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SUMMARY

Tolerance allocation influences production costs in a big way. For this reason it is very important to
have an accurate study about the effects of manufacturing errors on the functioning and performances
of linkages. In this paper, the authors present a computer-aided methodology based on a 3D geometrical
approach using the dual-algebra fundamentals. The purpose is to give an useful tool which can be
integrated into CAD software in order to evaluate the performances of spatial mechanisms with
mechanical errors. The proposed methodology has been validated by means of experimental tests on
a Cardan joint mechanism with clearances, misalignments and dimensional errors. Copyright � 2005
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Tolerance allocation is not a simple task for a designer. On the one hand, very accurate tolerance
requirement improves the quality of the manufactured product assuring high performance, but
it causes increasing of costs. Inaccurate tolerances, instead, may cause malfunctioning, bad
performances or even problems during assembling. The modern CAD software products provide
powerful techniques to assemble the entire model starting from single parts. The constraining
functions which can be included mimic the ideal joints (i.e. hinges, guides, screws, cams, etc.)
between parts. Simulating mechanical errors is not so simple and it requires ad hoc procedure.
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Many researchers proposed linear or non-linear model to study in depth the effects of errors
in manufactured mechanisms [1–8]. They are often based on the study of planar mechanisms
or assembly chain because many problems can be approximated as 2D ones. In many cases
the design of spatial linkages requires a more accurate study [9–11]. In these cases, simple
models are not sufficient to describe the effects of mechanical errors on kinematics and dy-
namics, and a more complex analysis has to be performed. For this reason the authors present
a computer-aided methodology developed using the dual-algebra approach [12]. This numerical
methodology [13] is very suitable for describing misalignment and backlash in kinematic pairs
[14]. It allows one to write down and implement the kinematic equations in a very short
form using only few parameters to describe the variety of manufacturing errors. The proposed
methodology has been applied to the analysis of a Cardan joint with manufacturing errors.
Recently, a complete dynamic analysis of this mechanical device has been presented in a
series of papers authored by Freudenstein and coworkers [8, 11, 12, 15]. In the mentioned refer-
ences, although mounting errors are included, the presence of friction in the kinematic pairs is
neglected.

Results from the proposed numerical model can be compared to those from experimental
tests. For this reason, the authors build up a computer-aided test rig where several electrical
devices and sensors are interlaced to a computer unit in order to simulate joint working
conditions and measure speed and torque values affected by mechanical errors.

2. DUAL-ALGEBRA THEORETICAL BASES FOR KINEMATIC ANALYSIS
OF SPATIAL LINKAGES

In this section, some details about dual algebra [12] will be presented. We can define the dual
vector as

V̂ = v + �w (1)

where v is the geometrical vector, � is the dual operator (�2 = 0) and w is the moment of
vector v w.r.t. a chosen point. In the same way we can define the dual angle between two
axes as

�̂ = � + �s (2)

where � is the geometrical angle, � is the dual operator and s is the minimum distance between
the axes. The angle � is defined positive if, in the motion to superimpose axis E1 on axis E2,
a counterclockwise‖ rotation is applied (see Figure 1). The distance s is positive if the axis E1
moves towards E2 in the direction of E12.

For spatial linkage analysis we can rearrange the approach suggested in References [16, 17]
including dual-algebra entities. For each link (Figure 2) we can define a reference frame
Pi − xiyizi . A local reference frame Pik − xikyik zik can be assigned to every kth kinematic pair

‖For an observer placed on the side of positive direction of axis E12.
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Figure 1. Dual-angle nomenclature.

Figure 2. Reference frame nomenclature.

on the ith body. Assuming Pik to be the origin of the reference frame, Rik located at (1; 0; 0),
Qik located at (0; 1; 0) we can deduce the dual expression for the unit vector of the reference
frame:

{î} = {i} + �[ÕP ]{i} (3)

{k̂} = {k} + �[ÕP ]{k} (4)

{ĵ} =

⎡
⎢⎢⎣

0 −k̂z k̂y

k̂z 0 −k̂x

−k̂y k̂x 0

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

îx

îy

îz

⎫⎪⎪⎬
⎪⎪⎭ (5)
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where

[ÕP ] =

⎡
⎢⎢⎣

0 −Pz Py

Pz 0 −Px

−Py Px 0

⎤
⎥⎥⎦ (6)

The transform matrix between ith body reference frame and kth joint reference frame on
the same body is as follows:

[Âik
i ] =

⎡
⎢⎢⎣

îx ĵx k̂x

îy ĵy k̂y

îz ĵz k̂z

⎤
⎥⎥⎦ (7)

