It is shown in Section 4
that taking N of the order of units yields accurate results for com-
posite microgeometry configurations of interest.

Finally, the effective material tensor G# follows from (28). After
some algebra, it turns out that:

G#
hj ¼ Gmdhj þ

f

Rð1þ tÞ2
R½Gmðghc1jð1þ tÞ2 þ ghcð�1ÞjÞ

� GrðWðþÞghb1j þWð�Þchbð�1ÞjÞ � Gf gha1j�; ð68Þ

with

Wð�Þ ¼
Z 1þt

1
gðqÞ½qW 0

ð�1ÞðqÞ þ r2W ð�1ÞðqÞ�dq:

For a given grading profile, the above coefficients Wð�Þ, as well as the
coefficients W ð�kÞð1Þ, W ð�kÞð1þ tÞ, W 0

ð�kÞð1Þ, and W 0
ð�kÞð1þ tÞ enter-

ing (40)–(47), can be computed via numerical integration of (34).
However, closed-form solutions to the latter problem for several
families of grading profiles are presented in Appendix A.
3.5. Vanishing coating-thickness limit configuration

In this section the limit configuration of the coating which pro-
gressively becomes a zero-thickness fibre/matrix interface is con-
sidered, i.e., the limit as t approaches zero is taken. Two different
limits are computed, either without rescaling, or rescaling, the
coating stiffness, thus recovering known homogenization solu-
tions, respectively involving composites with perfect, or imperfect
zero-thickness, fibre/matrix interfaces. The latter limit establishes
a connection between different models describing imperfect inter-
faces (Sevostianov et al., 2012).

First, Gr and Gh are kept as constants. Since in the limiting pro-
cess the shear stress in the coating remains stable with respect to t,
so does the shear strain. Consequently, as the coating thickness ap-
proaches 0, the traces on Cf ;c and Cc;m of the cell functions vh be-
come equal, i.e., the perfect-interface condition is attained. In
fact, it is found that:

wkH
¼ ½Grgð1Þ�2½W 0

kð1ÞW
00
ð�kÞð1Þ �W 0

ð�kÞð1ÞW
00
kð1Þ�t þ oðtÞ; ð69Þ

wkM ¼ �k2Gf GmC t þ oðtÞ; ð70Þ

wk� ¼ kGf Grgð1ÞC þ oð1Þ; ð71Þ

wk� ¼ �kGmGrgð1ÞC þ oð1Þ; ð72Þ

wksum
¼ kðGf � GmÞGrgð1ÞC þ oð1Þ; ð73Þ

where C ¼W 0
kð1ÞW ð�kÞð1Þ �W 0

ð�kÞð1ÞWkð1Þ. Accordingly, coeffi-
cients (40)–(43) are given by:

ca
k ¼ �

2Gm

Gf � Gm þ oð1Þ; ð74Þ

cb
k ¼ �

2Gm½kGf W ð�kÞð1Þ � Grgð1ÞW 0
ð�kÞð1Þ�

ðGf � GmÞGrgð1ÞC
þ oð1Þ; ð75Þ

c�b
k ¼

2Gm½kGf Wkð1Þ � Grgð1ÞW 0
kð1Þ�

ðGf � GmÞGrgð1ÞC
þ oð1Þ; ð76Þ

cc
k ¼ �

Gf þ Gm

Gf � Gm þ oð1Þ: ð77Þ

As expected, recalling (39), it follows that the left-hand side of (37)
approaches the right-hand side of (38), i.e., the perfect-interface
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condition is obtained. Moreover, as t ! 0, ca
k and cc

k coincide with
the corresponding coefficients of Artioli et al. (2010) (refer Eqs.
(39) and (40) therein, specialized to the case of homogeneous iso-
tropic fibre with shear modulus Gf and perfect interface, i.e.
RD!1). Also the effective constitutive tensors consistently coin-
cide and are found to be:

G#
hj ¼ Gmdhj þ

f
R

R½Gmðghc1j þ ghcð�1ÞjÞ � Gf gha1j�: ð78Þ

The further limit case of a rigid fibre inclusion with perfect fibre/
matrix interface is then obtained by taking the limit of (74) and
(77) as Gf ! þ1. It turns out that ca

k ! 0, Gfca
k ! �2Gm, cc

k ! �1,
and, using (39), the homogenized material moduli reduce to:

G#
hj ¼ Gm dhj þ

f
R
ðgh�cð�1Þj þ ghcð�1ÞjÞ

� �
: ð79Þ

Likewise, this result is found in the corresponding limit configura-
tion of the model presented by Artioli et al. (2010).

