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Ideal bladed rotors are rotationally symmetric, as a consequence they exhibit couples of degenerate eigenmodes at coinciding
frequencies. When even small imperfections are present destroying the periodicity of the structure (disorder or mistuning),
each couple of degenerate eigenfrequencies splits into two distinct values (frequency split) and the corresponding modal shapes
exhibit vibration amplitude peaks concentrated around few blades (localization phenomenon). In this paper a continuous model
describing the in-plane vibrations of a mistuned bladed rotor is derived via the homogenization theory. Imperfections are
accounted for as deviations of the mass and/or stiffness of some blades from the design value; a perturbation approach is adopted
in order to investigate the frequency split and localization phenomena arising in the imperfect structure. Numerical simulations
show the effectiveness of the proposed model, requiring much lower computational effort than classical finite element schemes.

1. Introduction

Bladed rotors used in turbomachinery possess rotational
symmetry provided that no imperfections are present, that
is, if all the blades and associated disk sectors are identical to
each other. Under this ideal condition, their dynamical beha-
vior is characterized by the presence of couples of degenerate
eigenmodes at coinciding frequencies, as shown in [1, 2].
That behavior can be studied in detail by using the finite
element technique [1, 3, 4], and the computational cost
may be significatively reduced by exploiting the periodicity
properties characterizing these structures. In fact, for a given
structural eigenmode, all the blades exhibit the same vibra-
tion amplitude with a constant phase shift between adjacent
ones; thus only a single sector of the structure may be con-
sidered in the analysis, by enforcing suitable constraints dep-
ending on the admissible phase shifts [1].

As a matter of fact, in practice the symmetry is destroyed
by the presence of unavoidable manufacturing defects, mate-
rial tolerances, or damage arising during service. The loss
of symmetry, called disorder or mistuning, may significantly

alter the system dynamics even at small disorder level. In
particular, the eigenmode degeneracy is removed, and the
coinciding modal frequencies of a degenerate eigenmode are
split into two distinct values (frequency split phenomenon).
Moreover, the vibration localization effect may appear [5–
7], consisting of a vibrational-energy confinement in small
regions of the rotor, rapidly decaying far away. As a conseque-
nce, some blades may vibrate with small amplitude whereas
some others with significantly larger amplitude, causing a
local stress increase, possibly leading to fatigue failure.

This phenomenon has been extensively studied in the lit-
erature: recent works studied the vibration localization aris-
ing in bladed rotors by employing the Galerkin method
[8, 9], the finite element method [10], or by considering sim-
plified lumped-parameter models [11–15]. Both lumped-
parameter models and finite element analysis were employ-
ed in [16] to investigate the dependence of the localization
phenomenon from the internal damping and interblade
coupling in bladed disks. Finite element analysis applied to
the study of disordered bladed rotors with a large number
of blades is quite accurate but may require a significant
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amount of computational effort. On the other hand, simpli-
fied lumped-parameter models supply satisfying qualitative
results, being also computationally more effective than
finite element schemes, but may not be able to capture all
the peculiarities of the dynamical behavior of a complex
structure such as a bladed rotor.

Less effort has been devoted to the derivation of continu-
ous models, which can realistically describe the dynamics of
imperfect bladed rotors with low computational effort. For
this reason they are particularly useful for performing para-
metric analyses or designing innovative vibration control
schemes. Moreover, continuous models can easily yield ana-
lytical results, thus providing a general and comprehensive
understanding of the phenomena involved. A continuous
model of a bladed rotor without imperfections was consid-
ered in [17]. The rotor was composed of grouped blades
mounted on a flexible disk. The coupling between adjacent
groups of blades due to the disk was accounted for by using
lumped springs, whereas distributed springs were used to
model the blade stiffness. In [18] the homogenization techni-
que was applied to a simple lumped-parameter model, com-
posed of pendula acted upon by rotational and linear springs,
widely employed in the literature to qualitatively study the
localization phenomenon in bladed rotors. A continuous
model was obtained, yielding analytical closed-form expres-
sions for the eigenfrequencies and the eigenmodes, as well
as for the resonance peaks of the forced response, depend-
ing on the mistuning level. In [19] a homogenized continu-
ous model of a bladed rotor without imperfections was devel-
oped, taking into account the flexibility of both the support
disk and the blades by means of the Euler-Bernoulli beam
theory. That continuous model was used for the design and
optimization of a passive vibration control scheme.

