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Abstract. We introduce the class of generic quantum Markov semigroups. Within this class
we study the class corresponding to the Fock case which is further split into four sub-classes
each of which contains both bounded and unbounded generators, depending on some global
characteristics of the intensities of jumps. For the first two of these classes we find an explicit
solution which reduces the problem of finding the quantum semigroup to the calculation of two
classical semigroups, one of which is diagonal (in suitable basis) and the other one is triangular
(in the same basis). In the bounded case our formula gives the unique solution. In the unbounded
case it gives one solution, which we conjecture to be the minimal one.

1. Introduction

On quantum Markov semigroups and their generators many deep results are avail-
able and we refer to the monograph [6] or to the extensive survey article [9] for
updated overviews as well as for a bibliography and [5, 10, 4] for more recent re-
sults. However, often one is interested in particular physical models, and one needs
more detailed information which not always are available from the general theory.

In particular, the class of generators for which an explicit solution of the asso-
ciated master equation is available, is at the moment rather narrow. On the other
hand the stochastic limit of quantum theory, when applied to quantum interacting
particles, shows that the simplest class of generators corresponds to the so called
“generic system”, introduced in [1]. In the present paper we begin the investiga-
tion of this class and we prove that, at least in the Fock case (plus an additional
“non explosive” condition) it is possible to deduce a fairly explicit formula which
reduces the solution of the corresponding master equation to the solution of a
classical master equation. This implies a significant reduction of the complexity of
the problem. For example, in the finite dimensional case, this reduces the problem
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from an n2 × n2 matrix to an n × n one, which is a huge reduction for numerical
calculations. The main result of this note is Theorem 6.

2. Classes of Markov Semigroups

If we neglect the Hamiltonian part, the Markov semigroup obtained in the stochas-
tic limit of a discrete system with generic free Hamiltonian HS acting on a (separa-
ble) Hilbert space HS and interacting with a mean zero, gauge invariant Gaussian
field through an interaction Hamiltonian of dipole type HI = D⊗A+

g + D+ ⊗Ag,
cf. [1, p.36,(1.1.99)] is:

LRe(x) =
∑

εσ′<εσ

[

γ−
σσ′

(

|σ〉〈σ|〈σ′, xσ′〉 −
1

2
{x, |σ〉〈σ|}

)

+ γ+
σσ′

(

|σ′〉〈σ′|〈σ, xσ〉 −
1

2
{x, |σ′〉〈σ′|}

)

]

, x ∈ B(HS) , (1)

where the suffix Re, in LRe, means that we are neglecting the Hamiltonian term
in the generator; (|σ〉) is an orthonormal basis of HS

〈σ, σ′〉 = δσσ′ ,
∑

σ

|σ〉〈σ| = 1 ,

whose elements are the eigenvectors of the free Hamiltonian (HS =
∑

σ εσ|σ〉〈σ|).
The genericity of HS implies that it has nondegenerate pure point spectrum. In
the following, to keep a bridge with physical intuition, it will be convenient to
suppose that the vectors |σ〉 are labelled by the corresponding energies εσ rather
than by the sequence of natural numbers.

Once fixed the basis |σ〉, the generator LRe is uniquely determined by the
coefficients γ±

σσ′ , which encode the whole physical information on the system S.
They are positive real numbers such that

γ±
σσ′ = 0 if εσ ≤ εσ′ (2)

(in particular they are zero on the diagonal) and which represent the real part
of the “generalized susceptibilities” whose structure, deduced through stochastic
limit techniques, is described in [3, p.19–21]. Physically γ+

σσ′ represents the rate

of jumps “up” (εσ′ ↑ εσ) and γ−
σσ′ represents the rate of jumps “down” (εσ ↓ εσ′).

Let us introduce the notations

|σ〉〈σ| =: Pσ , (3)

〈σ, xσ〉 =: σ(x) . (4)

Then

PσPσ′ = δσσ′Pσ ,
∑

σ

Pσ = 1 , (5)

σ′(xPσ) = σ′(Pσx) = δσσ′σ′(x) . (6)
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In these notations the generator (1) becomes

LRe(x) =
∑

εσ′<εσ

[

γ−
σσ′

(

Pσσ′(x) −
1

2
{x, Pσ}

)

+ γ+
σσ′

(

Pσ′σ(x) −
1

2
{x, Pσ′}

)

]

.

