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0.) From the experimental point of view probability enters quantum
theory just like classical statistical physics, i.e. as an expected relative fre-
quency. However it is well known that the statistical formalism of quantum
theory is quite different from the usual Kolmogorovian one involving, for
example, complex numbers, amplitudes, Hilbet spaces... The quantum sta-
tistical formalism has been described, developped, applied, generalized with
the contributions of many authors; however its theoretical status remained,
until recently, quite obscure, as shown by the widely contrasting statements
that one can find in the vast literature concerning the following questions.

Question I.) Is it possible to justify the choice of the classical or the
quantum statistical formalism, for the description of a given set of statistical
data, on rigorous mathematical criteria rather than on empirical ones?

In particular, is the quantum statistical formalism in some sense neces-
sary, or (as some authors seem to believe) is it an historical accident and
the whole quantum theory can be developed within the framework of the
classical Kolmogorovian model?

Question II.) If (as it will be shown to be the case) it is possible to devise a
rigorous mathematical criterion which allows us to discriminate between the
two statistical models, then the Kolmogorovian model must include a hidden
postulate which limits its applicability to the statistical description of the
natural phenomena. Which of the Kolmogorov axioms plays, for probability,
the role played by the parallel axiom for geometry?

Question III.) Which new physical requirements should substitute the
hidden axiom of the Kolmogorovian model mentioned in Question II.)? Will
such requirements be sufficient to account for all the specific features of the
quantum statistical model?

Question IV.) Are the Kolmogorovian, the usual quantum model, and
its known generalizations, the only statistical models which can arise in the
description of nature?

In the present paper we describe how the above mentioned problems can
be formulated and solved in a rigorous mathematical way. In particular the
negative answer to Question IV.), strongly supports the point of view that,
in analogy with geometry, one should look at probability theory not as the
study of the laws of chance but of the possible, mutually inequivalent models
for the laws of chance, the choice among which for the description of natural
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phenomena, being a purely experimental question. The main goal of quan-
tum probability should then be recognized in the inner development of these
models, their classification, the analysis of their mutual relations, and in no
case reduced to a translation of classical probabilistic results into a quantum
(or “non–commutative”) language. On the contrary, the deepest problems of
quantum probability are just those in which this translation becomes impos-
sible, as a consequence of the different axioms which lie at the foundation of
the two theories. For lack of space our discussion will be limited to Question
I.),..., IV.) and to the problems which arise in connection with them. In
particular we will not discuss the relevance of the answers to these questions
for the old interpretational problems of quantum theory (cf. [7]), nor the
important steps that have been made in the last years towards the inner de-
velopment of the usual quantum probabilistic model (for these we refer to the
papers in these proceedings). We believe that once understood the origins
and the meaning of quantum probability, it will be easier to go further along
the lines of the analysis of more general classes of nonkolomogorovian proba-
bilistic models the deepening of the usual quantum quantum one, as well as
the study of the connections between the kolmogorovian and the quantum
model.

In Sections (1.) and (2.) we review some known results concerning the
answer to Question I.). Question II.) has been dealt with extensively in
[7] and will not be discussed here; in Sections (3.) and (4.) we answer
Question III.) giving the proofs of some results announced in previous papers
[5], [6]; finally in Sections (5.) we outline a geometrical generalization of the
quantum probabilistic formalism which, in view of some recent progresses in
theoretical physics and in the theory of operator algebras, seems to be the
most promising line along which to investigate the answer to Question IV.).

1 The statistical invariants

The answer to Question I.) of § (0.) is based on the following idea: the
existence of a Kolmogorovian (resp. a quantum) model which describes a
given set of statistical sata imposes some constraints on them which can be
explicitely computed. It happens that in nature one can find some sets of
statistical data satisfying the constraints which characterize the existence of
a quantum statistical model but not those characterising the existence of a
Kolmogorovian model (or conversely!). This proves that, as long as we want
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to describe these statistical data within a single mathematical model, giving
up the classical Kolmogorovian model is a mathematical and experimental
necessity. No new experiment is needed to prove this statement: it is suffi-
cient to apply the results formulated in the following to the oldest and well
established data of quantum theory. Locally (i.e. when restricted to statisti-
cal data concerning sets of compatible observables) the quantum probability
arise in the description of statistical data concerning mutually incompatible
sets observables.

The following notations will be used throughout the paper: let T be a set
(index set); let, for each x ∈ T , be given an observable quantity A(x) whose
values will be denoted a1(x), . . . , an(x). Unless explicitely state n will be a
finite positive integer independent on x ∈ T . Heuristically A(x) should be
thought as a complete set of compatible observables. For each x ∈ T and α,
β = 1, . . . , n, let us denote

P (A(x) = aα(x)|A(y) = aβ(y) = pαβ(x, y) (1)

the conditional probability that the observable A(x) takes the value aα(x)
given that the observable A(y) takes the value aβ(y). For fixed x, y ∈ T , then
n×n matrix defined by (1) will be denoted P (x, y) and called the transition
probability matrix relative to the observables A(x), A(y).

Definition 1 In the notations above, the family {P (x, y) : x, y ∈ T} of
transition probability matrices is said to admit a Kolmogorovian model if
there exist:

– a probability space (Ω, θ, µ)
– for each x ∈ T , a measurable partition A1(x), . . . , An(x) of Ω

pαβ(x, y) =
µ(Aα(x) ∩ Aβ(y))

µ(Aβ(y))
(2)

Definition 2 In the notations above, the family {P (x, y) : x, y ∈ T} of
transition probability matrices is said to admit a complex Hilbert space model
if there exists:

– a complex Hilbert space H
– for each x ∈ T , an orthonormal basis φ1(x), . . . , φn(x) of H

pαβ(x, y) = |〈φα(x), φβ(y)〉|2 (3)
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Remark (1.). Renyi models or real or quaternion Hilbert space models are
defined in obvious analogy with Definitions (1.1), (1.2).

Remark (2.). The symmetry conditions:

pαβ(x, y) = pβα(y, x) ; x, y ∈ T , α, β = 1, . . . , n (4)

is a necessary condition for the existence of a (real or) complex Hilbert space
model.

For a given set T we will denote P (t) the family of all sets of the form
{P (x, y) : x, y ∈ T} where each P (x, y) is a n × n stochastic matrix. Thus
a point of the space P (T ) is a set of n × n stochastic matrices indexed by
T × T .

