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SUMMARY

A polar decomposition based corotational formulation for deriving geometrically nonlinear triangular shell
elements is proposed. This formulation is novel in two aspects. (1) Original formulas for the projector
operator and its variation are presented, leading to simple algorithms for the computation of the nodal
residual vector and of the consistent tangent stiffness tensor. (2) For the first time in the context of a coro-
tational kinematic description, a rigorous treatment of distributed dead and follower loads is performed,
thoroughly accounting for the various contributions entailed in the residual vector and in the tangent stiff-
ness. Numerical simulations of popular benchmark problems are reported, showing the effectiveness of the
proposed approach. An accessible and adaptable MATLAB toolkit implementing the present formulation is
provided as supplementary material.* Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Shell structures are widely used in engineering practice, and the development of efficient numerical
methods for their analysis well into the nonlinear regime has been receiving continuous attention in
last decades. Many applications in structural, aerospace, and biomedical engineering involve com-
plex multiphysics problems and demand for accurate yet simple computational tools. Among the
latter, the FEM has promoted the most significant advances in computational shell mechanics. Dif-
ferent types of finite elements have been developed for the analysis of shell structures, including 2D
elements based on a shell theory, degenerated shell elements, and solid-shell elements. The most
distinctive feature of the latter is that they do not possess any rotational DOFs [1]; hence, difficulties
associated to the pseudo-vectorial nature of finite rotations are circumvented. On the other hand, the
treatment of rotational DOFs in degenerated shell elements and 2D elements based on a shell the-
ory may benefit from a corotational approach, which is characterized by the ability to handle easily
geometric nonlinearities induced by finite rotations, decoupling them from element computations.
In fact, the corotational approach represents an effective technique for deriving degenerated/2D
shell elements ideally suited for applications characterized by complex features such as biological
materials, contact, or fluid–structure interaction.

The corotational formulation is based on the idea of separating rigid body motions from strain pro-
ducing ones. It was originally introduced by Wempner [2] and Belytschko and coworkers [3], and
indeed presents similarities with the ‘natural approach’ of Argyris et al. [4]. Rankin and Brogan [5]
introduced the concept of ‘element-independent corotational formulation’ and produced a technique
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whereby the corotational procedures were added to existing elements without, in any way, altering
the latter. The element-independent corotational formulation is especially useful in problems involv-
ing large displacements and small strains. In fact, in those cases, existing high-performance linear
elements can be reused as core elements in the geometrically nonlinear context, after large rigid
body motions have been filtered out. The issue of consistent derivations of the nodal residual vec-
tor and of the tangent stiffness tensor was firstly addressed by Nour-Omid and Rankin [6, 7] and
Crisfield [8,9]. A unified theoretical framework of small-strain corotational finite elements was pre-
sented by Felippa and Haugen [10]. Crisfield and Moita extended the corotational formulation to
include finite strain [11, 12]. That issue was also addressed by Rankin [13] and Areias et al. [14].
The development of shell elements based on a corotational framework has generated an increased
amount of interest in last years: a curved triangular shell element employing assumed strains was
proposed in [15], a rotation-free triangle was formulated in [16], and flat triangular shell elements
for the analysis of thick shell or laminated composite structures were, respectively, formulated in
[17] and [18], to name but a few examples. A review on geometrically nonlinear analysis of shell
structures based on the corotational approach and flat triangular shell elements has been presented
in [19].

The first issue in the development of a corotational procedure is the identification of the rigid body
motion, also known as the shadowing problem [20]. Several proposals have been put forth in the lit-
erature; for triangular shell elements, they include side alignment [7], least square angular fit [10],
and fit according to minimum least square deformation [21]. Some desirable properties have been
listed in [10] as criteria to be followed in the identification of the rigid motion: (1) versatility (i.e.,
suitability to statics, dynamics, rigid bodies, and nonstructural bodies); (2) ability to return a body-
attached frame for rigid bodies; (3) invariance with respect to element node ordering; and (4) finite
stretch patch test satisfaction (i.e., if a group of elements is subjected to a uniform stretch, then no
spurious deformational rotations should appear). The latter property is not satisfied by the proposals
cited earlier, because large strains induce finite rotations of directions not aligned to principal strain
directions [14]. The key idea to satisfy the finite stretch patch test in 2D problems is due to Jeutter
and Cescotto [22] and is based on the concept of null local spin at the center of the element. Crisfield
extended the previous formulation to 3D continua and shell elements, proposing an approach based
on the polar decomposition of the element motion [11, 12, 23]. In particular, for three-node triangu-
lar shell elements, in [23], it is suggested to identify the rigid body motion by means of the polar
decomposition of the gradient of the homogeneous transformation mapping the element nodes onto
their current positions. This approach allows to satisfy all the desirable properties previously listed.
A two-step strategy for the computation of the aforementioned polar decomposition has been pro-
posed by Areias et al. [14]: The homogeneous transformation is regarded as the composition of a
side-aligning in-plane transformation, to which a 2D polar decomposition applies, followed by a
rigid transformation.

Once identified, the rigid body motion is purged out from the total displacements, thus yielding
the filtered nodal parameters. The latter represents the input for the element routines that provide the
nodal residual vector and the tangent stiffness tensor at the so-called core-element level. To lift the
nodal residual vector to the overall level, the crucial ingredient is the so-called projector operator,
able to extract the deformational part from incremental displacements. Analogously, the variation of
the projector operator is required to lift the core-element tangent stiffness tensor to the overall level
in a consistent way.

To the best of authors’ knowledge, explicit formulas for the projector operator and its variation
have not been reported in the literature for a polar decomposition based corotational framework
for three-node triangular shell elements. A spin-fitter tensor forming the projector operator was
introduced in [23], but no explicit expression was supplied, and its variation was neglected in the
derivation of the tangent stiffness tensor. A consistent linearization, in the framework of the two-step
strategy cited earlier, was achieved in [14], but resulting formulas, derived by means of symbolic
software tools, were not reported. The first main contribution of the present work is the derivation
of simple and elegant formulas for the computation of the projector operator and its variation, thus
providing a simple algorithm for the computation of the nodal residual vector and of the consistent
tangent stiffness tensor. These formulas are crucial for obtaining highly efficient implementations.
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In passing, it is noted that as opposite to most of the corotational literature, an intrinsic coordinate-
free notation is used, which results in a particularly neat derivation.

The second main result of this work concerns the treatment of distributed loads, which play a
central role in many applications (e.g., fluid–structure interaction). The contribution of distributed
loads, accounted for at the core-element level, cannot be lifted to the overall level by the projector
operator, because the latter brings a nonequilibrated element force vector into equilibrium [7]. To
the best of authors’ knowledge, this issue has barely been addressed so far in the framework of
corotational formulations. Distributed follower loads have been treated in [24], simply leaving the
projector operator off the core-element nodal load vector. A rigorous treatment of distributed loads
is presented here for the first time, showing that several contributions have to be taken into account
in the nodal residual vector and in the consistent tangent stiffness tensor. The analytical derivation
of those contributions is carried out in the cases of both dead and follower loads. The resulting for-
mulas for the nodal load vector and for the load tangent stiffness tensor can be implemented with
minor computational cost and provide an effective and accurate way to include distributed loads in
the analysis. The present treatment can, furthermore, constitute guidance for the rigorous treatment
of inertial forces arising in nonlinear dynamic analysis.

The proposed formulation has been validated using popular geometrically nonlinear benchmark
problems [25, 26], solved using the full Newton–Raphson method. Comparisons of the present
results with those reported in the literature are found to be excellent. Moreover, the present approach
compares favorably with standard Lagrangian formulations [25] in terms of consumed iterations.

As an extra benefit for the interested reader, an accessible and adaptable MATLAB toolkit imple-
menting the proposed formulation is provided as supplementary material. It is a front end between
the assembler and the core element, and has two main purposes: (1) removing rigid body motions
before core-element computations and (2) lifting the nodal residual vector and the consistent tan-
gent stiffness tensor yielded by core-element computations to the overall level. As an example, a
combination of the DKT (Discrete Kirchhoff Triangle) plate [14,27,28] and of the optimal ANDES
(Assumed Natural DEviatoric Strain) template membrane known as OPT, [29] is used as core ele-
ment [30]. Of course, any other small-strain or finite-strain triangular shell element with the same
node and DOF configuration can be used in the present corotational framework.