(7)
Our goal is to study various classes of these semigroups and to classify them
according to the properties of the coefficients γ±

σσ′ .
In the following we will omit the suffix Re, in LRe, because throughout the

present paper we consider only this case.

3. The Simplest Class of Generators

The simplest class of Markovian generators is obtained when there are no jumps
up:

γ+
σσ′ = 0 , ∀ σ, σ′ , (8)

and there is a single (nonzero) jump down (2-level system):

D = |σ0〉〈σ
′
0| , εσ′

0
< εσ0

. (9)

In this case
|σ0〉 ⊥ 〈σ′

0| (10)

and

L(x) = γ−
σ0σ′

0

(

|σ0〉〈σ0|〈σ
′
0, xσ′

0〉 −
1

2
{x, |σ0〉〈σ0|}

)

. (11)

This is an elementary semigroup about which everything is well known. The dis-
cussion that follows isolates some algebraic properties, of the various pieces which
form the generator of this semigroup, which persist in the infinite dimensional case
and which allow to deduce, also in this case, a formula similar to the one deduced
in the present section.

LEMMA 1 Defining

S1(x) := |σ0〉〈σ0|〈σ
′
0, xσ′

0〉 =: σ′
0(x)Pσ0

, (12)

S2(x) := −
1

2
{x, Pσ0

} , (13)

one has
S2(Pσ0

) = −Pσ0
(14)

and, since σ0 ⊥ σ′
0, then

S1(Pσ0
) = 0 , (15)

so that in particular (16) holds
S2

1 = 0 . (16)

Conditions (15) and (14) imply the following commutation relations:

S1S2 = 0 , (17)

S2S1 = −S1 (18)
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Proof. In fact, from (12) and (13) it follows that

S1S2(x) = S1

(

−
1

2
{x, Pσ0

}
)

= −
1

2
(S1(xPσ0

) + S1(Pσ0
x))

= −
1

2
|σ0〉〈σ0|

(

〈σ′
0, xPσ0

σ′
0〉 + 〈σ′

0, Pσ0
xσ′

0〉
)

= 0 ,

S2S1(x) = σ′
0(x)S2(Pσ0

) = −σ′
0(x)Pσ0

= −S1(x)

and this proves the statement. �

THEOREM 1 It holds

et(S1+S2) = etS2 + (1 − e−t)S1 . (19)

Proof. Given the relations (17) (18), (16), the identity (19) follows from the
identity

(S1 + S2)
(

etS2 + (1 − e−t)S1

)

= S2e
tS2 + e−tS1 , (20)

which is the derivative of the right hand side of (19). So the two sides of (19) satisfy
the same ordinary differential equation with the same initial condition, hence they
coincide. �

COROLLARY 2 The semigroup generated by

L−(x) := γ−
σ0σ′

0

(

Pσ0
σ′

0(x) −
1

2
{Pσ0

, x}
)

= γ−
σ0σ′

0

(S1 + S2)(x) (21)

is

etL−

(x) =
(

e
−tγ−

σ0σ′

0

/2
Pσ0

+ P⊥
σ0

)

x
(

e
−tγ−

σ0,σ′

0

/2
Pσ0

+ P⊥
σ0

)

+ (1 − e−t)σ′
0(x)Pσ0

.

Proof. From Theorem 1, with the time rescaling t → γ−
σ0σ′

0

t we can restrict our

consideration to the semigroup

e−
t
2

Pσ0x e−
t
2

Pσ0 = P t
2(x) .

Its generator is

∂t

∣

∣

∣

t=0
P t

2(x) = −
1

2
Pσ0

x − x
1

2
Pσ0

= S2(x) .

Thus
e−tS2(x) = e−

t
2
{Pσ0

, · }(x) = e−
t
2

Pσ0x e−
t
2

Pσ0 .

But Pσ0
= |σ0〉〈σ0| is a self-adjoint projection. Therefore

e−
t
2

Pσ0 = e−t/2Pσ0
+ P⊥

σ0
.