A different limiting process is obtained by concentrating the
coating compliance as t ! 0. To this end, use is made of the follow-
ing scaling of the coating material moduli in terms of t (Lene and
Leguillon, 1982):

Gr ¼ Gr
0

t
t0
; Gh ¼ Gh

0
t
t0
; ð80Þ

being Gr
0, Gh

0 and t0 reference material parameters and dimension-
less coating thickness, respectively. With this scaling, the shear
stress in the coating remains stable with respect to t and the shear
strain diverges as t0=t due to the stiffness scaling. Consequently the
jump of the traces on Cf;c and Cc;m of the cell functions vh remains
stable and proportional to the shear stress, and a zero-thickness lin-
ear spring interface model (Lene and Leguillon, 1982; Hashin, 1991;
Bigoni et al., 1998; Artioli et al., 2010) is obtained in the limit.

Substituting (80) into (44)–(47) gives:

wkH
¼ Gr

0gð1Þ
t0

� �2

½W 0
kð1ÞW

00
ð�kÞð1Þ �W 0

ð�kÞð1ÞW
00
kð1Þ�t3 þ oðt3Þ; ð81Þ

wkM ¼ �k2Gf GmCt þ oðtÞ; ð82Þ

wk� ¼
kGf Gr

0gð1Þ
t0

Ct þ oðtÞ; ð83Þ

wk� ¼ �
kGmGr

0gð1Þ
t0

Ct þ oðtÞ; ð84Þ

wksum
¼ kðGf � GmÞG

r
0gð1Þ
t0

Ct � k2Gf GmCt þ oðtÞ: ð85Þ

Accordingly, coefficients (40)–(43) become:

ca
k ¼

2 Gr
0gð1Þ
t0Gf

kþ Gr
0gð1Þ
t0

1
Gf � 1

Gm

� 	þ oð1Þ; ð86Þ

cb
k ¼

2k

kþ Gr
0gð1Þ
t0

1
Gf � 1

Gm

� 	 W ð�kÞð1Þ
Ct

þ o
1
t

� �
; ð87Þ

c�b
k ¼

�2k

kþ Gr
0gð1Þ
t0

1
Gf � 1

Gm

� 	 Wkð1Þ
Ct

þ o
1
t

� �
; ð88Þ

cc
k ¼

kþ Gr
0gð1Þ
t0

1
Gf þ 1

Gm

� 	
kþ Gr

0gð1Þ
t0

1
Gf � 1

Gm

� 	þ oð1Þ: ð89Þ
Using (39) and noting that Wð�Þ=t stay bounded as t ! 0, it follows
that (78) holds also in this case. Hence, the effective moduli com-
puted in Artioli et al. (2010) are recovered (refer Eqs. (39) and
(59) therein, specialized to the case of homogeneous isotropic fibre
with shear modulus Gf ), provided that the following identification is
enforced:

D ¼ Gr
0gð1Þ
t0R

; ð90Þ

relating the imperfect-interface stiffness D introduced in Artioli
et al. (2010) (refer Eqs. (3) and (19) therein) to the coating proper-
ties G0gð1Þ and t0R.
4. Numerical results and discussion

This section is dedicated to validating the present analytical
procedure and to discussing the influence of geometrical and mate-
rial parameters on the overall material behaviour.

The analysis is developed using the dimensionless parameters
u, j ¼ L2=L1, t ¼ d=R, f ¼ pR2ð1þ tÞ2=jQ j, r2 ¼ Gh=Gr previously
introduced, and the following ones:

� fibre/matrix stiffness ratio n ¼ Gf=Gm;
� fibre/coating stiffness ratio l ¼ Gf=ðGrgð1ÞÞ;
� grading intensity factor x ¼ gð1Þ=gð1þ tÞ;

An isotropic coating material is assumed, thus r ¼ 1. Moreover,
grading profiles fitting the fibre and matrix material properties
(Fig. 2), i.e. Grgð1Þ ¼ Gf , Grgð1þ tÞ ¼ Gm, are considered. Hence,
x ¼ n and l ¼ 1. Finally, the simulations refer to exponentially-
graded coatings: in particular, gðqÞ follows (A.2) below. In order
to fulfil the condition x ¼ n, the involved grading parameters sat-
isfy the following relations (one is the inverse of the other):

k ¼ ½ð1þ tÞq � 1��1 log n; q ¼ logð1þ k�1 log nÞ
logð1þ tÞ : ð91Þ
4.1. Convergence, accuracy and validation

As it was anticipated in Section 3.4, the infinite system (67)
needs to be truncated to a finite order N. Here it is ascertained
how fast convergence is achieved with respect to N, and which va-
lue of N is required to give the effective shear moduli to some cho-
sen relative accuracy.