In this paper the model proposed in [19] is suitably gen-
eralized to account for the presence of mistuning. In particu-
lar, the in-plane vibrations of a mistuned bladed rotor are
considered. In Section 2.1 a classical model of a bladed rotor
is recalled, employing the Euler-Bernoulli beam theory for
the description of both the blades and the support ring. The
equations governing that model are solved using the finite
element technique, and the obtained numerical results are
used as a benchmark for the validation of the homogenized
model proposed here. In Section 2.2 the homogenization
technique is applied to the Euler-Bernoulli model in order
to obtain a continuous homogenized model of the bladed
rotor without imperfections. In Section 2.3 the homogenized
model previously derived is generalized in order to account
for the presence of imperfections, consisting of deviations
of the mass and/or stiffness of some blades from the design
value. In Section 3.1 analytical expressions of the natural fre-
quencies and vibration modes of a rotor without imperfec-
tions are computed using the homogenized model. In order
to derive analytical expressions of the same quantities rele-
vant to a rotor with imperfections, a linearization of the pro-
posed homogenized model is performed in Section 3.2,
by employing a perturbation technique. As a result, a
linear variational formulation of the homogenized model
is obtained, supplying analytical expressions for the natural
frequencies and vibration mode of a mistuned bladed rotor
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Figure 1: Schematic representation of a bladed rotor.

(Section 3.3). Finally, some simulation results are presented
in Section 4, showing the ability of the proposed homoge-
nized model to describe the dynamical behavior of the mis-
tuned bladed rotor introduced in Section 4.1. In particular
the results supplied by the homogenized model, obtained by
using a numerical approach, and the analytical results suppl-
ied by the linearized version of the homogenized model are
compared with results supplied by the classical Euler-Berno-
ulli model, obtained using the finite element technique as
described in Section 4.2. The comparison shows good agree-
ment between the finite-element and the homogenized mo-
del outcomes, relevant to both the frequency split and the lo-
calized vibration modes of the mistuned rotor (Sections 4.4
and 4.5).

2. Homogenized Model

In this section a homogenized model for the analysis of the
in-plane vibrations of a mistuned bladed rotor is derived.
The rotor is schematically represented in Figure 1; it is made
of a linearly elastic material and is composed of Nb blades, of
length lb, clamped on a ring of radius R, representing the tur-
bine shaft. The angular spacing δθo between any two adjacent
blades is constant and equal to 2π/Nb.

2.1. Euler-Bernoulli Model. In order to develop the homoge-
nized model, a classical model based on the Euler-Bernoulli
theory is briefly recalled here, denoted in the foregoing with
the acronym EB. It will be also used as a benchmark, after dis-
cretization by means of the finite-element method, in order
to assess the accuracy of the homogenized model in per-
forming a dynamical analysis of a mistuned rotor. A polar
coordinate system (O, ρ, θ) is introduced. Let u(θ) and
w(θ) be the tangential and radial displacement of the ring,
respectively; let Ui(ρ) and Wi(ρ) be the transversal and
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axial displacement of the ith blade, placed at an angle θi,
respectively, as shown in Figure 1. Both the ring and the
blades are assumed to be inextensible, and their flexural
behavior is governed by the Euler-Bernoulli theory. The axial
strain ε, the rotation ϕ, and the variation of curvature Δχ of
the cross section of the ring are respectively given by

ε = 1
R

(
∂u

∂θ
+w

)
, ϕ = 1

R

(
u− ∂w

∂θ

)
,

Δχ = 1
R2

(
∂u

∂θ
− ∂2w

∂θ2

)
,

(1)

where R is the ring radius.
Assuming first that no imperfections are present, and

denoting with σr and Kr , respectively, the linear mass
density and in-plane bending stiffness of the ring, and
with σob and Kob, respectively, the linear mass density and
bending stiffness of each blade, possibly depending on the
radial coordinate ρ, the following Hamiltonian functional
describing the dynamical behavior of the structure can be
written as follows:

H = 1
2

∫ 2π

0
σr

[(
∂u

∂t

)2

+
(
∂w

∂t

)2
]
Rdθ

+
1
2

Nb∑
i=1

∫ R+lb

R
σob
(
ρ
)[(∂Ui

∂t

)2

+
(
∂Wi

∂t

)2
]
dρ

− 1
2

∫ 2π

0

Kr
R4

(
∂u

∂θ
− ∂2w

∂θ2

)2

Rdθ

− 1
2

Nb∑
i=1

∫ R+lb

R
Kob

(
ρ
)(∂2Ui

∂ρ2

)2

dρ,

(2)

subjected to the following constraints:

1
R

(
∂u

∂θ
+w

)
= 0, θ ∈ (0, 2π);

∂Wi

∂ρ
=0, ρ∈(R,R + lb), i=1 · · ·Nb;

Wi=w, Ui=u,

∂Ui

∂ρ
= 1
R

(
u− ∂w

∂θ

)
, ρ = R, θ = θi, i = 1 · · ·Nb,

(3)

where t denotes the time.
Many typologies of imperfections can be accounted for

by varying the linear mass density and/or bending stiffness
of some blades with respect to the design value; for example,
in [15] a crack in a single blade was modeled by reducing the
bending stiffness of the damaged blade. Accordingly, if the
jth blade of the rotor is imperfect, the linear mass density
σb j(ρ) and bending stiffness Kbj(ρ) of that blade can be
modified as follows:

σb j
(
ρ
) = σob

(
ρ
)

+ δσb j
(
ρ
)
,

Kbj
(
ρ
) = Kob

(
ρ
)

+ δKbj
(
ρ
)
,

(4)

where δσb j and δKbj are the variations with respect to the
corresponding nominal values.