The paper is organized as follows. In Section 2, the polar decomposition based corotational kine-
matics is presented. In Section 3, the equilibrium equations are formulated in such corotational
context. Their consistent linearization is dealt with in Section 4. Numerical benchmarks and results
are reported and discussed in Section 5. The MATLAB toolkit is briefly described in Appendix A.

2. A POLAR DECOMPOSITION BASED COROTATIONAL FRAMEWORK

2.1. The corotational approach

The corotational approach is here briefly reviewed through an intrinsic, coordinate-free derivation.
Three-node triangular shell elements with six DOFs per node are considered. Let ui and # i , respec-
tively, denote the displacement and rotation vector of the typical node Vi . The rotation vector # i is
related to the rotation tensor Ri by the equation (e.g., [10]):

Ri D exp.spin.# i //D I C
sin#i
#i

spin.# i /C
1� cos#i

#2i
Œspin.# i /�

2 , (1)

where #i D jj# i jj, I is the identity tensor, and jj�jj, spin.�/, and exp.�/, respectively, denote the norm,
the skew-symmetric tensor associated with the argument, and the tensor exponential. In passing, it
is recalled that alternative representations of the rotational DOFs, equally suitable for the present
derivation, have been put forth in the literature (e.g., [31]). The element nodal parameters ui , # i are
collected into the 18� 1 vector

aD ¹u1I#1Iu2I#2Iu3I#3º , (2)
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DOI: 10.1002/nme



502 F. CASELLI AND P. BISEGNA

Figure 1. Idea behind the corotational approach.

where the semicolon denotes column stacking. Classical finite element formulations are based on
an interpolation of the element displacement field u:

uD u.a,p/ , (3)

where p is the typical point in the reference configuration.
In the derivation of corotational finite elements, the deformation f .p/ D p C u.p/ is

multiplicatively decomposed as follows (Figure 1):

f D r ı f , (4)

where r is a rigid transformation, characterized by a reference point G, a translation vector t, and a
rotation tensor R

r.p/DG C t CRŒp �G� . (5)

Hence, the transformation f , implying the same deformational motion as f , is obtained from the
latter after filtering out the rigid motion r . Denoting by u.p/D f .p/� p the filtered displacement
field, Equations (4) and (5) yield

uDG C t CR
h
pC u�G

i
� p . (6)

Then, a suitable interpolation is chosen for u, characterizing the core-element formulation

uD u.a,p/ , (7)

where a is the filtered counterpart of the element nodal parameters a (Figure 1)

aD
°
u1I#1Iu2I#2Iu3I#3

±
, (8)

to be used for the computation of the core-element nodal residual vector and of the consistent mate-
rial tangent stiffness tensor [10]. The filtered nodal displacements ui are obtained by imposing the
interpolation conditions u.a,Vi /D ui and u.a,Vi /D ui in (6). The following expression is derived:

ui DR
T
h
Vi C ui � .G C t/

i
� .Vi �G/ . (9)

The filtered nodal rotation vectors # i are given by [7]:

# i D ax logRi , (10)

where Ri D RTRi are the filtered nodal rotation tensors, ax.�/ denotes the axis of a skew-
symmetric tensor, and log.�/ denotes the tensor logarithm [32]. In passing, it is noted that the
approximation # i � axskwRi was proposed in [31] for computational efficiency.

Equations (6)–(10) yield an interpolation recipe for the element displacement field u, as a func-
tion of the element nodal parameters a. As a matter of fact, for a given a, one computes t and R
as described in Section 2.2, then a from (8)–(10), then u from (7), and finally u from (6). Hence,

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 95:499–528
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(6)–(10) can be regarded as the corotational counterpart of (3) and set the corotational approach in
the framework of classical finite element procedures. Of course, the dependence of u from a turns
out to be highly nonlinear, thus requiring some attention in the computation of the first and second
variations (Sections 2.3 and 2.4).

2.2. The choice of the rigid transformation r: a polar decomposition approach

Natural choices of the reference pointG and of the translation vector t are, respectively, the element
centroid and the mean of the element nodal displacements [10]:

G �O D
1

3

3X
iD1

.Vi �O/ , t D
1

3

3X
iD1

ui , (11)

where O is a reference point.
The choice of the rotation tensor R as a function of the nodal parameters a is a more delicate

issue. In this work, an approach based on polar decomposition is followed [11,12,23]. In particular,
R is chosen as the rotation tensor resulting from the polar decomposition of the gradient F h of the
homogeneous deformation mapping the reference triangle V1V2V3 onto the triangle V 01V

0
2V
0
3, where

V 0i D ViCui (Figure 2(a)). Accordingly, the rotation tensorR turns out to be the best approximation
in the Frobenius norm of the deformation gradient F h [33]. The latter is represented as follows:

F h D J 0J�1 , (12)

where, denoting by .�,�/ an orthonormal basis aligned to the parent element, and by ˝ the tensor
product,

J D .V2 � V1/˝ � C .V3 � V1/˝ � , J 0 D .V 02 � V
0
1/˝ � C .V

0
3 � V

0
1/˝ � . (13)

For convenience, two orthonormal frames, ¹e,h,nº and ¹e0,h0,n0º, respectively attached to the
triangles V1V2V3 and V 01V

0
2V
0
3, are introduced (Figure 2(a)). The former is defined as follows:

e D
V2 � V1

`12
, hD n� e , nD

e � .V3 � V1/

jje � .V3 � V1/jj
, (14)

where `ij D jjVi � Vj jj. Analogous definitions, involving symbols affected by an apex, refer to the
triangle V 01V

0
2V
0
3. In particular, it is easily verified that

J D `12 e ˝ � C

�
`212C `

2
31 � `

2
23

2`12
e C

2A

`12
h

�
˝ � ,

J�1 D � ˝

�
1

`12
e �

`212C `
2
31 � `

2
23

4A`12
h

�
C �˝

`12

2A
h ,

(15)

where A denotes the area of the reference triangle V1V2V3.
As pictured in Figure 2(b)–(d), the polar decomposition ofF h is computed in two steps as follows

[14]:

F h DRU h D OR LRU h . (16)

Here, OR is the rotation tensor mapping the frame ¹e,h,nº onto the frame ¹e0,h0,n0º, that is,

OR D e0˝ e C h0˝ hC n0˝ n , (17)

and LRU h is the polar decomposition of the tensor OR
T
F h, denoted by OF

h
in the following. It is

emphasized that the latter is the gradient of an in-plane deformation, because OR
T

maps the triangle
V 01V

0
2V
0
3 onto the plane of the reference triangle V1V2V3 with alignment of one side. From (12) and

(13), it turns out that

OF
h
D OR

T
F h D OR

T
J 0J�1 D OR

T
.V 02 � V

0
1/˝ J

�T � C OR
T
.V 03 � V

0
1/˝ J

�T � . (18)

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 95:499–528
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(a) (b)

(c) (d)

Figure 2. (a) Homogeneous deformation mapping the reference triangle V1V2V3 onto the triangle V 0
1
V 0
2
V 0
3

,

with gradient F h; (b)–(d) polar decomposition F h D OR LRU h: (b) in-plane stretching U h of the reference
triangle, resulting into V 1V 2V 3; (c) in-plane rotation LR of the triangle V 1V 2V 3, resulting into OV1 OV2 OV3,
which is side aligned with V1V2V3; and (d) rototranslation ( OR, t) of the triangle OV1 OV2 OV3, returning V 0

1
V 0
2
V 0
3

.