Reference is made to a regular hexagonal arrangement, for dif-
ferent values of the volume fraction and a fixed dimensionless
coating thickness t. Fig. 3(a) shows that the proposed analytical
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Fig. 3. (a) Convergence property of the present approach: relative error on effective
modulus G# versus truncation order N. Overkill solution: present approach,
N ¼ 100. (b) Convergence of FEM solution to present solution (N ¼ 100): relative
error on effective modulus G# versus number of FEM degrees of freedom. Cell
geometry: j ¼ 1, u ¼ p=3 (regular hexagonal arrangement), t ¼ 1=8 (a), t ¼ 1=4 –
dash-dot line (b), t ¼ 1=8 – dot line (b), t ¼ 1=16 – solid line (b); f ¼ 0:3 – green
diamonds, f ¼ 0:6 – blue squares, f ¼ 0:9 – red circles. Exponential grading profile
(refer (A.2) and (91)), k ¼ log 4, x ¼ n ¼ 50, l ¼ 1, r ¼ 1. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Table 2
Rigid inclusion with zero-thickness coating. Square cell: rigid fibres with zero-
thickness coatings. Nondimensional effective shear modulus G#=Gm for various values
of the fibre volume fraction. Method: P, 1979 – (Perrins et al., 1979); A, 2007 –
(Andrianov et al., 2007); and present analysis – Eq. (79).

Vol. fract. f P, 1979 A, 2007 Present solution

0.1 1.222 1.223 1.222
0.2 1.500 1.506 1.500
0.3 1.860 1.879 1.860
0.4 2.351 2.395 2.351
0.5 3.080 3.172 3.080
0.6 4.342 4.517 4.342
0.7 7.433 7.769 7.433
0.74 11.01 11.46 11.01
0.76 15.44 15.99 15.44
0.77 20.43 21.04 20.43
0.78 35.93 36.60 35.94
0.783 – 55.58 54.94
0.784 – 73.08 72.58
0.785 136.8 137.9
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scheme exhibits an exponential asymptotic rate of convergence,
which turns out to be higher for lower volume fraction values.

Table 1 shows the minimum value of N required for the effec-
tive shear modulus G# to have a relative accuracy of 10�2, 10�4

or 10�6, respectively. This value increases with volume fraction f
and with fibre/matrix contrast factor n (Perrins et al., 1979).

Validation of the present analytical approach is obtained by
comparison with a standard finite-element solution. Numerical re-
sults are obtained using the Comsol Multiphysics� software (COM-
SOL AB, 2008), which easily allows to prescribe periodic boundary
conditions on the unit-cell boundary.

Fig. 3(b) reports on an hexagonal unit cell with three different
values of the volume fraction and the same material parameters
as in Fig. 3(a). h-convergence of the finite element solution is as-
sessed, for a linear Lagrange triangular finite element discretization
of the unit cell domain. The relative error on the homogenized
shear modulus G# is computed with respect to a reference solution
obtained using the proposed analytical method (N ¼ 100) and plot-
ted versus the total number of degrees of freedom, in a log–log
plot. The correct asymptotic convergence properties exhibited by
the adopted linear elements shows that the FEM solution con-
verges to the present analytical one, confirming the method
robustness and reliability.

4.1.1. Rigid inclusion with zero-thickness coating
The special case of rigid inclusions with zero-thickness perfect

fibre/matrix interface is usually checked as it involves computa-
Table 1
Present analytical solution. Regular hexagonal cell with t ¼ 1=16. Exponential grading
profile (refer (A.2) and (91)), k ¼ logð600=nÞ, x ¼ n, l ¼ 1, r ¼ 1. Minimum order N
required to give the effective shear modulus to the relative accuracy A of 10�2, 10�4

and 10�6. N is listed for various values of the volume fraction f and of the fibre/matrix
contrast factor n.