Definition 3 A Kolmogorovian (resp. complex o real Hilbert,...) statistical
invariant for the family P (T ) is defined by:

– a family of functions Fj : P (T )→ R(j ∈ I; I–a given set)
– a family {Bj : j ∈ I} of sub–sets of R
such that a set of transition probability matrices {P (x, y) : x, y ∈ T}

admits a Kolmogorovian model (resp. C– or R–Hilbert space models,...) if
and only if for each j ∈ I, Fj(P (x, y) : x, y ∈ T ) ∈ Bj.

Any probability preserving transformation of a given model for {P (x, y) :
x, y ∈ T} will preserve the values of the functions F , which are model in-
dependent. In this sense we speak the values of the functions F , which are
model independent. In this sense we speak of statistical invariants. Once
known the probabilities of the events [A(x) = aα(x)] (x ∈ T, α = 1, . . . , n),
the problem of determing the Kolmogorovian statistical invariants is reduced
to a linear one: one just writes the usual compatibility conditions for the (un-
known) joint probabilities of the random variables A(x) (x ∈ T ) and looks for
conditions under which the resulting linear system (whose coefficients depend
only on the probabilities pαβ(x, y), P (a(x) = aα(x))) has a positive normal-
ized solution. Thus, if T is a finite set, there is always a finite algorithm
which allows to determine the Kolmogorovian invariant for the family P (T )
(a precise formulation for T = {1, 2, 3} can be found in [4], Proposition (1.1)).
There is no mystery in the non existence of a Kolmogorovian model for a given
set of statistical data: the fact is that the joint probabilities mentioned above
are in principle unobservable (due to Heisenberg’s principle) and, moreover,
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in all concrete examples in which one knows that the Kolmogorovian model
doesn’t exist; the transition probabilities P (A(x) = aα(x)|A(y) = aβ(y))
refer to physically different and mutually incompatible physical situations.
Thus it is not obvious physically, (besides being mathematically wrong) that
these conditioned probabilities could be derived in the usual way by a set of
(unobservable) joint probabilities. Examples of physically meaningful statis-
tical data not admitting a Kolmogorovian model were known since the early
days of quantum mechanics (cf. The discussion of the two–slit experiment
in [7]); in [9] Bell pointed out another simple example (based on correlations
rather than conditinal probabilities )of statistical data not admitting a Kol-
mogorovian model. This examples was at the origin of a vast literature (cr.
for example [10], [13], [14], [19], [20], [21]) whose results can be framed in
the general scheme described above. In fact one can show (cf. [7]) that all
the so–called paradoxes of quantum theory arise from the application of the
usual rules of the Kolmogorovian model to sets of statistical data which do
nota dmit such a model.

Concerning the statistical invariants for the Kolmogorovian model at the
moment the following results are known:

Case T = {1, 2} (two observables). Without the symmetry condition
(4), the Kolmogorovian model might not exist and the statistical invariants
are explicitely known for n < +∞. With the symmetry condition (4), the
Kolmogorovian model always exists for n < +∞ – never for n = +∞; the
Renyi model always exists. In all cases the Kolmogorovian model is unique
up to stochastic equivalence [6].

Case T = {1, 2, 3}; n = 2 (Three, two–valued observables). The statistical
invariants are explicitely known [4], [6], [14].

Case T – arbitrary finite set; n < +∞ (a finite number of finitely val-
ued observables). Various algorithms have been proposed for the numerical
solution of the problem [13], [14].

Moreover various kinds of necessary conditions are known for the exis-
tence of the Kolmogorovian model in the case of three of four observables
with values ±1. In particular the resutls of Suppes and Zanotti [20] based on
Bell’s inequality can be considered as the expression of the statistical invari-
ants for the Kolmogorovian model in terms of pair correaltions rather than
transition probabilities.

The problem of determining the statistical invariants for the complex (or
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real,...) Hilbert space model is more difficult, being intrinsecally nonlinear:
here one looks for unitary matrices U(x, y) = (uαβ(x, y)) satisfying

uαβ(x, y) =
√
pαβ(x, y)eiθαβ(x,y) (5)

(where θαβ(x, y) is an unknown phase), and the compatibility conditions,
coming from the orthogonality relations, lead to nonlinear equations in the
unknown phases. Concerning these models the known results are the follow-
ing:

Case T = {1, 2} (Two observables). The complex or real Hilbet space
model always exists fro n = 2, but in general it doesn’t exist for n ≥ 3.
For n = 3 the statistical invariants for the complex Hilbert space model are
explicitely known [6]. For n > 3 the problem is open and can be formulated
as follows:

Problem (I.a). Given a n× n bi–stochastic matrix P = (pαβ):

pαβ ≥ 0 ;
∑
α

pαβ =
∑
β

pαβ = 1

find necessary and sufficient conditions on the pαβ’s for the existence of a
complex (resp. real) n×n unitary matrix U = (uαβ) satisfying: pαβ = |uαβ|2;
α, β = 1, . . . , n.

Problem (I.a) above has been first studied by M. Roos [22], [23], in con-
nection with the problem of the decay of the K–meson. In the language
of quantum probability, Roos’ investigations concerned the existence of a
C–Hilbert space model for the statistical data relative to the decay of the
K–meson. Finally, if n = +∞, one can show that the random walk bi–
stochastic matrices:

p = {pαβ : α, β ∈ Z} ; pα,β = 0 , if α 6= β ± 1

do not admit a complex Hilbert space model.

Case T = {1, 2, 3}; n = 2. (Three, two–valued observables). The complex,
real and quaterion Hilbert space statistical invariants are explicitely known
[4]. The complex and real invariants are different; the complex and the
quaterion invariants coincide; the complex and the Kolmogorovian invariants
are different. In particular, comparing these invariants with the existing and
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well established experimental data on spin −1/2 particles, and considering
the transition probabilities among values of the spin along three non parallel
directions, one obtains an experimental proof, not only of the insufficiency of
the Kolmogorovian model, but also of the necessity of using complex rather
than real Hilbert spaces.

Finally one can construct mathematical counterexamples showing the ex-
istence of triples of 2× 2 bi–stochastic matrices which do not admit neither
a Kolmogorovian nor a complex Hilbert spae model. Even if at the moment
it is unclear if these mathematical models might have a physical meaning, it
would be interesting to answer the following question:

Problem (I.b). Do there exist triples of 2× 2 bi–stochastic matrices which
do not admit neither C–Hilbert space nor a Kolmogorovian model, but which
admit an Heisenberg algebra model in the sense specified by Section (3.)
below?

For an arbitrary set T even the following problem is still open:

Problem (I.c). For finite T and n, can the statistical invariants for Pn(T )
be determined by a finite algorithm?