Hence, using (15), a simple algebra yields

LR D cos˛.e ˝ e C h˝ h/C sin˛.h˝ e � e ˝ h/C n˝ n , (19)

where

cos˛ D
A
�
`012
�2
CA0`212

A`12`
0
12TrU

h
, sin˛ D

`212

h�
`023
�2
� .`031/

2
i
C
�
`012
�2 �

`231 � `
2
23

�
4A`12`

0
12TrU

h
,

TrU h D

s
2A0

A
C

P3
kD1 ck

8A2
, ck D

�
`2jk C `

2
ik � `

2
ij

� �
`0ij
�2

. (20)

Here, A0 denotes the area of the triangle V 01V
0
2V
0
3, Tr denotes the trace, and ¹i , j , kº is a cyclic

permutation of ¹1, 2, 3º.
According to (16), the rigid transformation r is split into two steps: a first rotation LR followed by

a rototranslation ( OR, t), both with reference point G. Hence, (6) specifies as

OuDG C LR
h
pC u�G

i
� p , (21)

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 95:499–528
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uDG C t C OR
h
pC Ou�G

i
� p . (22)

By setting p D Vi , Ou.a,Vi /D Oui , and rearranging the terms, (22) and (21), respectively, yield

Oui D OR
T
h
Vi C ui � .G C t/

i
� .Vi �G/ , (23)

ui D LR
T
h
Vi C Oui �G

i
� .Vi �G/ . (24)

Hence, Oui (respectively, ui ) are the nodal displacement vectors resulting after the rototranslation
( OR, t) (respectively, the rotation LR) has been filtered out from ui (respectively, Oui ). The associated
nodal rotation tensors ORi (respectively, Ri ), which are the filtered counterparts of Ri (respectively,
ORi ), are given by

ORi D OR
T
Ri , (25)

�
respectively, Ri D LR

T
ORi DR

TRi

�
. (26)

In summary, recalling (16) and setting V i D Vi C ui , OVi D Vi C Oui , the triangle V1V2V3 is mapped
by the homogeneous pure deformation U h onto V 1V 2V 3, which is transformed by the rotation LR
into OV1 OV2 OV3, side aligned with V1V2V3, which in turn is mapped onto V 01V

0
2V
0
3 by the rototranslation

( OR, t) (Figure 2). Accordingly, OF
h

in (18) is recast as follows for a later usage:

OF
h
D
�
OV2 � OV1

�
˝ J�T � C

�
OV3 � OV1

�
˝ J�T � . (27)

Moreover, setting F
h
D LR

T
OF
h
DRTF h, from (16), it turns out that

F
h
D U h 2 Sym , (28)

where Sym is the space of symmetric tensors.

2.3. First variations

The weak formulation of the equilibrium equations (Section 3) requires the relationship between the
variation of the filtered nodal parameters listed in (8), that is,

ıaD
°
ıu1I ı#1I ıu2I ı#2I ıu3I ı#3

±
, (29)

and the variation of the nodal parameters listed in (2), that is,

ıaD ¹ıu1I ı#1I ıu2I ı#2I ıu3I ı#3º . (30)

Its derivation involves several steps, reported in the succeeding sections. Pivotal equations are
highlighted with a box.

2.3.1. From variations of nodal rotation vectors to nodal spins. The nodal spins, defined by

ı!i D ax
�
ıRiR

T
i

�
, (31)

are related to the variation of the nodal rotation vectors by

ı!i DM iı# i , (32)

whereM i is the 3� 3 tensor (e.g., [34])

M i D I C
1� cos#i

#2i
spin.# i /C

#i � sin#i
#3i

Œspin.# i /�
2 . (33)
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The quantities ı!i are collected together with the variations of the nodal displacements ıui into
the vector

ı QaD ¹ıu1I ı!1I ıu2I ı!2I ıu3I ı!3º . (34)

Hence, the following relationship is derived

ı QaDMıa , (35)

where

M D diagŒI ,M1, I ,M2, I ,M3� , (36)

and diag denotes the block diagonal assembly of the listed tensors.

2.3.2. Filtering out the rototranslation ( OR, t). By differentiating (22), it turns out that

ıuD OR
h
ı� C ı O� � .pC Ou�G/C ı Ou

i
, (37)

where

ı� D OR
T
ıt , (38)

ı O� D ax
�
OR
T
ı OR
�

. (39)

Two 3� 18 tensors, T and OG , can be derived such that

ı� D T # OR
T
ı Qa , (40)

ı O� D OG
# OR
T
ı Qa , (41)

where # OR
T

is the block diagonal tensor collecting six copies of OR
T

. Of course, T and OG depend on
the choice of the translation vector t and of the rotation tensor OR, respectively. From (11), (38), or
(17), (39), respectively, they take the form [10]:

T D
1

3
ŒI j 0 j I j 0 j I j 0� , (42)

OG D OΞ OY . (43)

Here, 0 denotes the null tensor, the separator symbol denotes row concatenation, OΞ is the 3�3 tensor

OΞD�
`012
4A0

e ˝ e C
1

`012
.h˝ hC n˝ n/C

.`031/
2 � .`023/

2

4`012A
0

e ˝ h , (44)

and OY is the 3� 18 tensor

OY D Œe ˝ nC .h˝ n� n˝ h/ j 0 j e ˝ n� .h˝ n� n˝ h/ j 0 j �2e ˝ n j 0� . (45)

It is pointed out that OG , known as the spin-fitter tensor, satisfies the geometric separability condition
(43), wherein OY is independent from the nodal parameters a and OΞ is invertible [10]. That condition
simplifies the achievement of a consistent linearization, as shown in Section 2.4.

By taking the variation of (23) and using (38) and (39), it turns out that

ı Oui D OR
T
ıui �

h
ı� C ı O� � .Vi C Oui �G/

i
D OR

T
ıui �

h
ı� � OAiı O�

i
, (46)
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where OAi D spin.Vi C Oui �G/. Moreover, introducing the OR-filtered nodal spins

ı O!i D ax
�
ı ORi OR

T

i

�
, (47)

from (25) and (31), it follows that

ı O!i D ax
�
OR
T
ıRi OR

T

i C ı
OR
T
Ri OR

T

i

�
D ax

h
OR
T
�
ıRiR

T
i

�
OR
i
C ax

��
OR
T
ı OR
�T 	
D OR

T
ı!i � ı O� .

(48)

The quantities ı Oui and ı O!i are collected into the vector

ı OaD ¹ı Ou1I ı O!1I ı Ou2I ı O!2I ı Ou3I ı O!3º . (49)

By substituting ı� and ı O� , respectively, from (40) and (41) into (46) and (48), it turns out from (49),
that

ı OaD OP # OR
T
ı Qa , (50)

where the 18� 18 tensor OP is given by

OP D I �
�
LT C OA OG

�
, (51)

and the 18� 3 tensors L and OA are defined as

LD ŒI I 0I I I 0I I I 0� , OA D
h
� OA1I I I � OA2I I I � OA3I I

i
. (52)

Here, the semicolon between tensors denotes column stacking. The tensor OA is known as the
spin-lever or moment-arm tensor [10].

The tensor OP plays a central role in the corotational formulation. From a geometric point of view,
it eliminates the rigid body components ı� and ı O� from the incremental displacement vector ı Qa

pulled back by # OR
T

. Using (74), it is straightforward to verify that OP is a projector; that is, OP
2
D OP

[10].

2.3.3. Filtering out the rotation LR. Differentiating (21), it turns out that

ı OuD LR
h
ı L� � .pC u�G/C ıu

i
, (53)

where, using (19),

ı L� D ax
�
LR
T
ı LR
�
D ı˛ n . (54)

A 3� 18 tensor LG is here derived such that

ı L� D LG # LR
T
ı Oa , (55)

where # LR
T

is the block diagonal tensor collecting six copies of LR
T

. To this end, recalling (28), it
follows that

ax skw
�
ı LR

T
OF
h
C LR

T
ı OF

h
�
D ax skw

�
ıF

h
�
D ax skw

�
ıU h

�
D 0 , (56)

and hence, from (54),

ax skw
�
spin.ı L�/U h

�
D ax skw

�
LR
T
ı OF

h
�

. (57)
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The left-hand side of this equation, noting that U h is a symmetric tensor mapping the span of e,h
onto itself, is recast as follows:

ax skw
�
spin.ı L�/U h

�
D ax skw

�
spin.n/U h

�
ı˛ D

1

2

�
TrU h

�
nı˛ D

1

2

�
TrU h

�
ı L� . (58)

The right-hand side of (57), using (27), becomes

ax skw
�
LR
T
ı OF

h
�
D ax skw

�
LR
T
.ı Ou2 � ı Ou1/˝ J

�T � C LR
T
.ı Ou3 � ı Ou1/˝ J

�T �
�

. (59)

Hence, from (57)–(59), after simple algebra, it follows that

LG D LΞ LY , (60)

with

LΞD
1

TrU h
I , (61)

and

LY D n˝ Ly , Ly D
1

2A
Œ�23 j 0 j �31 j 0 j �12 j 0� ,

�23 D V2 � V3 D
`212 � `

2
31C `

2
23

2`12
e �

2A

`12
h ,

�31 D V3 � V1 D
`212C `

2
31 � `

2
23

2`12
e C

2A

`12
h ,

�12 D V1 � V2 D�`12e . (62)

As in the previous case, the spin-fitter tensor LG satisfies the geometric separability condition (60),
wherein LY is independent from the nodal parameters and LΞ is invertible.