2.2. Homogenized Model for a Perfect Rotor. The homoge-
nized model developed in [19], valid for a rotor without
imperfections, is briefly recalled here in order to illustrate
the homogenization procedure. The variational formulation
(2) is rewritten for a family of rotors with increasing number
N of blades, starting from N = Nb, which is the number of
blades exhibited by the reference rotor, in order to approach
the homogenization limit N → ∞. It is assumed that, for
each chosen N , the blade mass density σNob and bending
stiffness KN

ob rescale as σob(ρ)(Nb/N) and Kob(ρ)(Nb/N),
respectively, such that the overlined quantities,

σob
(
ρ
) = σNob

δθ
, Kob

(
ρ
) = KN

ob

δθ
, (5)

where δθ = 2π/N is the angular spacing between adjacent
blades, remain constant during the homogenization limit.
The quantities defined in (5) represent, respectively, the
homogenized linear mass density and bending stiffness.
These assumptions are substituted into the functional (2)
and the homogenization limit N → ∞ is then performed;
by extending the functions Ui(ρ) and Wi(ρ), i = 1 · · · N to
the annular region (R,R+lb)×(0, 2π) and assuming that they
converge, together with their derivatives, to functionsU(ρ, θ)
and W(ρ, θ), the functional (2) converges, for N → ∞, to
[19]

Hhom = 1
2

∫ 2π

0
σr

⎡
⎣(∂U

∂t

)2

+

(
− ∂

2U

∂θ∂t

)2
⎤
⎦
ρ=R

Rdθ

+
1
2

∫ 2π

0

∫ R+lb

R
σob

(
ρ
)(∂U

∂t

)2

dρ dθ

+
1
2

∫ 2π

0

(∫ R+lb

R
σob

(
ρ
)
dρ

)[
− ∂

2U

∂θ∂t

]2

ρ=R
dθ

− 1
2

∫ 2π

0

Kr
R4

[
∂U

∂θ
+
∂3U

∂θ3

]2

ρ=R
R dθ

− 1
2

∫ 2π

0

∫ R+lb

R
Kob

(
ρ
)(∂2U

∂ρ2

)2

dρ dθ,

(6)

subjected to the following constraints:

∂U

∂ρ
= 1
R

(
U +

∂2U

∂θ2

)
, ρ = R, θ ∈ (0, 2π). (7)

In order to analyze the rotor dynamics, a sinusoidal time
dependence of the unknown U is assumed, that is,

U
(
ρ, θ, t

) = V
(
ρ, θ

)
eiωt, (8)
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Figure 2: Homogenization limit for an imperfect rotor; imperfection due to an increase of linear mass density of a blade. (a) Reference rotor
with Nb blades and imperfection on the jth blade, in black color. (b) Homogenization step process k = 1; rotor with N = 2Nb blades, with
rescaled bending stiffness and linear mass density.

where i = √−1 is the imaginary unit. Enforcing this position
and recasting the functional (6) into a variational form, the
following is obtained:

− ω2

⎧⎨
⎩
∫ 2π

0
σr

[
Vψ +

∂V

∂θ

∂ψ

∂θ

]
ρ=R

Rdθ

+
∫ 2π

0

∫ R+lb

R
σob

(
ρ
)
Vψ dρ dθ

+
∫ 2π

0

(∫ R+lb

R
σob

(
ρ
)
dρ

)[
∂V

∂θ

∂ψ

∂θ

]
ρ=R

dθ

⎫⎬
⎭

+
∫ 2π

0

Kr
R4

[(
∂V

∂θ
+
∂3V

∂θ3

)(
∂ψ

∂θ
+
∂3ψ

∂θ3

)]
ρ=R

Rdθ

+
∫ 2π

0

∫ R+lb

R
Kob

(
ρ
)∂2V

∂ρ2

∂2ψ

∂ρ2
dρ dθ = 0,

(9)

subjected to the following constraints:

∂V

∂ρ
= 1
R

(
V +

∂2V

∂θ2

)
,

∂ψ

∂ρ
= 1
R

(
ψ +

∂2ψ

∂θ2

)
, ρ = R, θ ∈ (0, 2π),

(10)

where ψ(ρ, θ) indicates a test function. The homogenized
model described here is denoted with the acronym HOM in
the foregoing.