We conjecture that also the use of vector valued wave functions instead of
scalar valued ones has a purely statistical origin which can be read out from
appropriate statistical invariants. Finally, in connection with the generalized
quantum formalism proposed by Ludwig and his school, let us mention the
following problem:

Problem (I.d). Can one distinguish (at least in some simple models) the
generalized Ludwig formalism by the usual C–Hilbert space formalism by
means of statistical invariants?

2 Complementary pairs

In the preceeding section we have shown that many features of the quan-
tum mechanical formalism can be read out directly from the (experimentally
measurable) transition probabilities.

Let us now consider pairs of n–valued observables A, B whose transition
probability matrix corresponds to the maximum indeterminacy, i.e.:

P (A = aα|B = bβ) =
1

n
; α, β = 1, . . . , n (1)
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in such a case we will say that the two observables A, B are complementary
or that thay form a complementary pair.

The bi–stochastic matrix (1) always admit a C–Hilbert space model.
Moreover, denoting still A, B the operators corresponding to the observ-
ables A, B, it can be shown that, if A, B satisfy the discrete version of the
CCR, namely [18]:

eihAeikB = ei
hK
n eikBeihA ; h, k = 1, . . . , n (2)

then they are complementary. Unfortunately the converse is not true: there
are complementary pairs A, B which do not satisfy the CCR, i.e. (2). Thus
means that the algebraic relations between observables satisfying the CCR
cannot be read out from the corresponding statistics. The following problem
thus arises:

Problem (I.f). Classify the complementary pairs in B(H) (dimH < +∞)
up to the natural unitary equivalence.

There is a continuous version of this problem. In fact one easily sees that
condition (1) is equivalent to:

τ(EA(I) · EB(J)) = |I| · |J | (3)

where I, J denote sub–sets of {1, . . . , n}; EA(·), EB(·) are the spectral mea-
sures of A, B respectively; | · | denotes the uniform probability measure on
{1, 2, . . . , n} (i.e. (1/n, 1/n, . . . , 1 : n); and τ− the normalized trace on B(H).
Thus, if dimH = +∞, it is natural to call complementary two self–adjoint
operators A, B satisfying (3) with I, J ⊆ R; τ− the trace on B(H); and
| · | – the Lebesgue measure on R. By Fourier analysis manipulations show
that if A, B denote respectively the position and momentum operators on
L2(R, dx), then they are complementary. Hence by the Stone–von Neumann
theorem any pair A, B of self–adjoint operators satisfying the CCR:

eihAeikB = eihKeikBeihA ; h, k ∈ R (4)

is a complementary pair. It is reasonable to expect that also in the infinite–
dimensional case complemtary pairs are not unique up to unitary isomor-
phism, thus the problem of classifying complementary pairs on B(H) (or
more generally, on a semi–finite von Neumann algebra) is open.

9



3 Deduction of the quantum formalism from

Heisenberg principle

In order to answer to Question (III.) in § (0.) let us recall that, as shown in [5],
[6], [7], the axiomatic formalization of the notion of first kind measurement
(or filter), and of the operations which can be perfomed on them, leads
naturally to the notion of Schwinger algebra of measurements which, in the
notations introduced in § (1.), is defined as follows:

Definition 4 A Schwinger algebra of measurements associated to the family
of observables {A(x) : x ∈ T} is a real, associative algebra A with an identity
1 and an involution *, satisfying the following conditions:

i) to each x ∈ T and to each value aα(x) of A(x) one can associate an
element Aα(x) of A.

ii) For each x ∈ T :
AA(x) = Aα(x)∗ ; α = 1, . . . , n (1)∑

α=1

Aα(x) = 1 (2)

Aα(x) · Aα′(x) = δα αAα(x) ; α, α′ = 1, . . . , n (3)

iii) The algebra A is generated by the set {Aα(x) : x ∈ T ; α = 1, . . . , n}.

The main ideas on Schwinger algebras were introduced by J. schwinger
[17]. The Aα(x) are called elementary (or atomic, or maximal,...) filters.
Heuristically Aα(x) corresponds to the (first kind) measurement of A(x)
which, from an ensemble of system selects those for which the observable
A(x) takes the value aα(x); multiplication of elementary filters corresponds
to the performance in series of the corresponding operations and yields a
filter, or apparatus; the involution corresponds to the application in series
of the same sequence of elementary filters, but and is extended by a purely
mathematical procedure (cf. [5] for more details). Two elements of A are
called compatible if they commute. The centre of A, i.e. the set of those
elements of A which are compatible with all elements of A, will be denoted
κ. The observable A(x) will be called maximal if the algebra A(x) generated
by Aα(x) (α = 1, . . . , n) over κ (i.e. the set of all linear combinations of
the form

∑n
α=1 ραAα(x), with ρα(∈, α = 1, . . . , n) is maximal abelian, that
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is: an element of A commuting with all elements of A(x) must belong to
A(x). In the classical case all the observables are mutually compatible and
A itself is abelian. In the quantum case, since any set of mutually compatible
observables can be completed to a maximal set of compatible observables,
it is not a physical restriction to consider only maximal sets of compatible
obervables.

Proposition 1 In the notations above, if each observable A(x) (x ∈ T ) is
maximal then for any x, y ∈ T and α, β = 1, . . . , n, there exists an element
pαβ(x, y) ∈ κ satisfying:

Aα(x) · Aβ(y) · Aα(x) = pαβAα(x) (4)

pαβ(x, y)Aα(x) ≥ 0 ;
n∑
β=1

pαβ(x, y)Aα ∈ x) = Aα(x) (5)

pαβ(x, y) · Aα(x) · Aβ(y) = pβα(y, x)Aα1(x)Aβ(y) (6)

Proof . For each x, y ∈ T , α, β = 1, . . . , n, Aα(x)Aβ(y)Aα(x) belongs to the
ocmmutant of A(x), hence by maximality to A(x) itself, therefore it must
have the form (4). (5) is a trivial consequence of (4). Moreover:

pαβ(x, y)Aα(x)Aβ(y) = Aα(x)[Aβ(y)Aα(x)Aβ(y)] = pβα(y, x)Aα(x)Aβ(y)

and this proves (5).

Remark . Since x ∈ A →
∑

αAα(x)XAα(x) is a projection onto the com-
mutant of A(x), if the products {Aα(x)Aβ(y) : α, β = 1, . . . , n linearly span
A over κ, then condition (4) is also sufficient for the maximal abelianity of
A(x).