Hence
e−

t
2
{Pσ0

, · }(x) = (e−t/2Pσ0
+ P⊥

σ0
)x (e−t/2Pσ0

+ P⊥
σ0

)

from which and (12) the statement follows. �
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4. Generators with γ+ = 0

In this section we begin to study the class of generators of the form (7), (2)
under the additional condition (8). These generators will be called generic Fock
generators because, in the stochastic limit, they arise from interactions of systems
with a generic free Hamiltonian HS (cf. [1]) and with fields in the Fock state (i.e
when the Gaussian field, mentioned in the beginning of Sect. 2., is a Fock field).
Such generators have the form

L−(x) =
∑

εσ′<εσ

γ−
σσ′

(

Pσσ′(x) −
1

2
{x, Pσ}

)

. (22)

In the following we will frequently use the following simple remark:

LEMMA 2 Suppose that AB = BA. Then

{B, {A, · }} = {A, {B, · }}

[B, [A, · ]] = [A, [B, · ]] .

Proof.

{B, {A,x}} = {B,Ax} + {B,xA} = BAx + AxB + BxA + xAB

= ABx + BxA + AxB + xBA = {A,Bx} + {A,xB}

= {A, {B,x}}

and similarly for the commutator. �

The following lemma is applicable to a slightly larger class of generators than
those considered here.

LEMMA 3 In the notations (5), (6) define ∀ σ, σ′

Sσ,σ′(x) := Pσσ′(x) , (23)

Sσ(x) := −
1

2
{x, Pσ} . (24)

Then ∀ σ, σ′, τ, τ ′

Sσ,σ′Sτ = −δσ′,τSσ,σ′ (25)

SτSσ,σ′ = −δσ,τSσ,σ′ (26)

SσSσ′ = Sσ′Sσ (27)

Sσ,σ′Sτ,τ ′ = δσ′,τSσ,τ ′ . (28)

Proof.

Sσσ′Sτ (x) = Pσσ′(Sτ (x)) = −
1

2
Pσ σ′(xPτ ) −

1

2
Pσ σ′(Pτx)

= −
1

2
Pσ δσ′τσ

′(x) −
1

2
Pσ δσ′τσ

′(x) = −δσ′τPσσ′(x)

= −δσ′τSσσ′(x)
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and this proves (25).

SτSσσ′(x) = σ′(x)Sτ (Pσ) = σ′(x)
(

−
1

2
{Pτ , Pσ}

)

= −σ′(x)Pσδτσ = −δτσSσσ′(x)

and this proves (26). (27) follows from Lemma 2. Finally,

Sσσ′Sττ ′(x) = τ ′(x)Sσσ′(Pτ ) = τ ′(x)σ′(Pτ )Pσ

= τ ′(x)δσ′τPσ = δσ′τSστ ′(x)

and this proves (28). �

In the notations (23), (24) the generator (22) takes the form

L− :=
∑

εσ′<εσ

γ−
σσ′(Sσσ′ + Sσ) =:

∑

εσ′<εσ

L−
σσ′ . (29)

In general the L−
σσ′ will not commute among themselves.

Let us now introduce the notation

λ−
σ′ :=

∑

{σ : εσ′<εσ}

γ−
σσ′ . (30)

Notice that the γ−
σσ′ are positive. Therefore

∀ σ λ−
σ′ ≥ γ−

σσ′ ,

∀ σ λ−
σ′ = 0 ⇐⇒ γ−

σσ′ = 0 .

We distinguish 4 cases:

∀ σ 0 < λ−
σ < +∞ (31)

∃ σ λ−
σ = 0 ; ∀ σ λ−

σ < +∞ (32)

∃ σ λ−
σ = +∞ ; ∀ σ λ−

σ > 0 (33)

∃ σ λ−
σ = 0 ; ∃ τ λ−

τ = +∞ . (34)

With the condition (31) the generator L− can be written in the GKSL (Gorini-
Kossakowski-Sudarshan-Lindblad) form:

L−(x) = −Gx +
∑

εσ′<εσ

V ∗
σσ′xVσσ′ − xG ,

where G =
∑

σ′ λ
−
σ′ |σ′〉〈σ′| and Vσσ′ =

√

γ−
σσ′ |σ′〉〈σ|. Here G is self-adjoint and

the Vσσ′ are bounded. Therefore the general method of the minimal semigroup
(see [7, 8]) can be applied. Our method instead will use the special structure of
the present class of generators to deduce an explicit formula.