By taking the variation of (24) and using (54), it turns out that

ıui D LR
T
ı Oui � ı L� � .Vi C ui �G/D LR

T
ı Oui C LAi Œı L�� , (63)

where LAi D spin.Vi C ui �G/. Moreover, introducing the R-filtered nodal spins

ı L!i D ax
�
ıRiR

T

i

�
, (64)

from (26) and (47), it turns out that

ı L!i D ax
�
LR
T
ı ORiR

T

i C ı
LR
T
ORiR

T

i

�
D ax

h
LR
T
�
ı ORi OR

T

i

�
LR
i
C ax

��
LR
T
ı LR
�T 	
D LR

T
ı O!i � ı L� .

(65)

The quantities ıui and ı L!i are collected into the vector

ı LaD ¹ıu1I ı L!1I ıu2I ı L!2I ıu3I ı L!3º . (66)

Substituting ı L� from (55) into (63) and (65), Equation (66) gives

ı LaD LP # LR
T
ı Oa , (67)

where the 18� 18 tensor LP is given by

LP D I � LA LG , (68)
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and the 18� 3 spin-lever tensor LA is defined as

LA D
h
� LA1I I I � LA2I I I � LA3I I

i
. (69)

Analogously to OP , also LP plays a central role in the corotational formulation: In fact, it eliminates

the rigid body component ı L� from the incremental displacement vector ı Oa pulled back by # LR
T

.

Using (79) and (60)–(62), it can be verified that LP is a projector; that is, LP
2
D LP .

2.3.4. From filtered nodal spins to variations of filtered nodal rotation vectors. Finally, the trans-
formation from theR-filtered nodal spins ı L!i , appearing in ı La, to the variation of the filtered nodal
rotation vectors ı# i , appearing in ıa, is given by [7]:

ıaDBı La , (70)

where

B D diagŒI ,B1, I ,B2, I ,B3� , (71)

with

Bi D I �
1

2
spin.# i /C �i Œspin.# i /�

2 , �i D
1� #i

2
cot

�
#i
2

�
#
2

i

, # i D jj# i jj . (72)

The overall relationship relating ıa to ıa therefore follows:

ıaDB LP # LR
T
OP # OR

T
Mıa . (73)

Such relationship coincides with the classical corotational relationship (e.g., [7, 10, 31]), up to the

fact that two filtering steps (i.e., OP # OR
T

and LP # LR
T

) appear here instead of one.

2.4. Second variations

Second variations with respect to a are needed for deriving the consistent tangent stiffness tensor,
required, for example, by Newton’s method of solution. The main task is the differentiation of the
spin-fitter tensors OG , LG and of the projectors OP , LP with respect to a.

2.4.1. Computing ı OG and ı OP . The argument in [7] is here briefly recalled. From (43) and (52), the
following orthogonality condition can be derived:

OG OA D I . (74)

Substituting (43) into (74) and noting that OY OA turns out to be invertible, it results that

OΞ
�
OY OA
�
D I , OΞD

�
OY OA
��1

, OG D
�
OY OA
��1
OY . (75)

The variation of the first of (75), recalling that OY is independent from the nodal parameters, yields�
ı OΞ
�
OY OAC OΞ OY ı OA D 0 , ı OΞD� OΞ OY

�
ı OA
� �
OY OA
��1

. (76)

Hence, from (43), (76), and (75), it follows that

ı OG D
�
ı OΞ
�
OY D� OΞ OY

�
ı OA
� �
OY OA
��1
OY D� OG

�
ı OA
�
OG . (77)
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Then, using (51), (42), (52), and (77), it turns out that

ı OP D�
�
ı OA
�
OG � OAı OG D�

�
ı OA
�
OG C OA OG

�
ı OA
�
OG

D Œ�I C OA OG �
�
ı OA
�
OG D Œ�LT � OP �

�
ı OA
�
OG D� OP

�
ı OA
�
OG .

(78)

In fact, T ı OA D�1
3
ı spin

P3
iD1.Vi C Oui �G/D 0 from (23) and (11).

2.4.2. Computing ı LG and ı LP . A similar argument is here exploited for the computation of ı LG and
ı LP . From (60) and (69), the following orthogonality condition, analogous to (74), can be derived:

LG LA D n˝ n . (79)

From a geometric point of view, recalling (69) and (55), this equation states that the vector ı L� ,
resulting from a rigid motion with spin ı˛ n of the triangle OV1 OV2 OV3, is just ı˛ n. Using (60)–(62), it
turns out that �

LΞn˝ Ly
�
LA D n˝ n ,

�
Ly � LAn

�
LΞnD n , OG D

1

Ly � LAn
n˝ Ly . (80)

The quantity Ly � LAn does not vanish, by the second of (80), and in fact, it turns out that Ly � LAn D
TrU h. Recalling that Ly is independent from the nodal parameters, the variation of the first of (80)
yields

�
ı LΞn˝ Ly

�
LAC

�
LΞn˝ Ly

�
ı LA D 0 , ı LΞnD�

Ly � ı LAn

Ly � LAn
LΞn . (81)

Hence, using (60), (62), (81), and (80), it results that

ı LG D�
Ly � ı LAn

Ly � LAn
LΞn˝ Ly D�

��
ı LA
�T
Ly � LΞn

�
LΞn˝ Ly

D�

�
LΞn˝

�
ı LA
�T
Ly

�
LΞn˝ Ly D� LG

�
ı LA
�
LG .

(82)

Then, using (68) and (82), it follows that

ı LP D�
�
ı LA
�
LG � LAı LG D�

�
ı LA
�
LG C LA LG

�
ı LA
�
LG D� LP

�
ı LA
�
LG . (83)

2.5. Basic relationships

Some elementary relationships [7] are repeatedly used in the derivation of the consistent tangent
stiffness tensor. They are collected here for clarity. Let w be a vector, then

ı ORwD� OR.spinw/ı O� , ı OR
T
wD spin

�
OR
T
w
�
ı O� . (84)

Moreover, let � be the collection of vectors �D ¹f 1Im1If 2Im2If 3Im3º, then

ı # OR�D�# ORSpin.�/ı O� ,

ı OG
T
�D� OG

T
h
Spin

�
OG
T
�
�iT

[Iı Oa ,

ı OP
T
�D� OG

T
h
Spin. OP

T
�/
iT

[Iı Oa , (85)

where the operator Spin.�/ is defined by

Spin.�/D Œspin.f 1/I spin.m1/I spin.f 2/I spin.m2/I spin.f 3/I spin.m3/� , (86)
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and [I D diagŒI , 0, I , 0, I , 0�. Equations (84) and the first of (85) follow from (39). The other
relationships in (85) follow, respectively, from (77) and (78).

Counterparts of (84) and (85) hold by replacing the hat symbol with the check symbol, and follow
from (54), (82), and (83).

3. EQUILIBRIUM WEAK FORMULATION

The weak formulation of the equilibrium equations at the element level in a material description is

q � ıaD qi � ıaC ql � ıaD

Z
V
S W ıEdV �

Z
A
l � ıudA , (87)

where q is the nodal residual vector and qi and ql are the nodal internal-force and load vectors,
respectively. Moreover, V and A denote the element volume and midsurface in the reference con-
figuration, respectively; S is the second Piola–Kirchhoff stress tensor; E D .F TF � I/=2 is the
Green-Lagrange strain tensor; F D rpf is the deformation gradient; l denotes the applied forces
per unit reference area, assumed to act on the midsurface. Applied boundary forces on @A, if present,
should also be added to the right-hand side of (87) and can be treated analogously.