The identity (4) has a natural physical interpretation, described in [5] – §
(4.). It implies in particular that for any pair x, y ∈ T the sub–algebra of A
generated over κ by Aα(x), Aβ(y) (α, β = 1, . . . , n) is finite dimensional: in
fact, due to (4), all the products AjI (x)Ajl(y) ·Ai2(x)Ai2(y) · . . . ·Aik(x)Aik(y)
can be expressed as linear combinations of products of this type with k = n
and all the indices i1, . . . , in, (resp. j1, . . . , jn) mutually different.

A Schwinger algebra satifying conditions (I1.), (I.2.) below will be called
generic:
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(I1.) For each γ ∈ κ and x ∈ A

γ ·X = 0⇔ γ = 0 or X = 0

(I.2.) For each x ∈ T , α = 1, . . . , n, and γ ∈ κ:

γ · Aα(x) ≥ 0⇒ γ ≥ 0

For a generic Schwinger algebra, the conditions (5) and (6)) in Proposition
(3.2) become:

pαβ(x, y) ≥ 0 ;
n∑
β=1

pαβ(x, y) = 1 (7)

pαβ(x, y) = pβα(x, y) (8)

A n× n matrix (pαβ) with coefficients in an abelian ∗–algebra κ (real, asso-
ciative and with identity) and satisfying:

pαβ ≥ 0 ;
n∑
β=1

pαβ = 1 (9)

will be called a κ–valued stochastic matrix (bi–stochastic if also
∑n

β=1 pαβ =
1). Occasionally we will also use the term “κ–valued transition probability
matrix”. If κ is finite–dimensional then it must be the algebra of diagonal
matrices over the real or complex numbers. In both cases condition (9)
implies that the j–th coefficients (pjαβ) (α, β = 1, . . . , n) of the diagonal
matrix (pαβ) is a stochastic (resp. bi–stochastic) matrix in the usual sense.

Thus a generic Schwinger algebra associated to a given set of maximal ob-
servables {A(x) : x ∈ T} has an intrinsic stochasticity built into its algebraic
structure and represented by κ–valued bi–stochastic matrices (pαβ(x, y)).
This elements that is, whenever there exist at least two different maximal
observables. But the existence of pairs of maximal observables is a direct
consequence of Heisenberg indeterminacy principle. We conclude that the
notion of first kind measurement and the Heisenberg principle leads natu-
rally to an interplay between algebraic and statistical structures. Our goal
is to study this interplay and in particular the following questions:

– to what extent does the stochastic structure given by the transition prob-
ability matrices (pαβ(x, y)) determine the algebraic structure of the
Schwinger algebra and conversely:
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– which restrictions are imposed on the transition probability matrices (pαβ(x, y))
from the property of being canonically associated to a Schwinger alge-
bra in the sense of Proposition (3.2)?

We will give a complete answer to these questions for a particular class
of Schwinger algebras: the Heisenberg algebras.

Definition 5 A Schwinger algebra, associated to a set {A(x) : x ∈ T} of
maximal observables will be called an Heisenberg algebra if it satisfies the
genericity conditions (I.1), (I.2) and has minimal dimension over its centre
κ.

Remarking that the genericity conditions (I.1) and (I.2) imply that, for
each x, y ∈ T , the products {Aα(x) · Aβ(y) : α, β = 1, . . . , n} are always
linearly independent over κ, one can conclude that an Heisenberg algebra
(associated to n–valued observables) has dimension n2 over its centre κ and
that for each x, y ∈ T the products {Aα(x) · Aβ(y) : α, β = 1, . . . , n} are a
κ–basis.

The following problem is open:

Problem (III.a). Does there exist a Schwinger algebra associated to a
family {A(x) : x ∈ T} of maximal observables (T–some set), which is not an
Heisenberg algebra?

As we will see Heisenberg algebras include the usual algebras which ap-
pear in quantum theory (of finite–valued observables). Hence an affermative
answer to Problem (III.a) should be based on some algebraic structure unsual
for quantum theory. Of course Problem (III.a) is a particular case of

Problem (III.b). Classify the Schwinger algebras which can be associated
to a given set {A(x) : x ∈ T} of maximal observables.

4 The classification theorem

Let us first consider the case of a two–element index set: T = {1, 2}. In this
case one has two maximal observables, denoted A and B and, by Proposition
(3.2), one κ–valued transition probability matrix:

pαβ = pαβ(x, y) = pβα(y, x) (1)
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The algebra A is generated over its centre κ by the products {AαBβ : α, β =
1, . . . , n}–thus, in particular

BβAα =
n∑

α′,β′=1

γα
′β′

αβ AαBβ (2)

with γα
′β′

αβ ∈ κ(α, β, α′, β′ = 1, . . . , n). The elements γα
′β′

αβ of κ will be called
the structure constants of the Heisenberg algebra A in the (AαBβ)–basis.
They uniquely determine the algebraic structure of A in view of the following
proposition whose proof, which is done by routine arguments, is omitted.

Proposition 2 Let A be an associative R–algebra with identity and with
centre κ. Let (Aα), (Bβ) (α, β = 1, . . . , n) be elements of A such that:

{Aα ·Bβ : α, β = 1, . . . , n} is a κ–basis of A (3)

AαAα′ = δαα′Aα ; BβBβ′ = δββ′Bβ ;
∑
α

Aα =
∑
β

Bβ = 1 (4)

and assume that the genericity condition (I.1) of § (3.) is satisfied. Then, if

(γα
′β′

αβ ) are the structure constants of A in the (AαBβ)–basis:

n∑
α=1

γα
′β′

αβ = δββ′ (5)

n∑
β=1

γα
′β′

αβ = δαα′ (6)

γαβ
′

α′β · γ
αβ′′

α′′β′ = γαβ
′′

α′β · γ
α′β′′

α′′β′ (7)

Conversely if κ is a commutative, associative R–algebra with identity and
(γα

′β′

αβ ) (α, β, α′, β′ = 1, . . . , n) are n4 elements of κ satisfying (5), (6), (7),
then there exist an associative κ–algebra with identity A and elements (Aα),
(Bβ) of A satisfying conditions (3) and (4).