Deducing all the transform matrices, it is possible to write down the closure loop equations
for a generic single loop mechanism with N bodies. In fact, for each pair of connected bodies
(body i and body i + 1) we express first the transformation between body i and the first

(k = 1) kinematic pair on the same body (matrix [Âi1
i ]), then the transformation between the

two reference frames of the two kinematic pairs of body i (matrix [Âi2
i1
]). Then, considering

the same kinematic pair belonging to body i and body i + 1 we can define the transform

matrix [A(i+1)1
i2

̂]; finally, we can pass from the joint reference frame of the first kinematic pair

on body i + 1 to the reference frame of body i + 1 by means of matrix [A(i+1)
(i+1)1

̂]. Repeating
this computation for all the bodies in the kinematic chain we get

N∏
i=1

[Âi1
i ][Âi2

i1
][A(i+1)1

i2
̂][A(i+1)

(i+1)1
̂] = [I ] (8)

where i + 1 = 1 when i = N .

3. PIN–HOLE JOINT WITH ERRORS

In the classical kinematic model with ideal joints, a pin–hole connection can be described
by imposing the coincidence between the origins and z axes of the joint reference frames
belonging to the two different bodies connected. Modelling an actual joint is more complex
because of clearances and possible misalignments.

Let us assume the pin on the ith body and the hole on the j th body. We can define on
the pin a kth local reference frame Pik − xikyik zik ; in the same way we can define a kth local
reference frame Pjk

− xjk
yjk

zjk
at the hole on the j th body. In the ideal case the z axes of

the two reference frames are coincident. In this case, the dual transform matrix between these
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two reference frames is

[Âjk

ik
] =

⎡
⎢⎢⎢⎣

cos �̂i − sin �̂i 0

sin �̂i cos �̂i 0

0 0 1

⎤
⎥⎥⎥⎦ (9)

where �̂i = �i + �si is the dual angle between the unit vectors îik and îjk
. Now we can deduce

the transform matrix between the Oi −xiyizi reference frame which is placed on ith body and
the Oj − xjyj zj reference frame placed on the ith body, as

[Âj
i ] = [Âik

i ][Âjk

ik
][Âj

jk
] (10)

Let us now remove the hypothesis of ideal joint and assume the following:

• Kinematic elements can have two or infinite points of contact.
• When the contact point are two (B1 and B2), these lay on the outer/inner edge of the

pin (Figure 3).
• The possible errors of the pair can be radial backlash and cylindricity tolerances.
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Figure 3. Pin–hole joint with backlashes.
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In order to describe the actual position of the pin inside the hole we have to define an-
other reference frame Pik′ − xik′ yik′ zik′ with the zik′ axis aligned to zjk

axis. In the ideal
joint this reference frame coincides with Pik − xikyik zik ; in the presence of error it will be
necessary to describe a screw motion in order to move from one frame to the other (see
Figure 3).

The goal is to deduce the parameters of this screw motion as a function of the B1 and B2

contact points location in order to compute [Âik′
ik

] matrix. Because of the misalignment between
the pin and hole axes, Equation (10) has to be rearranged as

[Âj
i ] = [Âik

i ][Âik′
ik

][Âjk

ik′ ][Âj
jk

] (11)

On the right side of Figure 4 the mid-plane which is orthogonal to the hole axis is depicted.
On this plane, we can draw the projection of pin edges and contact points. The projection of
the two circular edges should be two ellipses, but for the sake of simplicity we assume them
to be two circles. This assumption is justified by the smallness of the possible clearance and
misalignment error.

With reference to Figure 4, C′
1 and C′

2 are the projections of the circular edge centres,
B ′

1 and B ′
2 are the projections of two contact points. Moreover, �ij is the angle between the

B ′
1Pik axis and B ′

2Pik axis and �ij is the angle between PikPik′ axis and xik′ axis. These two
parameters (�ij and �ij ) are sufficient to completely describe the position of the pin inside
the hole.
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Figure 4. Pin–hole joint nomenclature.
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The co-ordinates of C1 and C2 in the reference frame Pik′ xik′ yik′ zik′ can be expressed as

xC1 = xC′
1
≈ (R − r) cos

(
�ij + �ij

2

)

yC1 = yC′
1
≈ (R − r) sin

(
�ij + �ij

2

)

zC1 = −H

2

(12)

and

xC2 = xC′
2
≈ (R − r) cos

(
�ij − �ij

2

)

yC2 = yC′
2
≈ (R − r) sin

(
�ij − �ij

2

)

zC2 = H

2

(13)

Then, we can define the following dual vector:

Ĉ1C2 = C1C2 + �Pik′ C1 × C1C2 (14)

where C1C2 = {xC2 −xC1 yC2 −yC1 zC2 −zC1}T and H is the length of the pin. Equation (14) can

be used to build the [Âik′
ik

] matrix. The details of this derivation can be found in Reference [13].
The closure equations (8) solve the kinematic problem of the mechanism.