Generic Quantum Markov Semigroups: the Fock Case 7

Remark 1 If in the expression

∑

σ′

λ−
σ′

[

∑

{σ : εσ′<εσ}

(γ−
σσ′

λ−
σ′

Sσσ′ + Sσ′

)]

we introduce the stochastic matrix

γ−
σσ′

λ−
σ′

=: p−σσ′ , p−σσ′ = 0 if λ−
σ, = 0 , p−σσ′ ≥ 0 ,

∑

σ

p−σσ′ = 1

then the generator (29) takes the form
∑

σ′

λ−
σ′

∑

{σ : εσ′<εσ}

(p−σσ′Sσσ′ + Sσ′) .

5. The Class: γ+ = 0, 0 < λ− < ∞

In the notations of Sect. 4 we begin to study those Markovian generators which
satisfy conditions (8) and (31). Under these conditions the generator (29) takes
the form

L− =
∑

εσ′<εσ

γ−
σσ′Sσσ′ +

∑

σ

(

∑

εσ′<εσ

γ−
σσ′

)

Sσ =
∑

εσ′<εσ

γ−
σσ′Sσσ′ +

∑

σ

λ−
σ Sσ . (35)

For any matrix
x = (xσσ′)

let us introduce the notation

S1(x) :=
∑

σ,σ′

xσσ′Sσσ′ (36)

and for any diagonal matrix
λ = (δσσ′λσ′)

we denote
S2(λ) :=

∑

σ

λσSσ . (37)

With these notations, the generator L− can be written as

L− = S1(γ
−) + S2(λ

−) , (38)

where γ− denotes the triangular matrix

(γ−)σ,σ′ :=

{

γ−
σσ′ if εσ′ < εσ

0 otherwise
(39)

and λ− denotes the diagonal matrix

(λ−)σ′τ = δσ′τλ
−
σ′ . (40)
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LEMMA 4 Both maps
x 7→ S1(x) , λ 7→ S2(λ) (41)

are linear and continuous in norm. S1( · ) is multiplicative and the range of S2( · )
is abelian.

Proof. Given two matrices x, x′ one has, using (28)

S1(x)S1(x
′) =

∑

σ,σ′

∑

τ,τ ′

xσσ′x′
ττ ′Sσσ′Sττ ′ =

∑

σ,σ′,τ,τ ′

xσσ′x′
ττ ′δσ′τSσ,τ ′

=
∑

σ,τ ′

(

∑

σ′

xσσ′x′
σ′τ ′

)

Sστ ′ = S1(xx′) .

Therefore S1 is multiplicative.
If λ, λ′ are diagonal matrices, then using (27)

S2(λ)S2(λ
′) =

∑

σ,σ′

λσλ′
σ′SσSσ′ =

∑

σ′,σ

λ′
σ′λσSσ′Sσ = S2(λ

′)S2(λ) .

Since linearity is obvious in both cases, this ends the proof. �

LEMMA 5 In the notations (36), (37), for any m, n ∈ N and s, t ∈ R, one has:

S1(γ
−)mS2(λ

−)n = (−1)nS1(γ
−mλ−n) , (42)

S2(λ
−)mS1(γ

−)n = (−1)mS1(λ
−mγ−n) , (43)

S1(γ
−)etS2(λ−) = S1(γ

−e−tλ−

) ,

esS1(γ−)etS2(λ−) = S1(e
sγ−

e−tλ−

) ,

esS2(λ−)etS1(γ−) = S1(e
−sλ−

etγ−

) .