Example. In the notations above, A is abelian if and only if:

γα
′β′

αβ = δαα′δββ′
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Theorem 1 Let A be an Heisenberg algebra associated to the two observables
A = (Aα), B = (Bβ), and let γα

′β′

αβ be the structure constants of A in the

(AαBβ)–basis. If each γα
′β′

αβ is invertible, then there exists a κ–valued matrix
U = u(A|B) ≡ (uαβ) such that:

u is invertible for α, β = 1, . . . , n (8)

n∑
α=1

(
pαβ
uαβ

)
uαβ′ = δββ′ (9)

n∑
β=1

uα′β

(
pαβ
uαβ

)
= δαα′ (10)

γα
′β′

αβ =
u(α, β′) · u(α′, β)

u(α, β) · u(α′, β′)
· pαβ (11)

where (pαβ) is the transition probability matrix associated to the pair (Aα),
(Bβ) according to Proposition (3.2). Conversely, given a κ–valued bi–stochastic
matrix P = (pαβ) such that pαβ is invertible for each α, β = 1, . . . , n, any
κ–valued matrix U = (uαβ) satisfying (8), (9), (10) defines an Heisenberg al-
gebra A with centre κ, associated to two maximal observables (Aα), (Bβ) and
such that P = (pαβ) is the transition probability matrix canonically associated
to the pair (Aα), (Bβ) and the structure constants of A in the (AαBβ)–basis
are given by (11).

Proof. Sufficiency . Let P = (pαβ) be a κ–alued bi–stochastic matrix, and let

U = (uαβ) be a κ–valued matrix satisfying (8), (9), (10). Then, defining γα
′β′

αβ

by to Proposition (4.1), there exists an associative κ–algebra A with identity
and elements (Aα), (Bβ) (α, β = 1, . . . , n) of A satisfying conditions (3), (4).
Any involution * on κ can be extended to A by: (λAαBβ)∗ = λ ∗ BβAα
(λ ∈ κ), and under this extension Aα = A∗α; Bβ = B∗β (α, β = 1, . . . , n).
Finally:

AαBβAα = Aα

(∑
α′β′

γα
′β′

αβ Aα′Bβ′

)
= pαβAα

(∑
β′

Bβ′

)
= pαβAα

and similarly for BβAαBβ. Thus, in view of the remark following Proposition
(3.2) both (Aα) and (Bβ) generate maximal abelian sub–algebras of A, and
the associated bi–stochastic matrix is P .
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Necessity . Under our assumptions, one easily verifies that, for any α′,
β′ = 1, . . . , n:

γα
′β

αβ = pαβ ; γαβ
′

αβ = pαβ (12)

Hence, under our assumptions, pαβ is invertible and we can define the nor-
malized structure constants:

Γα
′β′

αβ = (pαβ)−1 · γα
′β′

αβ (13)

Now, using twice the identity (7) one obtains:

γα
′′β

α′β′ · γα
′β

αβ′ · γα
′′β′′

αβ = γα
′′β′

α′β′ : γα
′′β

αβ′ · γα
′′β′′

αβ = γα
′′β′

α′β′ · γα
′′β′′

αβ′ · γαβ
′′

αβ

hence, dividing both sides by pαβ and using (12) and (13):

Γα
′β
αβ′ · Γα

′′β
α′β′ · Γα

′′β′′

αβ = Γα
′′β′′

αβ′ (14)

Choosing β′′ = β in (14), one finds:

Γα
′β
αβ′ · Γα

′′β
α′β′ = Γα

′′β
αβ′ (15)

hence in particular:
Γαβα′β′ = (Γα

′β
αβ′)

−1 (16)

Now fix an index α0 arbitrarily and denote

γ

(
α;

β
β′

)
= Γα0β

αβ′ (17)

with these notations, using (15) and (16), (14) becomes

γ

(
α;
β′′

β′

)
γ

(
α′′;

β′′

β′

) =

γ

(
α;

β
β′

)
γ

(
α′;

β
β′

) · γ
(
α′;

β
β′

)
γ

(
α′′;

β
β′

) · γ
(
α;
β′′

β

)
γ

(
α′′;

β′′

β

)
This implies that the expression:

γ

(
α;

β
β′

)
· γ
(
α;
β′′

β

)
· γ
(
α;
β′′

β′

)−1
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is independent on α an therefore equal to 1 (since we can choose α = α0).
Thus, fixing an index β0 arbitrarily, and denoting:

u(α, β) = γ

(
α;

β
β0

)
(18)

we obtain:

γα
′β′

αβ = pαβΓα
′β′

αβ = pαβ · γ
(
α;
β′

β

)
·
(
γ

(
α′;

β′

β

))−1
= pαβ

u(α, β′) · u(α′, β)

u(α, β) · u(α′, β′)

and this proves (11). Once proved (11), (9) and (10) are immediate conse-
quences of (5), (6) respectively, while (8) follows from (18) and the invert-

ibility of the γα
′β′

αβ . And this ends the proof.

Remark 1.). Introducing the notations

uαβ(A|B) = u(α, β) ; uβα(B|A) = pαβ/u(α, β); u(A/B) = {uαβ(A/B)}; u(B/A) = {uβα(B/A)}
(19)

conditions (9) and (10) become respectively:

U(B|A)U(A|B) = 1 ; U(A|B)U(B|A) = 1 (20)

Remark 2.). One easily recognizes in (9), (10) a generalization of the usual
orthogonality relations of quantum theory. In the usual quantum case the
structure constants have the form:

γα
′β′

αβ =
〈φα′ , ψβ〉〈ψβ, φα〉〈φα, ψβ′〉

〈φα′ , ψβ′〉
(21)

where (φα) and (ψβ) are two ortho–normal bases of a complex Hilbert space
H and 〈·, ·〉 denotes the scalar product in H. This shows in what sense
condition (8) is a genericity condition.

If P = (pαβ) is a κ–valued bi–stochastic matrix, a κ–valued matrix U =
(uαβ) satisfying conditions (8), (9), (10) will be called a κ–valued transition
amplitude matrix for p.

A family (Cα) of elements of A satisfying:

Cα · Cα′ = δαα′Cα ;
∑
α

Cα = 1 (22)
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will be called a partition of the identity in A. If the κ–algebra generated by
(Cα) is maximal abelian, the partition of the identity will be called maximal
abelian. If (Cα), (Dβ) (α, β = 1, . . . , n) are partitions of the identity in A,
such hat CαDβ 6= 0 for each α, β = 1, . . . , n, then clearly the set (CαDβ) is a
κ–basis of A.