3.1. Internal-force contribution

A hyperelastic material is considered, whose constitutive behavior is defined by means of the strain
energy function W.E/, so that the stress–strain relationship is S .E/ D @EW.E/. From (4) and
(5), it turns out that F D RF , where F D rpf is the filtered deformation gradient. Hence, the

filtered Green-Lagrange strain tensor E D
�
F
T
F � I

�
=2 coincides with E . As a consequence,

the internal-force contribution is recast as

qi � ıaD

Z
V
S .E/WıE dV D

Z
V
S .E/WıE dV D qi � ıa , (88)

where qi is the nodal internal-force vector work-conjugated to the filtered nodal parameters. It is
pointed out that the last equality is the core-element equilibrium weak formulation, entailing the
interpolation (7) for the relevant finite element implementation. In passing, it is noted that the tensor

F , that is, I C rpu, should be distinguished from F
h

defined in (28). Indeed, the former is not
generally symmetric, and it would coincide with the latter only in the case of a constant-strain core
element.

3.2. Distributed load contribution

Two types of load are here considered:

� dead loads l d, defined per unit reference area. An example is self-weight.
� follower loads l f, defined per unit deformed area, rotating element-wise according to the

rotation tensor R. An example is pressure load.

Hence, the load appearing in (87) is given by

l D l dCR l fA0=A , (89)

where l d and l f are assumed to be independent from the nodal parameters a. Exploiting the
corotational kinematics (i.e., (37) and (53)), the load contribution in (87) is recast as

ql � ıaD� LRf � ı� � LRmG � ı O� �mG � ı L� C q
l � ıa , (90)
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yielding ql in terms of the resultant force and moment of the loads l pulled back by RT , that is,

f D

Z
A
.RT l dC l fA0=A/ dAD f dC f f , (91)

mG D

Z
A
.pC u.p/�G/�

�
RT l dC l fA0=A

�
dADmd

G Cm
f
G , (92)

and in terms of the core-element nodal load vector ql, defined by

ql D�

Z
A

�
@u

@a

�T
.RT l dC l fA0=A/dAD qdC qf . (93)

Here, @u=@a are the core-element displacement shape functions, depending on the core-element
interpolation (7).

Exploiting (40), (41), and (55), Equation (90) is recast as

ql � ıaD Qql � ı QaC Oql � ı OaC ql � ıa , (94)

where

Qql D�# ORT T LRf � # OR OG
T
LRmG , Oql D�# LR LG

T
mG . (95)

3.3. Nodal residual vector

From the virtual work equations (87), (88), and (94), it follows that

q � ıaD Qql � ı QaC Oql � ı OaC .qiC ql/ � ıa . (96)

Hence, using (35), (50), (67), and (70), the following algorithm for the computation of the nodal
residual vector is obtained:

Qql � ı QaC Oql � ı OaC
�
qiC ql

�„ ƒ‚ … �ıa # ıaDBı LaD

Qql � ı QaC Oql � ı OaC BT q„ƒ‚… �ı La # ı LaD LP# LR
T
ı Oa

D

Qql � ı QaC

�
OqlC # LR LP

T
Lq„ ƒ‚ …
�
� ı Oa

# ı OaD OP# OR
T
ı Qa

D�
QqlC # OR OP

T
Oq
�

„ ƒ‚ … �ı Qa
# ı QaDMıa
D

MT Qq„ƒ‚… �ıaD
q � ıa ,

(97)

where the vectors q, Lq, Oq, and Qq, defined by the underbraces, are given by

q D qiC ql , Lq DBT q , Oq D OqlC # LR LP
T
Lq , Qq D QqlC # OR OP

T
Oq , q DMT Qq . (98)

When no distributed loads are present (i.e., l d D l f D 0, so that ql D Oql D Qql D 0), the algorithms
(97) and (98) reduce to

q DMT # OR OP
T # LR LP

T
BT qi , (99)

which has the classical multiplicative structure (e.g., [7]), except that two filtering steps (i.e., # LR LP
T

and # OR OP
T

) appear here instead of one.
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The presence of applied follower loads was heuristically accounted for in [24]. That approach
consists in leaving projectors off (99), ‘because rigid body portions of the applied force should not
be projected out’. Hence, according to [24], the following term

MT # OR# LRBT ql (100)

should be added to the left-hand side of (99). However, the present derivation shows that the proper
contribution to thoroughly account for distributed loads is

MT
�
QqlC # OR OP

T
�
OqlC # LR LP

T
BT ql

��
, (101)

as follows by comparing (98) with (99).

4. LINEARIZATION

The linearization of the virtual work equation (96) is performed as follows:

�.q � ıa/D�.qiC ql/ � ıaC� Oql � ı OaC� Qql � ı Qa

C .qiC ql/ ��ıaC Oql ��ı OaC Qql ��ı Qa ,
(102)

where � denotes the linearization operator. For clarity, the contributions arising from each term in
the right-hand side of (102) are separately dealt with in Sections 4.1–4.5. Then, they are assembled
in Section 4.6, where the algorithm for the computation of the consistent tangent stiffness tensor is
provided.

4.1. Contribution from the term involving �qi

By definition,

�qi � ıaDK
q
i�a � ıa , (103)

where K
q
i D @qi=@a is the material tangent stiffness tensor and depends on the core-element

formulation.

4.2. Contribution from the term involving �ql

From (93), assuming the displacement shape functions @u=@a to be independent from a, and using
the second of (84) and its check counterpart, it turns out that

�ql DQd
�
LR
T
� O� C� L�

�
C qf .b ��a/ , (104)

where

Qd D�

Z
A

�
@u

@a

�T
spin.RT l d/dA , (105)

and, recalling that the vectors �ui appearing in �a belong to the span of e,h,

bD
1

A0
@A0

@a
D

1

2A0



n� .V 3 � V 2/ j 0 j n� .V 1 � V 3/ j 0 j n� .V 2 � V 1/ j 0

�
. (106)

Hence, by (55), (41), (70), (67), and (50), it follows that

�ql � ıaDK
q
l�a � ıaC OK

q
l� Oa � ı OaC QK

q
l� Qa � ı Qa , (107)

with

K
q
l D qf ˝ b , OK

q
l D # LR LP

T
BTQd LG # LR

T
, QK

q
l D # OR OP

T # LR LP
T
BTQd LR

T
LG # OR

T
. (108)
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4.3. Contribution from the term involving � Oql

From (95), it turns out that

� Oql D�
�
OK

# LR LG
T ŒmG �� OaC

# LR LG
T
�mG

�
, (109)

where

OK
# LR LG

T Œ��� OaD�
�

# LR LG
T
�
�
j�Dconst . (110)

The tensor OK
# LR LG

T Œ�� comprises two contributions: a rotational geometric stiffness, related to the

linearization of the rotation tensor LR, and a spin-fitter geometric stiffness, related to the linearization
of the spin-fitter LG . Exploiting the check counterparts of (85), (55), and (67), it follows that

OK
# LR LG

T Œ��D�# LR

�
Spin

�
LG
T
�
�
LG C LG

T
h
Spin

�
LG
T
�
�iT

[I LP

	
# LR
T

. (111)

From (92), it turns out that

�mG D�Q
T
�aCM d

G

�
LR
T
� O� C� L�

�
Cmf

G .b ��a/ , (112)

whereQDQdCQf, and

Qf D�

Z
A

�
@u

@a

�T
spin.l fA0=A/dA , Md

G D

Z
A
spin.pC u.p/�G/ spin.RT ld/ dA . (113)

Hence, by (70), (67), (55), (41), and (50), it turns out that

� Oql � ı OaD OK Oql� Oa � ı OaC
QK Oql� Qa � ı Qa , (114)

with

OK Oql D�
OK

# LR LG
T ŒmG �C

# LR LG
T
h
.Q

T
�mf

G ˝ b/B
LP �M d

G
LG
i

# LR
T

,

OK Oql D�
# OR OP

T # LR LG
T
M d

G
LR
T
OG # OR

T
.