Proof. Let us observe that

S1(γ
−)S2(λ

−) =
∑

σ,σ′

∑

τ

γ−
σσ′λ

−
τ Sσσ′Sτ = −

∑

σ,σ′

∑

τ

γ−
σσ′λ

−
τ δσ′τSσσ′

= −
∑

σ,σ′

γ−
σσ′λ

−
σ′Sσσ′ = −S1(γ

−λ−) , (44)

S2(λ
−)S1(γ

−) =
∑

τ

∑

σ,σ′

λ−
τ γ−

σσ′SτSσσ′ = −
∑

τ

∑

σ,σ′

λ−
τ γ−

σσ′δστSσσ′

= −
∑

σ,σ′

λ−
σ γ−

σσ′Sσσ′ = −S1(λ
−γ−) . (45)

By induction from (45)

S2(λ
−)nS1(γ

−) = (−1)nS1(λ
−nγ−) . (46)

Hence, by the linearity and norm continuity of the maps (41)

etS2(λ−)S1(γ
−) = S1(e

−tλ−

γ−) .
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By induction from (44)

S1(γ
−)S2(λ

−)n = (−1)nS1(γ
−λ−n) . (47)

By the linearity and continuity of the maps (41)

S1(γ
−)etS2(λ−) = S1(γ

−e−tλ−

) .

Combining (46), (47) and the multiplicative property of S1, one obtains

S2(λ
−)nS1(γ

−)m = S2(λ
−)nS1(γ

−)S1(γ
−)m−1

= (−1)nS1(λ
−nγ−)S1(γ

−(m−1))

= (−1)nS1(λ
−nγ−m) .

From this one deduces that

esS2(λ−)etS1(γ−) = S1(e
−sλ−

etγ−

) .

Similarly

S1(γ
−)mS2(λ

−)n = S1(γ
−)m−1S1(γ

−)S2(λ
−)n

= S1(γ
−(m−1))S1(γ

−(−1)nλ−n)

= S1(γ
−m(−1)nλ−n) .

From this one deduces that

esS1(γ−)etS2(λ−) = S1(e
sγ−

e−tλ−

) .

�

LEMMA 6 For any n ∈ N

(S1(γ
−) + S2(λ

−))n = S2(λ
−)n − S1((−λ−)n) + S1((γ

− − λ−)n) . (48)

Proof. It is convenient to write

θ1 := γ− , θ2 := λ− .

With this notation

(S1(γ
−) + S2(λ

−))n =
(

∑

ε∈{1,2}

Sε(θε)
)n

=
∑

{ε=(ε1,...,εn)∈{1,2}n}

Sε1
(θε1

) . . . Sεn(θεn)

= S2(θ2)
n +

n−1
∑

k=0

∑

{ε∈{1,2}n,|{j:εj=2}=k|}

Sε1
(θε1

) . . . Sεn(θεn)
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= S2(θ2)
n +

n−1
∑

k=0

(−1)k
∑

{ε∈{1,2}n,|{j:εj=2}|=k}

S1(θε1
. . . θεn)

= S2(θ2)
n − S1((−1)nθn

2 ) + S1

(

n
∑

k=0

(−1)k
∑

{ε∈{1,2}n,|{j:εj=2}|=k}

θε1
. . . θεn

)

= S2(θ2)
n − S1((−1)nθn

2 ) + S1((θ1 − θ2)
n) .

�

COROLLARY 3 It holds

et(S1(γ−)+S2(λ−)) = etS2(λ−) − S1(e
−tλ−

) + S1(e
t(γ−−λ−)) . (49)

Proof. The proof follows from (48) plus the linearity and continuity of S1, S2. �

LEMMA 7 For each eigenvector |σ〉 of HS, define the contraction semigroup

V t
σ := e−tλ−

σ /2Pσ + P⊥
σ . (50)

Then {V t
σ : σ ∈ Sp (HS)} is a commuting family of contraction semigroups and

one has

etS2(λ−)(x) =
∏

σ

V t
σxV t

σ =
(

∏

σ

V t
σ

)

x
(

∏

σ

V t
σ

)

, (51)

where the product
∏

σ V t
σ is strongly convergent.

Proof. From the definition (37) of S2(λ) it follows that

S2(λ) =
∑

σ

λσSσ .

Therefore, from (27)

etS2(λ) = et
P

σ λσSσ =
∏

σ

etλσSσ .