Lemma 1 Let (Cα), (Dβ) (α, β = 1, . . . , n) be two maximal abelian parti-
tions of the identity in A such that CαDβ 6= 0 for each α, β = 1, . . . , n. De-

note γα
′β′

αβ the structure constants of A in the (CαDβ)–basis, and P (C|D) =
(pαβ), the κ–valued bi–stochastic matrix associated to the pair (Cα), (Dβ). If
for any α, β, pαβ is invertible, then for any set x(α, β) of invertible elements
of κ, the following assertions are equivalent:

i) δα
′β′

αβ = x(α′,β)x(α,β′)
x(α′,β′)·x(α,β) pαβ

ii) EαβEα′β′ = p(α′,β)
x(α′,β)

Eαβ′

where, by definition Eαβ = CαDβ/x(α, β).

Proof . By definition of structure constants:

Cα′DβCαDβ′ = δα
′β′

αβ Cα′Dβ′

or equivalently:

Eα′ · Eαβ′ = δα
′β′

αβ

x(α′, β′)

x(α′, β) · x(α, β′)
Eα′β′

thus (ii) is equivalent to:

δα
′β′

αβ ·
x(α′, β′)x(α, β)

x(α′, β) · x(α, β′)
· 1

pαβ
= 1

which is (i).

In the following we will determine the structure of the maximal abelian
partitions of the identity (Cγ) which are generic in the sense that, if

Cγ =
∑
αβ

Cγ
αβAαBβ ; Cγ

αβ ∈ κ

then all the Cγ
αβ’s are invertible.
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Theorem 2 In the notations and the assumptions of Theorem (4.1) let (Cγ)
be a generic maximal abelian partition of the identity in A. Then there
exists two κ–valued matrices U(A|C) = (ρ(α, β)) and U(B|C) = (τ(β, γ))
(α, β, γ = 1, . . . , n) satisfying

n∑
γ=1

ρ(α, γ)τ(γ, β) = u(α, β) (23)

∑
β,α

τ(γ, β)u(β, α)ρ(α, γ′) = δγγ′ (24)

Cγ =
∑
α,β

ρ(α, γ) · τ(γ, β)

u(α, β)
AαBβ (25)

Conversely, any pair of κ–valued matrices U(A|C) = (ραγ), U(B|C) = (τβγ)
satisfying (23), (24) defines, through (25) a generic maximal abelian partition
of the identiyt in A.

Proof. Sufficiency . Let (ραγ), (τβγ) be κ–valued matrices satisfying (23),
(24). Defining (Cγ) by (25), the conditions (22) are easily verified by direct
calculation. DenoteA(C) the κ–algebra generated by the Cγ’s. To prove that
A(C) is maximal abelian, it will be sufficient to show that th image of A for
the conditional expectation x ∈ A →

∑
γ CγXCγ is A(C) or, equivalently,

that for each α, β, CγAαBβCγ = λCγ for some λ ∈ κ. And this identity is
verified by direct computation too.
Necessity . Let (Cγ) be a generic partition of the identity in A, and let

Cγ =
∑
αβ

Cγ
αβEαβ ; Cγ

αβ ∈ κ

where we put for convenience: Eαβ = AαBβ/uαβ. Then:

(AαCγBβ) · (Aα, CγBβ) = Cγ
αβC

γ
α′βuβα′Eαβ (26)

and, by the maximal abelianity of (Cγ):

CγBβAα′Cγ = Γγ,α′βCγ (27)

Comparing (26) and (27), one deduces:

CγBβAα′Cγ = Cγ
α′βu(β, α′)Cγ (28)
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But one has also:

CγBβAα′Cγ =
∑
αβ′′

Cγ
αβu(β, α′)Cγ

α′β′′Eαβ′′ (29)

Thus, comparing (28) and (29) one obtains:

Cγ
αβ · (C

γ
α′β)−1 = Cγ

αβ′ · (Cγ
α′β′)

−1

independently on α, β, α′, β′. Hence, by the same arguments as in Theorem
(4.2) there exist two κ–valued matrices (ρ(α, γ)), (τ(γ, β)), such that:

Cγ
αβ · (C

γ
α′β)−1 = ρ(α, γ)/ρ(α′, γ) (30)

Cγ
αβ · (C

γ
αβ′)

−1 = τ ′(γ, β)/τ ′(γ, β′) (31)

In particular the quantity:

εγ = Cγ
αβ/[ρ(α, γ) · τ ′(γ, β)]

is independent on α, β = 1, . . . , n, and denoting τ(γ, β) = εγτ
′(γ, β), one

deduces:
Cγ
αβ = ρ(α, γ) · τ(γ, β)

and this proves (25). Moreover:

1 =
n∑
γ=1

Cγ =
∑
α,β

[∑
γ

γ(α, γ)τ(α, β)

u(α, β)

]
AαBβ

and this implies (23). Finally, the orthogonality relation CγCγ′ = δγγ′Cγ is
equivalent to: ∑

α′β

Cγ
α,β · u(β, α′) · Cγ′

α′,β′ = δγγ′C
γ
α,β′

and this, due to (31) and the genericity assumption is equivalent to (24). the
theorem is proved.

Theorem 3 Let A be an Heisenberg algebra of dimensions n2 over its centre
κ. For any triple (Aα), (Bβ), (Cγ) of maximal abelian generic partitions of
the identity in A there exist κ–valued matrices {U(X|Y ) = (uαβ(X|Y ) :
X, Y = A,B,C} satisfying:

U(X|X) = 1 (32)
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U(X|Y ) · U(Y |Z) = U(X|Z) (33)

and such that, if X 6= Y ; then the matrix P (X|Y ) = (pαβ(X|Y )) defined by:

pαβ(X|Y ) = uαβ(X|Y )uβα(Y |X) (34)

is the transition probability matrix canonically associated to the (XαYβ)–basis
according to Proposition (3.2). Conversely, any set {U(X|Y ) : X, Y =
A,B,C} of κ–valued matrices satisfying (32), (33), (34) canbe obtained in
this way.