2.3. Homogenized Model for an Imperfect Rotor. The presence
of imperfections can be accounted for in the homogenized
model by letting the homogenized linear mass density and
bending stiffness depend also on the angular variable θ.
Accordingly, it is assumed that

σb
(
ρ, θ

) = σob
(
ρ
)

+ δσb
(
ρ, θ

)
,

Kb
(
ρ, θ

) = Kob
(
ρ
)

+ δKb
(
ρ, θ

)
,

(11)

where δσb and δKb are suitable perturbations superimposed
to the homogenized design values of linear mass density σob

and bending stiffness Kob, respectively. In order to choose
δσb and δKb, it is necessary to specify how the imperfect
blades behave during the homogenization limit. For the sake
of example, it is assumed that the jth blade of the rotor
is imperfect, with increased linear mass density equal to
σob + δσb j as indicated in Figure 2. When the number of
blades is increased to approach the homogenization limit,
the number of imperfect blades increases as depicted in
Figure 2, and their mass density and bending stiffness are
rescaled according to the conditions given in Section 2.2. In
particular, at the kth homogenization-process step, the total
number of blades becomes N = 2kNb, and the blade linear
mass density and bending stiffness are rescaled by a factor
1/2k with respect to their nominal value; on the other hand,
the number of imperfect blades becomes 2k, with rescaled
linear mass density variation equal to δσb j/2k .

Under these assumptions, in the homogenization limit
N → ∞, the homogenized linear mass density perturbation
δσb and the homogenized bending stiffness perturbation
δKb are piecewise constant functions having the following
expressions:

δσb
(
ρ, θ

) = δσb j
(
ρ
)

δθo
χj(θ),

δKb
(
ρ, θ

) = δKbj
(
ρ
)

δθo
χj(θ),

(12)

where

χj(θ) = 1, θ ∈
(
θ j − δθo

2
, θ j +

δθo
2

)
,

χj = 0, elsewhere.
(13)

The expression (12) can be straightforwardly generalized to
the case of multiple imperfect blades.

3. Analytical Solutions for
Eigenfrequencies and Eigenmodes

In this section explicit formulas for the eigenfrequencies and
eigenmodes of a bladed rotor, with or without imperfections,
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are reported. They are obtained by using the homogenized
model developed in Sections 2.2 and 2.3.

3.1. Perfect Rotor. In order to evaluate the eigenmodes and
eigenfrequencies of a perfect rotor by using the homogenized
model proposed here, it is assumed for the sake of simplicity
that σob and Kob do not depend on the radial variable ρ;
under this simplifying assumption, using the localization
lemma, (9) and (10) yields the field equilibrium equation:

−ω2 σobV + Kob
∂4V

∂ρ4
= 0,

(
ρ, θ

) ∈ (R,R + lb)× (0, 2π),

(14)

and the boundary conditions:

− ω2σrR

(
V − ∂2V

∂θ2

)
+ ω2σoblb

∂2V

∂θ2

− Kr
R3

(
∂

∂θ
+

∂3

∂θ3

)2

V − Kob

R

(
1 +

∂2

∂θ2

)
∂2V

∂ρ2

− Kob
∂3V

∂ρ3
= 0, ρ = R, θ ∈ (0, 2π);

∂V

∂ρ
= 1
R

(
V +

∂2V

∂θ2

)
, ρ = R, θ ∈ (0, 2π);

Kob
∂2V

∂ρ2
= 0, ρ = R + lb, θ ∈ (0, 2π);

− Kob
∂3V

∂ρ3
= 0, ρ = R + lb, θ ∈ (0, 2π).

(15)

Due to the rotational symmetry of the problem, the eigen-
modes V depend harmonically on the angular variable
θ. For each fixed nodal diameter, denoted by the modal
number n ≥ 0, a countable set of eigenfrequencies and
eigenmodes, denoted by the modal number l = 1, 2, 3 . . .,
can be computed as follows. Fixed n, a solution of the field
equation (14), is given by

Von,l
(
ρ, θ

) = 2An,l

⎛
⎝ 4∑
i=1

Ci fi
(
ρ
)
⎞
⎠ cos

(
nθ + ϕn,l

)
, (16)

where An,l is an arbitrary constant,

f1
(
ρ
) = cos

[
λn,l

(
ρ− R)], f2

(
ρ
) = sin

[
λn,l

(
ρ− R)],

f3
(
ρ
) = cosh

[
λn,l

(
ρ− R)], f4

(
ρ
) = sinh

[
λn,l

(
ρ − R)]

(17)

and the modal eigenfrequency ωon,l is related to λn,l by the
relation

ωon,l =
√
Kob

σob
λ2
n,l . (18)

In (16) the quantities Ci, i = 1 · · · 4, are scalar unknowns;
by substituting (16) into the four boundary conditions (15),
an eigenvalue problem is obtained, exhibiting a countable
set of eigenvalues λn,l and corresponding eigenvectors Ci,
i = 1 · · · 4. The phase orientation ϕn,l is left undetermined

after solving (14) and (15); as a consequence, for each fixed
n > 0 and l two independent eigenmodes exist, at the same
modal frequency ωon,l. These are known in the literature as
degenerate eigenmodes [1, 2]. All the eigenmodes relevant to
n = 0 are nondegenerate.