4. MODELLING OF FRICTION

Under ideal working conditions, the resultant of the reaction forces at the kinematic pairs is
null. This is not necessarily true in the presence of radial clearance or manufacturing tolerances.
If the presence of friction is considered, then frictional forces (moments) arise along (about)
the axis of the kinematic pair [18, 19]. In order to completely model the effects of friction it
is necessary to define the geometric features of the journal bearing.

4.1. Revolute joint

The frictional forces are mainly caused by the reaction forces (Fxi
, Fyi

, Fzi
) and the reaction

moments (Mxi
, Myi

) at the kinematic pair. The effect of Fzi
could be neglected consider-

ing that there is no sliding velocity along the axis of the revolute joint. In particular, the
effect of reaction moments could be taken into account considering the equivalent couple of
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forces (Figure 5):

F = Mx1

Li

(15)

where F is orthogonal to the direction of the axis of the revolute joint.
Thus, the frictional torque due to the reaction moment Mxi

could be evaluated as follows:

�xi

f = f
Mxi

Li

di (16)

where f is the friction coefficient, di is the diameter of the journal bearing and Li is the
length of the bearing. In the same way, the frictional torque due to Myi

can be evaluated.
Therefore, the whole frictional torque about the axis of the journal bearing is

Mzi
= − sign(�̇i )

(
�(i)
f + f di

2

√
F 2

xi
+ F 2

yi

)
(17)

where �̇i is the relative angular speed of the journal w.r.t. the bearing and

�(i)
f =

√(
�xi

f

)2 +
(
�yi

f

)2
(18)

4.2. Cylindrical joint

Following the same methodology illustrated for the revolute joint, the frictional moment can
be evaluated by means of (17). In this case, a frictional force along the axis of the kinematic
pair arises as well. Its value is defined by the following equation:

Fzi
= − sign(ṡi)f

⎛
⎜⎝√

F 2
xi

+ F 2
yi

+ 2

√
M2

xi
+ M2

yi

Li

⎞
⎟⎠ (19)

where ṡi is the sliding velocity along the axis of the kinematic pair.

Figure 5. Modelling of friction in kinematic pairs.
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5. MECHANISM DYNAMICS

The equation of dynamics is deduced by the derivation of dual-momentum equation. The dual
momentum is a dual entity including both momentum and angular momentum. For the generic
ith link it can be expressed as

{ĤC(i)}(ik) = mi{vC(i)}(ik) − mi[R̃(ik)]{�i}(ik) + �(mi[R̃(ik)]{vC(i)}(ik) + [J (ik)
C(i)]{�i}(ik)) (20)

where the real part represents the momentum and the dual part the angular momentum w.r.t. a
point C(i). In particular, {vC(i)}(ik) represents the velocity of body i evaluated in C expressed
in reference ik; where ik is the kth reference frame on the ith body; {�i}(ik) is the angular
velocity of body i in reference ik components; [R̃(ik)] is the skew matrix of vector R, which
represents the distance between point C and the centre of mass of body i in reference ik

components; [J (ik)
C(i)] is the inertia matrix of body i in C − xikyik zik reference frame and mi is

the mass of body i.
The equations of motion can be deduced as follows:

d

dt
{ĤC(i)}(ik) = {F̂C(i)}(ik) (21)

where {F̂C(i)}(ik) is the dual vector of external forces and include both forces and moments
evaluated in C and expressed in ik reference frame co-ordinates. Details about the computation
of (20) and (21) can be found in Reference [10].

In every pin hole joint, the effect of friction has also been included. This contribution causes
some resistant torque and force which can be computed following the same procedure discussed
in Reference [10].

6. NUMERICAL SIMULATION

In order to give an example of the proposed methodology a Cardan joint has been investigated.
The joint, depicted in Figure 6 (on the left side) has been considered as a RCCC mechanism

Figure 6. CAD model of the joint and the two shafts.
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made up of three links with their local reference frame located as shown on the right side of
the Figure 6.

The first link is an assembly of a flange, input shaft and one end of the Cardan joint;
the second link is the central cross and the third one is an assembly of the other end of
the joint, the output shaft and a flange. Mass properties of each link are summarized in
Table I.

In Table II the geometrical properties and mechanical errors are summarized. Note that
�i is the angle between the axes of the two joints on the ith link (Figure 7); ai is the
distance between the same axes (this distance is zero if the axes are incident); R is the

Table I. Mass properties of the Cardan joint.