Proof. Necessity . Because of Proposition (3.2) the matrices P (A|C), P (B|C), . . .
are characterized by the properties:

CγAαCγ = pγα(A|C)Cγ; AαCγAα = pαγ(C|A) (35)

CγBβCγ = pγβ(B|C)Cγ ; BβCγBβ = pβγ(C|B) (36)

Using (35) and (25) one obtains:

pαγ(C|A)Aα = AαCγAα =
∑
β

ρ(α, γ)τ(γ, β)
pαβ(A|B)

uαβ(A|B)

and this, due to (19) is equivalent to:∑
β

τ(γ, β)uβα(B|A) = pαγ(A|C)/ρ(α, γ) (37)

In a similar way one shows that:∑
α

uβα(B|A)ρ(α, γ) = pγβ(C|B)/τ(γ,B) (38)

Thus, defining the κ–valued matrices:

uαγ(A|C) = ρ(α, γ) ; uγα(C|A) = pαγ(A|C)/ρ(α, γ) (39)

uγβ(C|B) = τ(γ, β) ; uβγ(B|C) = pγB(C|B)/τ(γ, β) (40)

(37) and (38) become respectively:

U(C|B) · U(B|A) = U(C|A) ; U(B|A) · U(A|C) = U(B|C) (41)
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which, in view of (20) imply:

U(C|B) = U(C|A) · U(A|B) ; U(A|C) = U(A|B)U(B|C) (42)

and this proves (33) for X 6= Z. Now for X, Y = A,B,C, denote:

EX,Y
γβ = XαXβ/uγβ(X|Y ) (43)

Using (25) and (41) one finds:

CγBβ·Cγ′Bβ′ =
∑
α2,γ′

uα′γ(A|C)·uγβ(C|B)·uα2γ′(A|C)·uγ′β′(C|B)·uβ,α2(B|A)·EAB
α′β′ =

=
∑
α′

uα′γ(A|C) · uγβ(C|B)uβγ′(B|C)uγ′β′(C|B)EAB
α′β′

or, equivalently, using again (25) in appropriate notations:

ECB
γβ · ECB

γ′β′ =

{∑
α′β

uα′γ(A|C) · uγβ(C|B) · EAB
α′β

}
Bβ′ = uβγ′(B|C) · ECB

γβ′

Therefore, from Lemma (4.3) we conclude that

uγ′β(C|B) · uγβ′(C|B)

uγ′β′(C|B) · uγβ(C|B)
· pγβ(C|B) = δγ

′β′

γβ

are the structure constants of A in the (CγBβ)–basis and, in view of Theorem
(4.1) this implies, in particular:

U(C|B) · U(B|C) = U(B|C) · U(C|B) = 1

Similarly one shows that:

U(A|C) · U(C|A) = U(C|A) · U(A|C) = 1

Sufficiency . Let U(X|Y ), P (X|Y ) (X, Y = A,B,C) be as in the formulation
of the theorem. Denote A the Heisenberg algebra generated over its centre κ
by the partitions of the identity (Aα), (Bβ) (α, β = 1, . . . , n), whose structure
constants in the (AαBβ)–basis are:

γα
′β′

αβ =
uαβ′(A|B) · uα′β(A|B)

uαβ(A|B) · uα′β′(A|B)
pαβ(A|B)
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Because of (33) (with X = Z) and (34) and of Theorem (4.2), these are
the structure constants of an Heisenberg algebra with centre κ. Define, for
γ = 1, . . . , n:

Cγ =
∑
α,β

uαγ(A|C) · uγβ(C|B)

uαβ(A|B)
AαBβ

Then, according to Theorem (4.4), (Cγ) is a maximal abelian partition of the
identity in A and it is easy to convince oneself that the transition amplitude
and probability matrices, associated to the triple (Aα), (Bβ), (Cγ) according
to the first part of the theorem are the given ones.

The results above allow to solve the following problem: given a set T
and a family {P (x, y) : x, y ∈ T} of real valued (or more generally, κ0–
valued, where κ0 is a commutative, associative ∗–algebra with identity) n×n
transition probability matrices, under which conditions do there exists:

i) An Heisenberg algebra A of dimension n2 over its centre κ(⊃ κ0).
ii) For each x ∈ T a maximal abelian generic partition of the identity

{Aα(x) : α = 1, . . . , n} in A such that for each x, y ∈ T the transition
probability matrix associated to the pair (Aα(x)), (Aβ(y)) is P (x, y)?

Remark that, since the symmetry condition

pαβ(x, y) = pβα(y;x) (44)

has been shown in Proposition (3.2) to be a necessary condition for the
solution of the problem, we can assume that it is satisfied. Moreover we will
assume that:

P (x, x) = 1 ; ∀x ∈ T (45)

Pα,β(x, y) > 0 ; ∀α, β = 1, . . . , n ; ∀x, y ∈ T ; x 6= y (46)

and look only for generic solutions (i.e. such that the structure constants of
A in all the (Aα(x)Bβ(y))–bases are invertible. Under these assumptions we
have:

Theorem 4 The following assertion are equivalent:
i1.) There exists an Heisenberg algebra with centre κ satisfying conditions

(i), (ii) above.
i2.) For each x, y ∈ T there exists a κ–valued transition amplitude matrix

U(x, y) for P (x, y) such that:

U(x, x) = 1 ; ∀x ∈ T (47)
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U(x, y) · U(y, z) = U(x, z) ; ∀x, y, z ∈ T (48)

i3.) There exists a κ–module H and for each x ∈ T – a κ–basis (aα(x))
(α = 1, . . . , n) of H such that the operators Aα(x) defined by

Aα(x) · aα′(x) = δα′αaα(x) (49)

satisfy
Aα(x) · Aβ(y) · Aα(x) = pαβ(x, y)Aα(x) (50)

Proof . The implication (i1.) ⇒ (i2.) follows from Theorem (4.5). To prove
that implication (i2.) ⇒ (i3.), fix x0 ∈ T arbitrarily and denote H the free κ–
module generated by the symbols a1(x0), . . . , an(x0). Define, for every x ∈ T
and α = 1, . . . , n, the vector:

aα(x) =
n∑
β=1

uβα(x0, x)aβ(x0) ∈ H

and the operator Aα(x) : H → H

Aα(x)aβ(x0) = uαβ(x, x0)aα(x)

Then it is easy to verify hat for each x ∈ T (aα(x)) is a κ–basis of H and (49)
and (50) hold. Finally, if (i3.) holds, then, because of (46) and (50), for each
x, y ∈ T and α, β = 1, . . . , n, Aα(x)Aβ(y) 6= 0, hence by Lemma (4.3) the set
{Aα(x)Aβ( )} (α, β = 1, . . . , n) is a κ–basis of the (Heisenberg) algebra of all
κ–linear operators onH. But then, due to the Remark after Proposition (3.2)
condition (50) implies the maximal abelianity of the κ–algebra generated by
{Aα(x) : α = 1, . . . , n}. Thus (i3.) ⇒ (i1.) and the theorem is proved.