3.2. Linearized Homogenized Model for an Imperfect Rotor.
In order to derive analytical expressions for the modal
eigenfrequencies and eigenmodes of the rotor in the pres-
ence of imperfections, the homogenized model proposed
in Section 2.3 is linearized by employing a perturbation
technique. Accordingly, the eigenmodes of the imperfect
rotor are computed by perturbing the eigenmodes relevant
to the perfect rotor, that is, for each fixed couple of modal
indices (n, l), the eigenmodes Vn,l of the imperfect rotor are
given by

Vn,l
(
ρ, θ

) = Von,l
(
ρ, θ

)
+ δVn,l

(
ρ, θ

)
, (19)

whereVon,l is the eigenmode of the perfect rotor given in (16)
and δVn,l is an unknown perturbation. Moreover the relevant
eigenfrequency ωn,l is given by

ωn,l = ωon,l + δωn,l, (20)

where δωn,l is the frequency shift due to the presence of
imperfections. By substituting the expansions (11), (19), and
(20) into the weak formulation (9) and retaining only the
first order terms, the following linearized weak formulation
is obtained:

− ω2
on,l

⎧⎨
⎩
∫ 2π

0
σr

(
δVn,lψ +

∂δVn,l

∂θ

∂ψ

∂θ

)∣∣∣∣∣
ρ=R

R dθ

+
∫ 2π

0

∫ R+lb

R
σb δVn,lψ dρ dθ

+
∫ 2π

0
σblb

∂δVn,l

∂θ

∂ψ

∂θ

∣∣∣∣∣
ρ=R

dθ

⎫⎬
⎭

+
∫ 2π

0

Kr
R4

(
∂δVn,l

∂θ
+
∂3δVn,l

∂θ3

)(
∂ψ

∂θ
+
∂3ψ

∂θ3

)∣∣∣∣∣
ρ=R

Rdθ

+
∫ 2π

0

∫ R+lb

R
Kb

∂2δVn,l

∂ρ2

∂2ψ

∂ρ2
dρ dθ

= 2ωon,lδωn,l

⎧⎨
⎩
∫ 2π

0
σr

(
Von,lψ +

∂Von,l

∂θ

∂ψ

∂θ

)∣∣∣∣∣
ρ=R

Rdθ

+
∫ 2π

0

∫ R+lb

R
σbVon,lψ dρ dθ

+
∫ 2π

0
σblb

∂Von,l

∂θ

∂ψ

∂θ

∣∣∣∣∣
ρ=R

dθ

⎫⎬
⎭

+ ω2
on,l

{∫ 2π

0

∫ R+lb

R
δσbVon,lψ dρ dθ

+
∫ 2π

0
lbδσb

∂Von,l

∂θ

∂ψ

∂θ

}

−
∫ 2π

0

∫ R+lb

R
δKb

∂2Von,l

∂ρ2

∂2ψ

∂ρ2
dρ dθ,

(21)
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under the following constraints:

∂δVn,l

∂ρ
= 1
R

(
δVn,l +

∂2δVn,l

∂θ2

)
,

∂ψ

∂ρ
= 1
R

(
ψ +

∂2ψ

∂θ2

)
, ρ = R, θ ∈ (0, 2π),

(22)

where it is assumed, for simplicity, that σob and Kob do not
depend on the radial variable ρ. The unknowns appearing
in (21) are the scalar quantities δωn,l and ϕn,l and the
function δVn,l. Due to the presence of the imperfections,
the indeterminacy on the phase angle ϕn,l is removed
and, for each couple of modal indexes (n, l), two set of
solutions (δωn,l,ϕn,l, δVn,l) are expected, corresponding to
the two split eigenmodes belonging to the same degenerate
eigenmode Von,l relevant to the perfect structure. This
linearized homogenized model is denoted in the foregoing
with the acronym L-HOM.

3.3. Eigenfrequencies and Eigenmodes Evaluation for an Imper-
fect Rotor. By considering the linearized variational formula-
tion (21), it is observed that, for each fixed modal number n,

g1
(
ρ, θ

) =
⎛
⎝ 4∑
i=1

Ci fi
(
ρ
)
⎞
⎠ cos(nθ),

g2
(
ρ, θ

) =
⎛
⎝ 4∑
i=1

Ci fi
(
ρ
)
⎞
⎠ sin(nθ),

(23)

withCi, i = 1···4, and λn,l solutions of (14) and (15), are two
independent functions belonging to the kernel of the self-
adjoint operator at the left hand side of (21). Accordingly,
by substituting first ψ = g1 and then ψ = g2 in (21), together
with the expression of Von,l and ωon,l given by (16) and (18),
respectively, two independent equations in the unknowns
δωn,l and ϕn,l are obtained, whose solutions supply the two
couples of frequency split and phase orientation (δωn,l,ϕn,l)
relevant to the perturbed mode (n, l). Once the values of
δωn,l and ϕn,l have been computed, the corresponding modal
shapes can be obtained by making use of the linear weak
formulation (21). To this end (21) is integrated by parts with
respect to the variable ρ and, making use of (22)2, it yields