(115)

4.4. Contribution from the term involving � Qql

From equation (95), noting that no contribution arises from f d because # ORT T D T T OR, and using
the first of (84) and its check counterpart, it follows that

� Qql D T TRspin.f f/. LR
T
� O� C� L�/� T TRf f .b ��a/

� QK
# OR OG

T Œ LRmG �� QaC
# OR OG

T
Œ LR spin.mG/� L� � LR�mG � , (116)

where

QK
# OR OG

T Œ��� QaD�
�

# OR OG
T
�
�
j�Dconst . (117)

The tensor QK
# OR OG

T Œ�� is the counterpart of the tensor OK
# LR LG

T Œ�� defined in (111) and, exploiting

(85), (41), and (50), it takes the form

QK
# OR OG

T Œ��D�# OR

�
Spin

�
OG
T
�
�
OG C OG

T
h
Spin

�
OG
T
�
�iT

[I OP

	
# OR
T

. (118)

Hence, by (41), (55), (50), (112), (70), and (67), it turns out that

� Qql � ı QaD QK Qql� Qa � ı Qa , (119)
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with

QK Qql D T
TR

h
spin.f f/

�
LR
T
OG C LG # LR

T
OP
�
� .f f˝ b/B LP # LR

T
OP
i

# OR
T

� QK
# OR OG

T Œ LRmG �C
# OR OG

T
LR
h
spin.mG/ LG

# LR
T
OP

C
�
Q
T
�mf

G ˝ b
�
B LP # LR

T
OP �M d

G

�
LR
T
OG C LG # LR

T
OP
�i

# OR
T

. (120)

Adding (103), (107), (114), and (119), it turns out that

�.qiC ql/ � ıaC� Oql � ı OaC� Qql � ı QaDK�a � ıaC OK l� Oa � ı OaC QK l� Qa � ı Qa , (121)

where

K DK
q
i CK

q
l , OK l D OKq

l C OK Oql , QK l D QKq
l C QK Oql C

QK Qql . (122)

4.5. Contribution from the terms involving �ıa, �ı Oa, and �ı Qa

From (70), (67), (50), and (35), recalling that �ıaD 0, it respectively turns out that

� ��ıaD LK
BT
Œ��� La � ı LaCBT� ��ı La ,

� ��ı LaD OK
# LR LP

T Œ��� Oa � ı OaC # LR LP
T
� ��ı Oa ,

� ��ı OaD QK
# OR OP

T Œ��� Qa � ı QaC # OR OP
T
� ��ı Qa ,

� ��ı QaDK
MT Œ���a � ıa ,

(123)

where

LK
BT
Œ��� LaD�.BT�/j�Dconst ,

OK
# LR LP

T Œ��� OaD�
�

# LR LP
T
�
�
j�Dconst ,

QK
# OR OP

T Œ��� QaD�
�

# OR OP
T
�
�
j�Dconst ,

K
MT Œ���aD�.MT�/j�Dconst .

(124)

The tensors LK
BT
Œ�� andK

MT Œ�� represent moment correction geometric stiffnesses. Their expres-
sions are well known in the literature (e.g., [10, 31, 34]) and are reported in Appendix B for
completeness. The tensors OK

# LR LP
T Œ�� and QK

# OR OP
T Œ�� comprise two contributions: an equilibrium

projection geometric stiffness, related to the linearization of the projectors LP and OP , respectively,
and a rotational geometric stiffness, related to the linearization of the rotation tensors LR and OR,
respectively. Exploiting (85) and their check counterparts, (55), (67), (41), and (50), it turns out that

OK
# LR LP

T Œ��D�# LR

�
Spin

�
LP
T
�
�
LG C LG

T
h
Spin

�
LP
T
�
�iT

[I LP

	
# LR
T

, (125)

QK
# OR OP

T Œ��D�# OR

�
Spin

�
OP
T
�
�
OG C OG

T
h
Spin

�
OP
T
�
�iT

[I OP

	
# OR
T

, (126)

where the classical construct can be recognized (e.g., [7, 31]).
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4.6. Consistent tangent stiffness tensor

By (102), (121), (123), (98), (70), (67), (50), and (35), the following algorithm for the computation
of the consistent tangent stiffness tensor K is obtained:

�.q � ıa/D

K�a � ıaC OK l� Oa � ı OaC QK l� Qa � ı QaC q ��ıaC Oq
l ��ı OaC Qql ��ı Qa

#ıaDBı La
Dh

BTKB C LK
BT Œq�

i
„ ƒ‚ …� La � ı LaC OK l� Oa � ı OaC QK l� Qa � ı QaC Lq ��ı LaC Oq

l ��ı OaC Qql ��ı Qa
#ı LaD LP #

LR
T
ı Oa

D

h
# LR LP

T
LK LP # LR

T
C OK

# LR LP
T Œ Lq�C OK l

i
„ ƒ‚ …� Oa � ı OaC QK l� Qa � ı QaC Oq ��ı OaC Qq

l ��ı Qa
#ı OaD OP #

OR
T
ı Qa

D

h
# OR OP

T
OK OP # OR

T
C QK

# OR OP
T Œ Oq�C QK l

i
„ ƒ‚ …� Qa � ı QaC Qq ��ı Qa

#ı QaDMıa
D

h
MT QKM CK

MT Œ Qq�
i

„ ƒ‚ …�a � ıaD
K�a � ıa ,

(127)
where the tensorK is defined in (122), and the tensors LK , OK , QK , andK , defined by the underbraces,
are given by

LK DBTKB C LK
BT

Œq� ,

OK D # LR LP
T
LK LP # LR

T
C OK

# LR LP
T Œ Lq�C OK l ,

QK D # OR OP
T
OK OP # OR

T
C QK

# OR OP
T Œ Oq�C QK l ,

K DMT QKM CK
MT Œ Qq� .

(128)

When no distributed loads are present, the algorithms (127) and (128) reduce to the classical
construct (e.g., [7, 10, 31]), except that two filtering steps appear here instead of one.

Approximate contributions to the tangent stiffness tensor due to distributed follower loads were
provided in [24]. Of course, according to that approach, only the terms arising from the linearization
of (100) would appear.

4.7. Small strain assumption

Under small strain assumption, the following approximations are enforced:

E � "D symrpuD sym.F � I/ , pC u.p/�G � p �G , A0 � A . (129)

The expressions of l , f , mG , ql, M d
G introduced earlier get simplified accordingly. As a conse-

quence, some contributions to the consistent tangent stiffness tensor drop. In particular, the terms
involvingQ in (112), (115), and (120), as well as the terms involving b in (104), (108), (112), (115),
(116), and (120), disappear. Moreover, the core-element equilibrium weak formulation, that is, the
last equality in (88), reduces to a geometrically linear equilibrium formulation, thus enabling the use
of existing high-performance linear elements for the computation of the material tangent stiffness
tensor Kqi .

5. NUMERICAL RESULTS

The proposed corotational framework has been validated by means of an extensive numerical cam-
paign. Several geometrically nonlinear benchmark problems (e.g., [25]) have been considered and
analyzed by means of the MATLAB toolkit described in Appendix A, using as core element a com-
bination of the DKT plate [14, 27, 28] and of the OPT membrane [29]. The obtained numerical
results are reported in the following.
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(a) (b)

(c) (d)

Figure 3. Cantilever load conditions: (a) end shear force, (b) end bending moment, (c) transverse distributed
dead load, (d) transverse distributed follower load.

Three different structured meshes, that is, a coarse one, an intermediate one, and a fine one, were
considered for each problem. In the nonlinear solution procedure, the full Newton–Raphson method
was used. The simultaneous 0.5% force tolerance and 1% displacement tolerance were employed
as convergence criterion [25]. The results did not significantly change when tighter tolerances were
enforced. The automatic load incrementation scheme described in [25] was adopted. Throughout
the scheme, the maximum load was automatically subdivided into NINC load increments that were
not necessarily uniform. At the end of each load increment, a converged intermediate solution was
obtained. The total number of iterations required to obtain the NINC converged intermediate solu-
tions is denoted by NITER. Both NINC and NITER are reported in Tables I–VIII, revealing some
computational saving with respect to the standard formulation adopted in [25]. Additional data
points, obtained with a uniform load incrementation scheme, were employed to enhance the quality
of the load–deflection curves.

5.1. Clamped cantilever

A clamped cantilever with rectangular cross section, width b D 1, thickness hD 0.1, Young’s mod-
ulus E D 1.2�106, and zero Poisson’s ratio, is subjected to four load conditions (Figure 3). The tip
x-deflection and ´-deflection, utip and wtip, respectively, are reported in Table I.

5.1.1. Cantilever subjected to end shear force. The cantilever length is L D 10, and the maxi-
mum end shear force is Pmax D 4P0, with P0 D EI=L2 D 1 and I the second moment of area.
Figure 4(a) shows the deformation history obtained with the depicted 16 � 1 mesh. The relevant
load–deflection curves are plotted in Figure 4(b), where the theoretical solution in [26] is reported
for comparison.