From (24) we know that

Sσ(x) = −
1

2
{x, Pσ}

so that

etSσ (x) = e−
t
2

Pσxe−
t
2

Pσ = (e−t/2Pσ + P⊥
σ )x(e−

t
2 Pσ + P⊥

σ ) .

From this (51) immediately follows. �
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LEMMA 8 If (|σ〉) is any orthonormal set, then

∏

σ

(e−tλσ/2Pσ + P⊥
σ ) =

∑

σ

e−tλσ/2Pσ +
∏

σ

P⊥
σ . (52)

In particular, if (|σ〉) is an orthonormal basis

∏

σ

(e−tλσ/2Pσ + P⊥
σ ) =

∑

σ

e−tλσ/2Pσ . (53)

Proof. To evaluate the product consider first the case of 2 factors:

(

e
−tλσ

2 Pσ + P⊥
σ

)(

e
−tλτ

2 Pτ + P⊥
τ

)

= e
−tλσ

2 Pσ + e
−tλτ

2 Pτ + P⊥
σ P⊥

τ .

Suppose by induction that

n
∏

j=1

(

e
−tλσj

2 Pσj
+ P⊥

σj

)

=

n
∑

j=1

e
−tλσj

2 Pσj
+

n
∏

j=1

P⊥
σj

. (54)

Then

n+1
∏

j=1

(

e
−tλσj

2 Pσj
+ P⊥

σj

)

=
(

n
∑

j=1

e
−tλσj Pσj

+

n
∏

j=1

P⊥
σj

)(

e
−tλσn+1

2 Pσn+1
+ P⊥

σn+1

)

=

n
∑

j=1

e
−tλσj

2 Pσj
+ e

−tλσn+1

2 Pσn+1
+

n+1
∏

j=1

P⊥
σj

.

Therefore (54) holds ∀ n ∈ N. From this we deduce that, for every finite set F

∏

σ∈F

(

e
−tλσ

2 Pσ + P⊥
σ

)

=
∑

σ∈F

e
−tλσ

2 Pσ +
∏

σ∈F

P⊥
σ .

Passing to the limit we see that (52) holds for every countable set F .
Finally the assumption that (|σ〉)σ∈T is an orthonormal basis of HS implies

that
∏

σ∈T

P⊥
σ = 0 .

�

COROLLARY 4 Under the assumptions (8) and (31) if

λ−
inf := inf λ−

σ > 0 , (55)

then one has,

∀ x lim
t→+∞

etS2(λ−)(x) = 0 . (56)
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Proof. From (50), (51) it follows that

∏

σ

V t
σ =

∏

σ

(e−tλ−

σ /2Pσ + P⊥
σ ) =

∑

σ

e−tλσ/2Pσ .

Therefore
etS2(λ−)(x) =

(

∏

σ

V t
σ

)

x
(

∏

σ

V t
σ

)

with
‖etS2(λ−)(x)‖ ≤ e−tλ−

inf‖x‖

and this proves (56). �

COROLLARY 5 It holds

etS2(1) =
∑

σ

e−tλσPσ .

Proof.

etS2(λ−)(1) =
∏

σ

(V t
σ)2 =

∏

σ

(e−tλσ/2Pσ + P⊥
σ )2 =

(

∑

σ

e−tλσ/2Pσ

)2

and the thesis follows from (53). �

LEMMA 9 Under the assumption (55) one has

lim
t→∞

S1(e
−tλ−

) = 0 . (57)

Proof. From (40) we know that λ− is a diagonal matrix hence, from (36) it follows
that

S1(λ
−) =

∑

σ

λ−
σ Sσσ . (58)

Therefore

S1(e
−tλ−

) =
∑

σ

e−tλ−

σ Sσσ = e−tλ−

inf

∑

σ

e−t(λ−

σ −λ−

inf
)Sσσ .

Now for any x ∈ BS and ξ ∈ HS

∥

∥

∥

∥

∥

∑

σ

Sσσ(x)ξ

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∑

σ

σ(x)Pσξ

∥

∥

∥

∥

∥

2

=
∑

σ

‖σ(x)Pσξ‖2 ≤
∑

σ

|σ(x)|2‖Pσξ‖2

≤ ‖x‖2
∑

σ

‖Pσξ‖2 = ‖x‖2‖ξ‖2.