∫ 2π

0

∫ R+lb

R

(
−ω2

on,lσbδVn,l + Kb
∂4δVn,l

∂ρ4

− 2ωon,lδωn,lσbVon,l

−ω2
on,lδσbVon,l + δKb

∂4Vn,l

∂ρ4

)
ψ dρ dθ

+
∫ 2π

0

{
−ω2

on,lσrR

(
δVn,lψ +

∂δVn,l

∂θ

∂ψ

∂θ

)

− ω2
on,lσblb

∂δVn,l

∂θ

∂ψ

∂θ

+
Kr
R3

(
∂δVn,l

∂θ
+
∂3δVn,l

∂θ3

)(
∂ψ

∂θ
+
∂3ψ

∂θ3

)

− Kb

R

∂δVn,l

∂ρ2

(
ψ +

∂2ψ

∂θ2

)
+ Kb

∂3δVn,l

∂ρ3
ψ

− 2ωon,lδωn,l

[
σrR

(
Von,lψ +

∂Von,l

∂θ

∂ψ

∂θ

)

+σblb
∂Von,l

∂θ

∂ψ

∂θ

]

− ω2
on,l lbδσb

∂Von,l

∂θ

∂ψ

∂θ

− δKb

R

∂2Von,l

∂ρ2

(
ψ +

∂2ψ

∂θ2

)

+δKb
∂3Von,l

∂ρ3
ψ

}∣∣∣∣∣
ρ=R

dθ

+
∫ 2π

0

[(
Kb

∂2δVn,l

∂ρ2
+ δKb

∂2Von,l

∂ρ2

)
∂ψ

∂ρ

]
ρ=R+lb

dθ

+
∫ 2π

0

[(
−Kb

∂3δVn,l

∂ρ3
− δKb

∂3Von,l

∂ρ3

)
ψ

]
ρ=R+lb

dθ = 0.

(24)

Another weak-form equation is obtained by multiplying
(22)1 by ψ and integrating over (0, 2π), yielding

∫ 2π

0

[
∂δVn,l

∂ρ
− 1
R

(
δVn,l +

∂2δVn,l

∂θ2

)]
ψ dθ = 0. (25)

In order to find out the unknown modal perturbation δVn,l,
a spectral representation is used by setting

δVn,l
(
ρ, θ

) =
4∑
i=1

{
Ci0

2
+ ρ

Gi0

2

+
∑
k>0

[(
Cik + ρGik

)
cos(kθ)

+
(
Dik + ρHik

)
sin(kθ)

]}
fi
(
ρ
)
.

(26)

The representation (26) of δVn,l is then substituted in
(24), and the test function ψ is chosen according to the
following expressions

ψ
(
ρ, θ

) = cos(kθ) β
(
ρ
)
,

ψ
(
ρ, θ

) = sin(kθ)β
(
ρ
)
,

(27)

where k is any positive fixed integer and β is an arbitrary
function of ρ. Using the localization lemma in the first inte-
gral of (24), an explicit expression forGik andHik, i = 1···4,
is obtained. The expression (26) for δVn,l, where now Gik

and Hik are known scalar quantities, is then substituted into
(24) and (25). Linear equations in the unknown coefficients
Cik and Dik are obtained, for each fixed positive integer k,
by choosing the test function ψ and ∂ψ/∂ρ, at ρ = R and
ρ = R+lb, as cos(kθ) and sin(kθ) and using again localization
lemma. Their solution provides the Fourier coefficients of the
unknown modal perturbation δVn,l.
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Table 1: Modal frequencies ωon,l in rad/s, relevant to the perfect rotor and evaluated according to the EB model. Modal frequencies relevant
to modal numbers n = 2 · · · 5 and l = 1.

n = 2 n = 3 n = 4 n = 5

27.0746 27.0746 27.9718 27.9718 28.4242 28.4242 28.6596 28.6596

4. Numerical Simulations

In this section, some numerical simulation results are pre-
sented in order to show the effectiveness of the proposed ho-
mogenized model in the investigation of the frequency split
and localization phenomenon in imperfect rotors.

4.1. Case Study Bladed Rotor. A case study problem is intro-
duced here; a bladed rotor, similar to the one schematically
represented in Figure 1, is considered. It is composed of
32 elastic blades of cross-section 2 × 50 mm and length
600 mm; the blades are clamped to a support ring of radius
200 mm and cross section 4 × 50 mm. The ring and the
blades are composed of steel, with Young modulus 210 GPa
and mass density 7850 Kg/m3. The degenerate modal fre-
quencies of this bladed rotor are reported in Table 1, relevant
to modal numbers n = 2 · · · 5 and l = 1, and evaluated
according to the EB model. The eigenmodes relevant to
n = 0, 1 are not considered since they do not involve any
deformation in the support ring, in fact for that modes Δχ =
0 [19].

4.2. Numerical Algorithms. In order to find a stationary solu-
tion for the Hamiltonian functional (2), describing the dyna-
mical behavior of the case study bladed rotor according to the
EB model, a finite-element scheme is adopted here. Accord-
ingly, (2) is discretized by using two-node beam elements
and Hermite polynomials as interpolation scheme, both for
the ring and the blades. The axial inextensibility constraint is
enforced by using a penalization method. A discrete formula-
tion for the dynamical problem is finally obtained by assum-
ing as unknowns the nodal displacements and rotations. The
results provided by the latter discretized model are used in
the foregoing as benchmark to assess the accuracy of the ho-
mogenized model.