Table I. Clamped cantilever subjected to the four load conditions depicted in Figure 3.

Load condition Mesh 12� 1 16� 1 24� 1 Reference [26]

End shear force �utip 3.290 3.290 3.290 3.289
wtip 6.707 6.705 6.703 6.700
NINC 4 7 4 —
NITER 26 35 28 —

End bending moment �utip 12.000 12.000 12.000 12.000
wtip 0.011 0.001 0.000 0.000
NINC 19 24 23 —
NITER 149 163 159 —

Distributed dead load �utip 7.177 7.173 7.169 7.165
wtip 8.971 8.963 8.956 8.946
NINC 11 8 8 —
NITER 57 49 44 —

Distributed follower load �utip 13.898 13.890 13.884 13.882
wtip 1.546 1.524 1.510 1.500
NINC 11 11 12 —
NITER 64 69 70 —
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Figure 4. Cantilever subjected to end shear force. (a) Reference and deformed configurations at five
uniformly spaced load levels and (b) load–deflection curves.

5.1.2. Cantilever subjected to end bending moment. The cantilever length isLD 12. The deformed
configuration is a circular arc with radius RDEI=M . The analytical deflections are

utip D

�
sin.M=M0/

M=M0

� 1

�
L , wtip D

1� cos.M=M0/

M=M0

L , (130)

with M0 D EI=L. The maximum end moment Mmax is taken to be 2�M0, at which the beam will
be bent into a circle. Figure 5(a) shows the deformation history obtained with the depicted 16 � 1
mesh. The relevant load–deflection curves are plotted in Figure 5(b), where the analytical solution
is reported for comparison.

5.1.3. Cantilever subjected to transverse uniformly distributed load. The cantilever length is L D
10, and the maximum transverse distributed dead (respectively, follower) load is qmax D 40q0, with
q0 D EI=L

3. Figure 6(a) (respectively, Figure 7(a)) shows the deformation history obtained with
the depicted 16�1mesh. The relevant load–deflection curves are plotted in Figure 6(b) (respectively,
Figure 7(b)), where the reference solution obtained by [26] is reported for comparison.
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Figure 5. Cantilever subjected to end bending moment. (a) Reference and deformed configurations at five
uniformly spaced load levels and (b) load–deflection curves.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2013; 95:499–528
DOI: 10.1002/nme



COROTATIONAL FRAMEWORK WITH DISTRIBUTED LOADS 519

x
z

y

(a)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

Tip deflections (/L)

A
pp

lie
d 

de
ad

 lo
ad

 (
× 

L3 /E
I)

−u
tip

 w
tip

(b)

−u
tip

 present

−u
tip

 reference

 w
tip

 present

 w
tip

 reference

Figure 6. Cantilever subjected to transverse uniformly distributed dead load. (a) Reference and deformed
configurations at five uniformly spaced load levels and (b) load–deflection curves.
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Figure 7. Cantilever subjected to transverse uniformly distributed follower load. (a) Reference and deformed
configurations at five uniformly spaced load levels and (b) load–deflection curves.

5.2. Clamped square plate under transverse uniformly distributed dead load

A square plate of side LD 100 and thickness hD 1, clamped along all four boundaries, is subjected
to transverse uniformly distributed dead load q. Young’s modulus is E D 2.1 � 106, and Poisson’s
ratio is � D 0.316. The maximum load is qmax D 20. Owing to symmetry, one-quarter of the plate
is modeled. Table II reports the ´-deflection wC at the plate central point C under maximum load.
Figure 8 portraits the load level against wC obtained with the 64� 64 mesh. The analytical solution
is plotted for comparison. It is given by [35]: wC D�2.5223w0, where w0 solves:�w0

h

�3
C 0.2552

w0

h
D 0.00013333

qL4

Dh
, (131)

with D being the plate flexural stiffness.

5.3. Slit annular plate subjected to lifting line force

A slit annular plate of inner radius Ri D 6, outer radius Ro D 10, and thickness h D 0.03 is
considered. Young’s modulus is E D 21 � 106, and Poisson’s ratio vanishes. A line force P is
applied at one end of the slit, whereas the other end of the slit is fully clamped. The maximum
load level is Pmax D 0.8. Table III reports the ´-deflections wA and wB at the inner and outer
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Table II. Clamped square plate subjected to dead
distributed normal load.

Mesh 16� 16 32� 32 64� 64 Reference [35]

�wC 2.618 2.612 2.610 2.612
NINC 1 1 1 —
NITER 9 9 9 —
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Figure 8. Clamped square plate subjected to dead distributed normal load. Load–deflection curve.

Table III. Slit annular plate subjected to lifting line force.

Mesh 6� 30 8� 60 10� 80 Reference [25]

wA 13.402 13.776 13.818 13.891
wB 17.017 17.411 17.455 17.528
NINC 37 23 23 67
NITER 219 163 157 346
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Figure 9. Slit annular plate subjected to lifting line force. (a) Reference and final configurations and (b)
load–deflection curves.

slit extremal points, A and B , respectively. Figure 9(a) shows the reference and deformed config-
urations, obtained with the 10 � 80 mesh. Load–deflection curves are depicted in Figure 9(b). The
results in [25] are plotted for comparison.
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5.4. Hemispherical shell subjected to alternating radial forces

A hemispherical shell of radius R D 10, thickness h D 0.04, and with an 18ı circular cutout at its
pole is loaded by alternating radial point forces P ’s at 90ı intervals (Figure 10(a)). Young’s modulus
is E D 6.825� 107, and Poisson’s ratio is � D 0.3. The maximum load level is Pmax D 400. Owing
to symmetry, one-quarter of the shell is modeled. Table IV reports the radial displacements uA and
vB at points A and B , respectively. Figure 10(b) shows the deformed configuration obtained with
the 64� 64 mesh. Load–deflection curves are depicted in Figure 11. The results in [25] are plotted
for comparison.
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Figure 10. Hemispherical shell subjected to alternating radial forces. (a) Reference and (b) final
configurations.

Table IV. Hemispherical shell subjected to alternating
radial forces.

Mesh 16� 16 32� 32 64� 64 Reference [25]

uA 3.855 4.043 4.071 4.067
�vB 7.467 8.057 8.142 8.178
NINC 12 13 13 27
NITER 86 87 87 136

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5

4

Radial displacements at points A and B 

R
ad

ia
l f

or
ce

 P
 (

/1
00

) u
A

−v
B

u
A
 present

u
A
 Ref. [25]

−v
B
 present

−v
B
 Ref. [25]

Figure 11. Hemispherical shell subjected to alternating radial forces. Load–deflection curves.
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5.5. Pullout of an open-ended cylindrical shell

An open-ended cylinder of radius R D 4.953, length L D 10.35, and thickness h D 0.094 is
pulled by a pair of radial forces P ’s (Figure 12(a)). Young’s modulus is E D 10.5 � 106, and
Poisson’s ratio is � D 0.3125. The maximum load level is Pmax D 40, 000. Owing to symme-
try, one-eighth of the shell is modeled. Table V reports the radial deflections wA, uB , and uC at
points A, B , and C , respectively. Figure 12(b) shows the deformed configuration obtained with the
24 � 36 mesh. Load–deflection curves are depicted in Figure 13. The results in [25] are plotted
for comparison.
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Figure 12. Pulled open-ended cylindrical shell. (a) Reference and (b) final configurations.

Table V. Pulled open-ended cylindrical shell.

Mesh 12� 18 16� 24 24� 36 Reference [25]

wA 2.753 2.748 2.745 2.768
�uB 4.562 4.555 4.550 4.551
�uC 3.258 3.269 3.278 3.269
NINC 21 20 11 18
NITER 113 119 80 94
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Figure 13. Pulled open-ended cylindrical shell. Load–deflection curves.
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5.6. Pinched cylindrical shell mounted over rigid diaphragms

A cylindrical shell of radius R D 100, length L D 200, and thickness h D 1 is mounted on
rigid end diaphragms over which the x-displacement and ´-displacement, u and w, respectively, are
restrained. The cylindrical shell is pinched by a pair of opposite forces P ’s (Figure 14(a)). Young’s
modulus isE D 30�103, and Poisson’s ratio is � D 0.3. The maximum load level isPmax D 12, 000.
Owing to symmetry, one-eighth of the shell is modeled. Table VI reports the radial deflections wA
and uB at points A and B , respectively. Figure 14(b) shows the deformed configuration obtained
with the 48 � 48 mesh. Load–deflection curves are depicted in Figure 15. The results in [25] are
plotted for comparison. Figure 7(b) of [25] shows that solutions yielded by two successively refined
meshes (i.e., 40 � 40 and 48 � 48) are slightly different: The finer one has been used here for
comparison.
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Figure 14. Pinched cylinder mounted over rigid end diaphragms. (a) Reference and (b) final configurations.