In the notations of Theorem (4.6) above, we say that the family of tran-
sitions probability matrices {P (x, y) : x, y ∈ T} admits a κ–Hilbert space
model if in the κ–moduele H, defined in point (i3.) of Theorem (4.6) one
can define a κ–valued scalar product 〈·, ·〉 for which all the κ–bases (aα(x))
are orthonormal bases. That is, if there is map u, v ∈ H ×H → 〈u, v〉 ∈ κ,
such that ∀u, v′ ∈ H

〈u, v + v′〉 = 〈u, v〉+ 〈u, v′〉 (51)

〈u, λv〉 = λ〈u, v〉 ; λ ∈ κ (52)
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〈u, v〉 = 〈v, u〉∗ (53)

〈u, u〉 ≥ 0 (54)

〈aα(x), aα′(x)〉 = δαα′ ; ∀x ∈ T ; ∀α = 1, . . . , n (55)

If this is the case, the transition amplitude matrices U(x, y) are defined by:

〈a(x), a(y)〉 = uαβ(x, y) (56)

and satisfy:

uαβ(x, y)∗ = uβα(y, x) =
pαβ(x, y)

uαβ(x, y)
(57)∑

αβ=1,...,n
jk=1,...,m

λ∗αjλβkuαβ(xj, xk) ≥ 0 (58)

for any m ∈ N , λαj ∈ κ (α = 1, . . . , n; j = 1, . . . ,m). Conversely, if the
transition amplitude matrices U(x, y) defined in point (i2.) of Theorem (4.6)
satisfy conditions (57) and (58), then the family of transition probability
matrices P (x, y) (x, y ∈ T ) admit a κ–Hilbert space model.

Remark 1.). Equation (48) is clearly a generalization of Schrödinger’s evolu-
tion. In our theory it appears as a compatibility condition for a set of tran-
sition probability matrices {P (x, y)} to admit an Heisenberg algebra model.
If the index set T is acted upon by a group G so that probabilities are pre-
served (P (x, y) = P (qx, qy)), one might study the corresponding generalized
unitary representaion of G on H. Thus equation (48) is also a generalization
of the notion of “unitary representation”. Examples are easily constructed.

Remark 2.). The reversibility of the “generalized evolution” {U(x, y)}, im-
plicit in equation (48), has a purely statistical origin, stemming from the
symmetric role that two maximal observables A(x) and A(y) play in their
mutual conditioning.

5 Geometric extensions of the quantum prob-

abilistic formalism

We keep the notations of Sections (3.) and (4.). To fix the ideas our consid-
erations will be restricted to κ–Hilbert space models, and we assume that the
set of transition probability matrices {P (x, y) : x, y~∈T} admits a κ–Hilbert
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space model, i.e. – cf. Theorem (4.6) – that there exists a κ–Hilbert space
H, ∀x ∈ T – an orthonormal basis {aα(x) : α = 1, . . . , n} of H, and for any
x, y ∈ T – a unitary operator U(x, y) (with coefficients in κ) satisfying:

U(x, y) : H → H (1)

U(x, x) = 1 (2)

U(x, y) · U(y, z) = U(x, z) ; ∀x, y, z ∈ T (3)

|〈aβ(y), Y (x, y)aα(x)〉|2 = pαβ(x, y) ; α, β = 1, . . . , n (4)

If T is a manifold, it is a natural to introduce a path dependent generalization
of the “evolution equation” (3) along the following lines: one considers a κ–
Hilbert bundle, i.e. a fibre bundle H(T ) with base T and fiber H(x) (x ∈ T )
isomorphic to a κ–Hilbet spaceH. Introducing the space Ω(T ) of all piecewise
smooth paths [0, 1] → T , we denote γxy a generic path γ ∈ Ω(T ) such that
γ(0) = x, γ(1) = y (x, y ∈ T ). With these notations the notion of Heisenberg
algebra model for a set of transition probability matrices {P (x, y)} can be
generalized as follows:

Definition 6 Let T be a manifold. A family of n× n transition probability
matrices {P (γxy) : γx,y ∈ Ω(T ), x, y ∈ T} is said to admit a κ–Hilbert bundle
model if there exist:

i) A Hilbert bundle H(T ) with base T .
ii) A unitary connection on H(T ), i.e. a map U : γxy ∈ Ω(T )→ U(γx,y) ∈

Unitaries H(x)→ H(y) such that

U(γyz) · U(γxy) = U(γxy ◦ γyz) ; x, y, z ∈ T (5)

U(γ) = U(γ)−1 (6)

U(γ) = U(γ′) if γ′ is a riparametrization of γ (7)

Here: γ−1(t) = γ(1 − t) and γ8γ′(t) = γ(2t) if 0 ≤ t < 1/2; = γ′(2t − 1), if
1/2 ≤ t ≤ 1.

iii) For any x ∈ T an orthonormal basis {aα(x) : α = 1, . . . , n} of H(x)
such that, for any γxy ∈ Ω(T ) (x, y ∈ T )

|〈aβ(y), U(γxy)aα(x)〉|2 = pαβ(γ) (8)

Two Hilbert bundle models {H(T ), U(·)}, {H′(T ), U ′(·)} are called isomor-
phic if there exists a vector bundle isomorphism V ; H(T ) → H′(T ) which
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intertwines the connections. It is not clear at the moment to what extent the
transition probabilities pαβ(γxy) fix the isomorphic type of the bundle. How
ever, for a trivial bundle, the triviality of the holonomy group of the con-
nection U(·) is easily seen to be a necessary and sufficient condition for an
Hilbert bundle model to be isomorphic to a usual quantum model. This sug-
gests the conjecture that also in the general case the statistical invariants in
terms of the topological and geometrical invariants of the pair {H(T ), U(·)}.
Finally, let us remark that point (iii) in Definition (5.1) means that we are
fixing a cross section into the frame bundle F(H(T )), i.e. the bundle of or-
thonormal frames of H(T ), and consequently an identification of F(H(T ))
with the principal bundle P (T, U(n;κ)) where U(n;κ) denotes the unitary
group with cofficients in κ. Once the cross section a : T → F(H(T )) is fixed,
the connection V (·) on F(H(T )) or, through the formula

V (γ) = ~exp

{∫
γ

Aa

}
; γ ∈ Ω(T )

(where ~exp means time–ordered exponential), to the assignment of a matrix
valued 1–form Aa–the connection matrix of the connection U(·) in the frame
field a (or simply the “potential”). The curvature form associated to A (i.e.
F = dA + 1

2
AΛA) is usually called a gauge field. Thus as the Heisenberg

models deduced in Theorem (4.6) extend the usual quantum model, the corre-
sponding bundle models, obtained with an obvious modification of Definition
(5.1), generalize, in the same direction, the gauge field theories.
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