The homogenized weak formulation in (9), defined in the
annular region (R,R + lb) × (0, 2π), is also discretized in the
angular direction with the Ritz-Rayleigh method assuming,
as shape functions,

1, 2 cos(kθ), −2 sin(kθ), k = 1 · · · n f , (28)

whereas a finite element discretization is assumed in the
radial direction, employing two-node beam elements with
Hermite polynomials as interpolation scheme. Accordingly,
the nodal unknowns are the real and imaginary part of the
complex Fourier coefficients of the tangential displacement
V and its radial derivative.

4.3. Validation of the Homogenization Limit. In this section,
the homogenization limit is numerically studied, and a con-
vergence analysis is presented. The modal eigenfrequencies
of the perfect rotor described in Section 4.1 are computed
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Figure 3: Convergence analysis for the homogenization limit:
relative error between modal frequencies evaluated according to the
EB model and the HOM model, as a function of the number N of
blades. Rotor without imperfections. Modal frequencies relevant to
modal numbers l = 1 and — � n = 2; – · ◦ n = 3; – –∗ n = 4;
·· � n = 5. The triangle in the figure indicates the quadratic
convergence slope.

increasing the number N of blades, starting from the
reference configuration with 32 blades and rescaling at the
same time the linear mass density and the bending stiffness of
the blades as described in Section 2, in order to approach the
homogenization limit N → ∞ relevant to the HOM model.
In particular, N = 32, N = 64, N = 128, and N = 256
have been considered in the computations. In Figure 3 the
relative error between degenerate eigenfrequencies evaluated
according to the reference EB model and the HOM model is
reported, relevant to modal numbers n = 2 · · · 5 and l = 1.
The figure shows that a quadratic convergence, indicated by
the triangle, is achieved. The relative error slightly increases
with the increase of n. The homogenized model turns out to
be quite accurate in describing the rotor dynamics, as the rel-
ative error is very small even in the reference case of 32 blades.

4.4. Modal Frequency Analysis. In this section the modal fre-
quencies relevant to an imperfect bladed rotor are analyzed.
The imperfection is introduced by increasing the linear mass
density of the fourth blade of the perfect rotor described in
Section 4.1 by a factor γ. The modal frequencies ωn,l, relevant
to modal numbers n = 2 · · · 5 and l = 1, are evaluated
according to the reference EB model and the HOM model,
considering different values of γ. In Table 2 the modal fre-
quencies evaluated according to the EB model are reported.

From Table 2 it can be seen that, due to the presence of
imperfections, a frequency split occurs between frequencies
belonging to the same modal number (n, l), which were
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Table 2: Modal frequencies ωn,l in rad/s, relevant to the imperfect rotor and evaluated according to the EB model. The imperfection is
introduced by increasing the mass of the fourth blade of the perfect rotor described in Section 4.1 by γ = 0.05%, 0.1%, 0.5%, and 1%, with
respect to its nominal value. Modal frequencies relevant to modal numbers n = 2 · · · 5 and l = 1.

n = 2 n = 3 n = 4 n = 5

γ = 0.05% 27.0742 27.0746 27.9713 27.9718 28.4237 28.4242 28.6591 28.6596

γ = 0.1% 27.0738 27.0746 27.9709 27.9718 28.4233 28.4242 28.6587 28.6596

γ = 0.5% 27.0703 27.0746 27.9671 27.9718 28.4193 28.4242 28.6544 28.6596

γ = 1% 27.0656 27.0746 27.9619 27.9718 28.4134 28.4242 28.6476 28.6596

Table 3: Relative error between frequency shifts relevant to the imperfect rotor, evaluated according to the HOM model and the EB model.
The imperfection is introduced by increasing the mass of the fourth blade of the perfect rotor described in Section 4.1 by γ = 0.05%, 0.1%,
0.5%, and 1%, with respect to its nominal value. Modal frequencies relevant to modal numbers n = 2 · · · 5 and l = 1.