Table VI. Pinched cylinder mounted over rigid end
diaphragms.

Mesh 40� 40 48� 48 64� 64 Reference [25]

�wA 84.010 83.900 83.909 83.102
uB 35.739 35.560 35.593 34.272
NINC 48 47 44 70
NITER 341 313 293 406
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Figure 15. Pinched cylinder mounted over rigid end diaphragms. Load–deflection curves.
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Figure 16. Pinched semi-cylindrical shell. (a) Reference and (b) final configurations.

Table VII. Pinched semi-cylindrical shell.

Mesh 24� 24 32� 32 40� 40 Reference [25]

�wA 1.704 1.706 1.707 1.715
NINC 12 13 13 28
NITER 93 97 97 136
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Figure 17. Pinched semi-cylindrical shell. Load–deflection curve.

5.7. Pinched semi-cylindrical shell

A semi-cylindrical shell of radiusRD 1.016, lengthLD 3.048, and thickness hD 0.03 is subjected
to an end pinching forceP at the middle of the free-hanging circumferential periphery. The other cir-
cumferential periphery is fully clamped (Figure 16(a)). Along its longitudinal edges, the ´-deflection
w and the rotation �y about the y-axis are restrained. Young’s modulus is E D 2.0685 � 106, and
Poisson’s ratio is � D 0.3. The maximum load level is Pmax D 2, 000. Owing to symmetry, one-half
of the shell is modeled. Table VII reports the ´-deflection wA at point A. Figure 16(b) shows the
deformed configuration obtained with the 32 � 32 mesh. Load–deflection curves are depicted in
Figure 17. The results in [25] are plotted for comparison.

5.8. Hinged cylindrical roof subjected to a central pinching force

A hinged semi-cylindrical roof of radius R D 2, 540, half-length L D 254, half-aperture � D 0.1
radian, and thickness h D 12.7, is subjected to a central pinching force P (Figure 18(a)). Along
the hinged edges, all nodal translations are restrained. Young’s modulus is E D 3, 102.75,
and Poisson’s ratio is � D 0.3. The analysis is performed under displacement control, up to
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Figure 18. Hinged cylindrical roof subjected to a central pinching force. (a) Reference configuration and (b)
load–deflection curve.

Table VIII. Hinged cylindrical roof subjected to a
central pinching force.

Mesh 8� 8 12� 12 16� 16 Reference [25]

P 3,283 3,308 3,317 3,250
NINC 1 1 1 —
NITER 8 7 7 —

a ´-displacement wmax
C D 29.374. Owing to symmetry, one-quarter of the roof is modeled.

Table VIII reports the force P applied at point C . Load–deflection curves obtained with the 16�16
mesh are depicted in Figure 18(b). The results in [25] are plotted for comparison.

6. CONCLUSIONS

A polar decomposition based corotational formulation for three-node triangular shell elements with
six DOFs per node has been presented. Original formulas for the computation of rigid body motion,
projector operator, nodal residual vector, and consistent tangent stiffness tensor have been derived.
Distributed dead and follower loads have been rigorously taken into account for the first time in
the context of a corotational kinematic description, showing that different contributions arise in the
nodal residual vector and in the consistent tangent stiffness tensor. The present approach has been
validated using several numerical benchmarks and turned out to compare favorably with standard
Lagrangian formulations. Its simplicity and effectiveness make it attractive for many applications,
involving, for example, contact mechanics or fluid–structure interaction.

APPENDIX A: MATLAB TOOLKIT

A MATLAB toolkit implementing the present formulation is provided as supplementary material for
the interested reader. The toolkit can also be obtained from the authors. As pointed out in [10], ‘the
key operations of adding and removing rigid body motions can be visualized as a front end filter that
lies between the assembler/solver and the element library’. Accordingly, the toolkit is composed of
the following two main routines:

(1) filter_in, implementing the algorithm derived in Section 2. It is called by the assembler before
the core-element routine and has the purpose of removing rigid body motions. In particular, it
transforms the element nodal parameters a into their filtered counterpart a and the distributed
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dead (respectively, follower) loads into their pulled-back counterparts RT l d (respectively,
l fA0=A), to be passed to the core element. Its dependencies are the routines

(i) rot2spin, transforming variations of nodal rotation vectors to nodal spins and returning
the tensorM (Section 2.3.1);

(ii) hat, computing the rototranslation ( OR, t) and the related tensors OG , OP (Section 2.3.2);
(iii) chk, computing the rotation LR and the related tensors LG , LP (Section 2.3.3);
(iv) spin2rot, transforming filtered nodal spins to variations of filtered nodal rotation vectors

and returning the tensor B (Section 2.3.4);

(2) filter_out, implementing the equations presented in Sections 3 and 4. It is called by the assem-
bler after the core-element routine, and has the purpose of computing the nodal residual vector
q and the consistent tangent stiffness tensorK , respectively through the algorithms (97), (98),
and (127), (128). Dependencies of filter_out are the routines

(i) D_Bt, returning LK
BT
Œ��, Equation (B.3);

(ii) D_shp_R_Gt, returning OK
# LR LG

T Œ��, Equation (111), or QK
# OR OG

T Œ��, Equation (118);

(iii) D_shp_R_Pt, returning OK
# LR LP

T Œ��, Equation (125), or QK
# OR OP

T Œ��, Equation (126);
(iv) D_Mt, returning K

MT Œ��, equation (B.1).

Computations are performed using coordinates in the element reference frame ¹e,h,nº, which is
returned by the routine geometry. Other auxiliary self-explanatory routines are included.

For the sake of completeness, a small-strain core-element implementation is provided as an exam-
ple. In particular, a combination of the DKT plate [14, 27, 28] and of the OPT membrane [29] is
implemented in the routine DKT_OPT_shell: Details are omitted here, because that implementa-
tion is standard. Of course, any other small-strain or finite-strain triangular shell element with the
same node and DOF configuration can be used in the present corotational framework.

This toolkit can be easily integrated into general-purpose finite element programs. The MATLAB
code turned out to be quite efficient; moreover, it may serve as a guide, for example, for Fortran or
C++ implementations.

APPENDIX B: MOMENT CORRECTION TENSORS K
MT Œ�� AND LK

BT
Œ��

Let �D ¹f 1Im1If 2Im2If 3Im3º. The tensor K
MT Œ�� has the structure

K
MT Œ��D diagŒ0IK

MT
1
Œm1�I 0IKMT

2
Œm2�I 0IKMT

3
Œm3�� , (B.1)

where (the i subscript is omitted where no confusion may arise)

K
MT
i
Œm�D

.1� cos#/

#2
Œspin.m/�m˝ # �C

.# � sin#/

#3
Œm˝ # C # ˝mC .# �m/I �

C
.# sin# C 2 cos# � 2/

#4
Œspin.m/.# ˝ #/�C

.3 sin# � # cos# � 2#/

#5
Œ.# �m/# ˝ # � . (B.2)

This expression of K
MT
i
Œm� has been obtained by recasting results given in [34, 36]. In particular,

only functions with removable singularities around # D 0 appear in (B.2), thus enabling effective
computation by series.

Analogously, the tensor LK
BT
Œ�� has the structure:

LK
BT
Œ��D diagŒ0I LK

BT1
Œm1�I 0I LKBT2

Œm2�I 0I LKBT3
Œm3�� , (B.3)

where (e.g., [7, 10, 34, 36])

LK
BTi
Œm�D ¹�Œ.# �m/I C # ˝m� 2m˝ # �C� spin.#/2m˝ # �

1

2
spin.m/ºBi , (B.4)
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and

�D
d�=d#

#
D
#
2
C 4 cos# C # sin# � 4

4#
4

sin2
�
#
2

� . (B.5)
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