f A ¼ 10�2 A ¼ 10�4 A ¼ 10�6

n n n

5 50 500 5 50 500 5 50 500

0.1 1 1 1 1 1 1 1 1 1
0.2 1 1 1 1 1 1 3 3 3
0.3 1 1 1 1 1 1 3 3 3
0.4 1 1 1 3 3 3 3 3 3
0.5 1 1 1 3 3 3 3 3 3
0.6 1 1 1 3 3 3 4 4 4
0.7 3 3 3 4 4 4 6 7 7
0.8 3 3 3 4 6 7 7 9 9
0.9 4 7 10 9 13 19 12 19 28
tional difficulties. A comparison is presented between the asymp-
totic method in Andrianov et al. (2007), the multipole expansion
method in Perrins et al. (1979) and the present analytical solution.
Results for the effective shear modulus of a composite with a
square array of rigid cylinders are presented in Table 2 which indi-
cates an optimal agreement with Perrins approach and a very good
agreement with Andrianov method even for fibre volume fractions
close to the packaging limit of the unit cell.

4.2. Comparison with other homogenization approaches

A comparison is here provided with the methods proposed in
the work by Sevostianov et al. (2012) which focuses on the model-
ling of heterogeneous materials with imperfect bonding between
the matrix and the inclusion, in the shape of parallel circular cylin-
ders, and on the estimation of the influence of interphase layers on
the effective elastic properties of fibre reinforced composites. The
comparison is carried out with the so called Differential approach
model, which evaluates the elastic constants of an equivalent
homogeneous inclusion that has the radius of the core plus the
interphase thickness and produces the same effect on the overall
property. Moreover, the Three-phase model is considered, leading
to the expression of the properties of an equivalent homogeneous
medium through the solution of suitable local problems. The com-
parison comprehends also the Spring model, taking into account the
imperfect interface by means of a layer of mechanical springs of
zero thickness.

The case of a composite with a square array of inclusions having
homogeneous coating with f ¼ 0:5, t ¼ 10�3, n ¼ 10, and different
coating-to-matrix stiffness ratio is taken into consideration. Re-
sults obtained with the above cited methods and the present ap-
proach are reported in Fig. 4. An excellent agreement can be
observed with the Three-phase formulation which results quite
similar to the proposed methodology in the case of a homogeneous
coating material.

4.3. Parametric analysis

The influence of the microgeometry parameters j and u is ad-
dressed in Fig. 5(a) and (b). In particular, rectangular geometries
(u ¼ p=2) with various unit-cell aspect ratios j are considered in
Fig. 5(a), whereas rhombic geometries (j ¼ 1) with various values
of the unit-cell skewness u are considered in Fig. 5(b). The coating
material is isotropic and exponentially graded. The dimensionless
principal effective upper (G#

1 ) and lower (G#
2 ) moduli are plotted

versus the inclusion volume fraction f. All curves are monotonically



Fig. 4. Comparison between present results and Sevostianov et al. (2012).
Normalized effective modulus G#=Gm versus logarithmic coating-to-matrix stiff-
ness ratio. Square arrays with homogeneous coatings: f ¼ 0:5, t ¼ 10�3, n ¼ 10.
Differential approach model – black solid line; Three-phase model – blue dash-
dotted line; Spring model – red dotted line; Present approach – green continuous
line with bullets. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 5. Principal effective upper modulus G#

1 (continuous line) and lower modulus
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2 (dotted line) versus fibre volume fraction f, t ¼ 1=8. Exponential grading profile
(refer (A.2) and (91)), k ¼ log 4, x ¼ n, l ¼ 1, r ¼ 1. (a) Rectangular geometry:
u ¼ p=2; j ¼ 1 – magenta squares, j ¼ 1:2 – blue circles, j ¼ 1:5 – red crosses,
j ¼ 2 – black diamonds, j ¼ 3 – green triangles. (b) Rhombic geometry: j ¼ 1;
u ¼ p=6 – green triangles, u ¼ p=4 – black diamonds, u ¼ p=3 – magenta squares,
u ¼ 5p=12 – blue circles, u ¼ p=2 – red crosses. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 6. Composite material with a granted effective modulus G#=Gm. (a) Required
fibre/matrix stiffness ratio Gf=Gm ¼ n, and (b) coating/matrix interface shear stress
concentration factor, versus grading parameter 1=q. Exponential grading profile
(refer (A.2) and (91)), x ¼ n, l ¼ 1, r ¼ 1. Square geometry, f ¼ 0:78, t ¼ 2.
G#=Gm ¼ 2 – red diamonds; G#=Gm ¼ 5 – blue squares. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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increasing, because fibres and coatings are stiffer than the matrix.
Each curve terminates at the volume fraction corresponding to the
relevant packaging limit; near that limit, the upper modulus is
highly sensitive to the volume fraction.
4.4. The shear stress concentration factor

In this section, the analysis points at assessing the reduction of
shear stress concentration in the composite, by properly choosing
the grading profile gðqÞ, keeping fixed the effective shear stiffness
of the composite material.