Therefore
‖S1(e

−tλ−

)‖ ≤ e−tλ−

inf‖x‖

and from (57) follows. �
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LEMMA 10 It holds

S1(e
−tλ−

)(1) =
∑

σ

e−tλσPσ .

Proof. Using (23) and (36) we find

S1(e
−tλ−

)(1) =
∑

σ

e−tλ−

σ Sσ,σ(1) =
∑

σ

e−tλ−

σ Pσ〈σ, 1σ〉 =
∑

σ

e−tλ−

σ Pσ .

�

LEMMA 11 It holds

S1(γ
− − λ−)(1) = 0 .

Proof. From (36) we have

S1(γ
− − λ−)(1) =

∑

σ,σ′

(γσσ′ − δσσ′λ−
σ′)Sσσ′(1)

=
∑

σ,σ′

γσσ′Pσ −
∑

σ,σ′

δσσ′λ−
σ Pσ =

∑

σ

λ−
σ Pσ −

∑

σ

λ−
σ Pσ = 0

�

Let us summarize the main result of our analysis in the following result which
essentially reduces the study of the quantum generators of this class to the study
of a classical triangular generator plus a diagonal one, which is easy.

THEOREM 6 In the generic Fock case (8) and for the class of generators (35)
satisfying the additional condition (31) the right hand side of the identity

etL−

(x) =
∑

σ 6=σ′

e−t(λ−

σ +λ−

σ′
)/2〈σ, xσ′〉|σ〉〈σ′| +

∑

σ

[

∑

σ′

(

et(γ−−λ−)
)

σσ′

σ′(x)
]

Pσ

and where the predual semigroup associated is

(etL−

)∗(ρ) =
∑

σ 6=σ′

e−t(λ−

σ +λ−

σ′
)/2〈ρσ, σ′〉|σ′〉〈σ| +

∑

σ

[

∑

σ′

(

et(γ−−λ−)
)

σσ′

Pσ′

]

σ(ρ)

defines a solution of the master equation associated to the generator L−. This
solution is unique if the generator is bounded.

Proof. Let us observe that

etL−

(x) = et(S1(γ−)+S2(λ−))(x)

= etS2(λ−)(x) − S1(e
−tλ−

)(x) + S1(e
t(γ−−λ−))(x) ,
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where γ− and λ− are given by (30) and (39), respectively. If (|σ〉) is an orthonormal
basis then

etL−

(x) =
(

∑

σ

e
−tλ

−

σ
2 Pσ

)

x
(

∑

σ

e
−tλ

−

σ
2 Pσ

)

+
∑

σ,σ′

(

e−tλ−

)

σσ′

Sσσ′(x) +
∑

σ,σ′

(

et(γ−−λ−)
)

σσ′

Sσσ′(x)

=
∑

σ,σ′

e−t(λ−

σ +λ−

σ′
)/2PσxPσ′ −

∑

σ

e−tλ−

σ σ(x)Pσ

+
∑

σ 6=σ′

(

et(γ−−λ−)
)

σσ′

σ′(x)Pσ +
∑

σ

(

et(γ−−λ−)
)

σσ
σ(x)Pσ

=
∑

σ 6=σ′

e−t(λσ+λσ′)/2〈σ;xσ′〉|σ〉〈σ′|

+
∑

σ

[(

e−t(γ−−λ−)
)

σσ
σ(x) +

∑

{σ′;σ′ 6=σ}

(

e−t(γ−−λ−)
)

σσ′

σ′(x)
]

Pσ

=
∑

σ 6=σ′

e−t(λ−

σ +λ−

σ′
)/2〈σ, xσ′〉|σ〉〈σ′| +

∑

σ

[

∑

σ′

(

et(γ−−λ−)
)

σσ′

σ′(x)
]

Pσ .

To find the predual semigroup associated, we use the following relation:

tr
(

(etL−

)∗(ρ)x
)

= tr
(

ρ(etL−

)(x)
)

when x ∈ B(H) and ρ ∈ F1(H). �
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