Mass Inertia matrix w.r.t. local reference Location of centre of mass w.r.t. local
Link (kg) frame (Figure 4) (kg m2) reference frame (Figure 4) (m)

Input
shaft

0.936 [J ] =
⎡
⎢⎣

0.019254 0 0

0 0.000252 −0.001026

0 −0.001026 0.019182

⎤
⎥⎦ G ≡ (0, 0.1277, −0.0086)

Central
joint

0.045 [J ] =
⎡
⎢⎣

0.000006 0 0

0 0.000006 0

0 0 0.000002

⎤
⎥⎦ G ≡ (0, 0, −0.0085)

Output
shaft

0.936 [J ] =
⎡
⎢⎣

0.012147 0 0

0 0.012148 0

0 0 0.000184

⎤
⎥⎦ G ≡ (0, 0, −0.093782)

Table II. Kinematic pairs parameters.

Kin. pair �i ai (mm) Ri (mm)

1 90 – 0.1◦ 0.01 10 + 0.01
2 90 – 0.1◦ 0.01 10 + 0.02
3 90 – 0.1◦ 0.02 10 + 0.01
4 135 – 0.1◦ 0.01 10 + 0.02

H (mm) �r (mm) �ij �ij

10 0.01 0–360◦ 0–360◦
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Figure 7. Angles between kinematic pairs.

radius of the pin; �r is the radial clearance and H is the length of the pin, �ij and �ij are
the angles describing pin centre position which are depicted in Figure 4 (on the right). The
dynamic coefficient of friction is set equal to 0.42 for each kinematic pair.

7. EXPERIMENTAL TESTS

In order to validate and improve the numerical algorithm an experimental test rig has been
built (Figure 8). The test rig is made of an electric motor, an electro magnetic brake, two
torque/speed sensors and a computer unit which control the devices and acquire the simulation
data.

Acting on motor virtual control panel and choosing the desired resisting torque exerted
by the brake it is possible to simulate different working scenarios. Moreover, it is pos-
sible to simulate angular misalignment of the investigated joint tilting one end of the
test rig.

The test rig is equipped with the following instruments:

• An adjustable steel table.
• Two torque/speed transducers (model Magtrol TMB 210 with max torque: 100.00 Nm;

max speed: 4000 r.p.m.; torque sensitivity 100 mV/Nm; speed sensitivity: 60 pulses per
rev.).

• One brushless motor (two poles; peak torque: 110 Nm) with a control panel and control
software.

• One electromagnetic brake (model Merobel SA FRAT 650; max torque 65Nm; min torque
0.63 Nm) with a radial fan and a DGT 200 MC digital controller.

• One personal computer with an a/d converter and a National Instrument multichannel
acquiring system.
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Figure 8. Experimental set-up.

8. RESULTS AND DISCUSSION

The investigated Cardan joint has been simulated and tested under several working conditions.
The study involved the following working parameters:

• Angular speed of input shaft.
• Angular misalignment between input and output shaft.
• Resisting torque.

The following variables have been measured:

• Torque at input and output shaft.
• Angular speed of input and output shaft.

These variables allow one to compute the efficiency (�) of the transmission in the following
way:

� = Pout

Pin
= Tout�out

Tin�in
(22)

where Pin and Pout are input and output powers, respectively; Tin and Tout are input and output
torques, respectively; �in and �out are input and output angular speeds, respectively.

In Figure 9, the influence of angular misalignment between input and output shafts and the
influence of input angular speed on the efficiency have been plotted. It can be noted that if
the misalignment between the shafts increases, then the power losses increase too; if the input
speed increases, then the power losses increase too. It can be noted that the increasing of
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misalignment or the increasing of angular speed causes the inertial forces to be higher and so
the reaction forces exerted by the joints get higher, and the friction forces increase too.

In Figure 10, a comparison between simulated and experimental efficiency has been made.
A very good agreement between the two plots is observed.

9. CONCLUSIONS

The proposed computer-aided methodology turned out to be a valid instrument in order to
improve the design of spatial linkages. Moreover, the dual-algebra approach seems to be
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convenient in order to easily introduce error in joints. The only disadvantage is the need for
the definition of some basic operation between dual entities. This mathematical effort has to be
performed only once, then the derivation of both kinematics and dynamics equations is similar
to those in the classical multibody approach. The proposed methodology has been applied to
an industrial case of an automotive transmission by means of a Cardan joint. The comparison
between the numerical results and those from the acquisition using a test rig confirms the
validity of the proposed model. Future work will concern the modelling of different types of
joints and the transient analysis investigation.
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