Reference is made to a square cell geometry of volume fraction
f ¼ 0:78, i.e., near to the packaging limit. The effective stiffness
tensor G# of the composite is isotropic. An exponential grading
profile for the coating is considered. The fibre/matrix stiffness ratio
Gf=Gm ¼ n required in order to achieve a prescribed dimensionless
effective shear stiffness G#=Gm is reported in Fig. 6(a) versus the
grading parameter 1=q. In this way, classes of graded composites
with the same effective stiffness are obtained and compared.

An indicator of the performance of the material in terms of
shear stresses at the coating/matrix interface is constructed intro-
ducing the interface shear stress concentration factor (SSCF), de-
fined as the highest ratio between the L1 norm of the normal
component of the shear stress at the q ¼ 1þ t interface in the
graded composite, and the same quantity in the homogenized
material, under all the macroscopic shear strains rxw0:

Interface SSCF ¼ sup
rxw0

sup
q¼1þt

js0 � mj

G#jrxw0j
: ð92Þ

The interface SSCF is reported in Figs. 6(b) as a function of 1=q,
for G#=Gm ¼ 2, and 5. A reduction of the shear stress of 20% for
higher values of the parameter 1=q can be appreciated. Hence,
properly grading the elastic properties of the coatings leads to a de-
crease of interfacial stress concentration, for a given overall stiff-
ness of the material. This result raises attention on innovative
composite materials, enhanced in terms of strength with respect
to debonding phenomena.
5. Conclusion

This work deals with the determination of the effective longitu-
dinal shear moduli of a unidirectional periodic composite material
reinforced with circular fibres coated by a layer of cylindrically
orthotropic functionally graded material. A closed form expression
for the overall constitutive moduli is obtained applying the asymp-
totic homogenization theory and Fourier series expansion for the
solution of equilibrium equations as well as the theory of Weierst-
rass elliptic functions for the analytical satisfaction of periodicity
boundary conditions. This closed-form expression of the effective
shear moduli is presented for a representative set of grading func-
tions and for a general unit cell geometry. An asymptotic analysis
of the limit configuration of vanishing coating thickness is per-
formed for validation purposes. Accuracy and efficiency are dem-
onstrated by comparison with a finite element solution on a
number of benchmark cases. The numerical implementation of
the proposed method shows exponential asymptotic convergence
rate with respect to the truncation order of the involved series rep-
resentations. An analysis on the influence that grading and geo-
metric parameters can have on the reduction of shear stress
concentration at coating/matrix interface points at a possible
way to design optimized materials in regard to durability with re-
spect to fatigue and debonding problems.
Appendix A. Grading profiles

Closed-form solutions of problem (34) are herein briefly re-
sumed for different grading profiles gðqÞ; the relative solution ap-
proaches being traceable in Artioli et al. (2010) for instance. In the
following, for every odd positive integer k, Wk and W ð�kÞ will de-
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note any two independent integrals of (34), assuming, convention-
ally, that Wk is the regular one at q ¼ 0.

A.1. Homogeneous material

In this case, gðqÞ ¼ 1, and Eq. (34) admits the solutions:

W ð�kÞðqÞ ¼ q�rk: ðA:1Þ
A.2. Exponential grading function

The grading function

gðqÞ ¼ expð�kqqÞ; ðA:2Þ

with k and q > 0 material parameters leads to:

WkðqÞ ¼ qrk
1F1ðak; bk; kqqÞ; ðA:3Þ

W ð�kÞðqÞ ¼ qrk Uðak; bk; kqqÞ; ðA:4Þ

where 1F1ðak; bk; kqqÞ and Uðak; bk; kqqÞ are the confluent hypergeo-
metric function of the first kind and second kind, respectively
(Abramowitz and Stegun, 1965), and ak ¼ rk=q, bk ¼ 1þ 2rk=q.

A.3. Special grading functions

A general strategy for the solution of (34) with several types of
grading functions can be derived reasoning as in Artioli et al.
(2010). The results relevant to the present problem are reported
below.