n = 2 n = 3 n = 4 n = 5

γ = 0.05% 0.0114 0.0281 0.0513 0.0824

γ = 0.1% 0.0116 0.0283 0.0519 0.0834

γ = 0.5% 0.0125 0.0299 0.0556 0.0906

γ = 1% 0.0103 0.0261 0.0500 0.0828

coinciding in the perfect case as shown in Table 1. The
difference between eigenfrequencies relevant to the imperfect
rotor in Table 2 and the corresponding ones relevant to the
perfect rotor in Table 1 is the frequency shift δωn,l, which
occurs due to the presence of imperfections. It can be noticed
that, for each couple of modal numbers (n, l), one of the
two frequency shifts δωn,l is vanishing; in fact, for each fixed
(n, l), one of the two eigenfrequencies of the imperfect rotor
in Table 2 coincides with the corresponding frequency of the
perfect rotor in Table 1. In particular, this eigenfrequency
corresponds to a modal shape antisymmetric with respect
to the location of the imperfect blade [18]. Table 3 contains
the relative error between the frequency shifts δωn,l evaluated
according to the EB model and to the HOM model. For
each couple of modal numbers (n, l), only the value relevant
to the nonvanishing frequency shift is reported. The errors
are almost independent from the imperfection level γ, and
they slightly increase with the increase of n, ranging from
1% when n = 2 to 9% when n = 5. Finally, in Table 4
the relative errors between frequency shifts δωn,l evaluated
according to the HOM model and the L-HOM model are
reported. It is remarked here that while the results supplied
by the HOM model are computed by using the numerical
procedure described in Section 4.2, the results relevant to
the L-HOM model are readily obtained using the analytical
expressions developed in Section 3.3. For each couple of
modal numbers (n, l), only one value is reported, relevant
to the nonvanishing frequency shift. Results in Table 4 show
that the linearized model is suitable for accurately evaluating
frequency shifts of an imperfect rotor when imperfections are
sufficiently small; for γ ≤ 0.1% the relative errors range from
0.3% to 2.5%, increasing with mode number n. The relative
difference between frequency shifts becomes larger for larger
values of γ together with higher values of mode number
n; for an increased accuracy a refined theory may be used,
which can be derived by retaining also the higher-order terms
in the perturbation expansion performed in Section 3.2.

Accordingly, a nonlinear theory would be obtained, whose
solution would require a numerical iterative procedure.

4.5. Eigenmode Analysis. In this section the eigenmodes
of the rotor described in Section 4.1, made imperfect by
increasing the linear mass density of its 4th blade by γ =
1%, are evaluated. For the sake of comparison, both the
HOM model and the L-HOM model are employed in the
analysis, and their results are compared with the eigenmodes
computed by using the finite-element formulation of the EB
model, used as a benchmark. In Figure 4 the eigenmodes
relevant to mode numbers n = 2···5 and l = 1 are reported;
in particular, for each couple of modal number (n, l) only the
eigenmode corresponding to a nonvanishing frequency shift
δωn,l exhibits a vibration localization and is reported in the
figure. All the modal shapes have been normalized using the
same procedure: in particular, the modulus of the complex
Fourier coefficient relevant to the dominant mode (i.e., the
nth + 1 Fourier coefficient for a eigenmode of mode number
n) has been set to 1. Finally, the eigenmodes have been all
rescaled by a factor of 0.2 to be clearly shown in the figure.

The homogenized model turns out to be suitable for
studying the localization phenomenon in imperfect rotors:
in fact, as shown in Figure 4, the localization effect due to
the imperfection placed on the fourth blade clearly appears,
increasing with the increase of the modal number n. It turns
out that the HOM model and the L-HOM model are both
in good agreement with the reference EB model, with the L-
HOM model slightly underestimating the modal amplitude
around the imperfect blade with respect to the HOM model.

5. Conclusions

In this paper a homogenized model has been proposed,
suitable for the dynamical analysis of mistuned bladed rotors.
The model seems to be a good compromise between accuracy
and simplicity; indeed, it considers the distributed elasticity
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Table 4: Relative error between frequency shifts relevant to the imperfect rotor, evaluated according to the HOM model and the L-HOM
model. The imperfection is introduced by increasing the mass of the fourth blade of the perfect rotor described in Section 4.1 by γ = 0.05%,
0.1%, 0.5%, and 1%, with respect to its nominal value. Modal frequencies relevant to modal numbers n = 2 · · · 5 and l = 1.

n = 2 n = 3 n = 4 n = 5

γ = 0.05% 0.0032 0.0054 0.0087 0.0125
γ = 0.1% 0.0064 0.0108 0.0173 0.0250
γ = 0.5% 0.0319 0.0539 0.0860 0.1233
γ = 1% 0.0665 0.1122 0.1777 0.2507

n = 2

(a)

n = 3

(b)

n = 4

(c)

n = 5

(d)

Figure 4: Eigenmodes of the imperfect rotor, evaluated according to the HOM model, the L-HOM model, and the EB model. The
imperfection is introduced by increasing the mass of the fourth blade of the perfect rotor described in Section 4.1 by γ = 1%, with respect to
its nominal value. – – green: perfect rotor, — red: imperfect rotor using HOM model, · · · blue: imperfect rotor using L-HOM model, – · –
black: imperfect rotor using the EB model.

of the blades and the coupling between a single blade and the
other ones, due to the presence of a flexible support disk. On
the other end, it is a continuous model, and thus it is compu-
tationally more effective than classical finite element models.
Numerical simulations have been reported, showing the
capability of the model in evaluating the frequency split and
vibration localization phenomenon arising in the presence of
mistuning. The proposed model may be an effective tool for
the design and the parametric analysis of bladed rotors.
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