A.3.1. Squared-Bessel grading function
The grading function:

g ¼ J2
mðkqÞ; ½respectively; g ¼ Y2

mðkqÞ�; ðA:5Þ

where Jm [respectively, Ym] is the first-kind [respectively, second-
kind] Bessel function, yields the closed-form solution:

Wk ¼
Jmk
ðkqÞ

JmðkqÞ
; respectively; Wk ¼

Jmk
ðkqÞ

YmðkqÞ

� �
; ðA:6Þ

W ð�kÞ ¼
Ymk
ðkqÞ

JmðkqÞ
; respectively; W ð�kÞ ¼

Ymk
ðkqÞ

YmðkqÞ

� �
; ðA:7Þ

where mk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ r2k2

p
. A grading profile in the form of a squared

modified Bessel function of first or second kind, i.e., I2
mðkqÞ or

K2
mðkqÞ induces an analogous solution as well.

A.3.2. Squared-hypergeometric grading material
The general solution strategy proposed in Artioli et al. (2010),

referring to the theory of hypergeometric differential equations,
leads to a numerous class of possible grading functions.

Power-law grading function. Choosing:

gðqÞ ¼ q2a; ðA:8Þ

yields the closed-form solution:

W ð�kÞ ¼ q�ak�a; ðA:9Þ
with ak ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r2k2

p
.

Binomial-power-law grading function. The following profile is
considered:

gðqÞ ¼ ð1� kqÞm; ðA:10Þ
where the parameter k must be less than 1=ð1þ tÞ, so that g does
not vanish for q 2 ½1;1þ t�. The case k ¼ 0 implies homogeneous fi-
bres. If 0 < k < 1=ð1þ tÞ, the following closed-form solution is
obtained:

W ð�kÞðqÞ ¼ ðkqÞ�ak
2F1ð�ak þ bk þ c;�ak � bk þ c; 1� 2ak; kqÞ;

ðA:11Þ
with ak ¼ rk, bk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=4þ r2k2

q
. If k < 0, it follows that:

W ð�kÞðqÞ ¼ ð1� kqÞ�bk�c �kq
1� kq

� ��ak

� 2F1 �ak þ bk þ c;1� ak þ bk � c; 1� 2ak;
�kq

1� kq

� �
: ðA:12Þ

Polynomial-law grading functions.

� the grading function gðqÞ ¼ ðkqÞ�
1
2ð1� kqÞ

1
2 T2

nð1� 2kqÞ, where
Tn denotes the Chebyshev polynomial of order n, yields the
closed-form solution:
W ð�kÞðqÞ¼
ðkqÞ�akþ1

42F1ð�akþbkþc;�ak�bkþc;1�2ak;kqÞ
Tnð1�2kqÞ ;

ðA:13Þ
� the grading function gðqÞ ¼ ð1� kqÞP2
nð1� 2kqÞ, where Pn

denotes Legendre’s polynomial of order n, yields the closed-
form solution:
W ð�kÞðqÞ¼
ðkqÞ�rk

2F1ð�rkþbkþ 1
2 ;�rk�bkþ 1

2 ;1�2rk;kqÞ
Pnð1�2kqÞ :

ðA:14Þ
Analogous results involving Gegenbauer’s polynomials CðaÞn and

Jacobi’s polynomials Pða;bÞn can be derived. Throughout these deriva-

tions, ak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ r2k2

p
, bk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ r2k2

q
and the parameter k must

be chosen such that gðqÞ > 0 in ½1;1þ t�.

Other grading profiles.

� the grading function gðqÞ ¼ ðkqÞ�1ð1� kqÞlog2ð1� kqÞ, yields
the closed-form solution:
W ð�kÞðqÞ¼
ðkqÞ�akþ1

22F1ð�akþrkþ 1
2 ;�ak�rkþ 1

2 ;1�2ak;kqÞ
� logð1�kqÞ ;

ðA:15Þ
� the grading gðqÞ ¼ ðkqÞ�
1
2ð1� kqÞ

1
2arcsin2 ffiffiffiffiffiffi

kq
p
 �

, yields the
closed-form solution:
W ð�kÞðqÞ¼
ðkqÞ�akþ1

42F1ð�akþrkþ 1
4 ;�ak�rkþ 1

4 ;1�2ak;kqÞ
arcsin

ffiffiffiffiffiffi
kq

p
 � :

ðA:16Þ
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