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ABSTRACT: This paper presents a black-box model that can be applied to characterize the

nonlinear dynamic behavior of power amplifiers (PAs), including strong nonlinearities and

memory effects. Feedforward time-delay Neural Networks (TDNN) are used to extract the

model from a large-signal input-output time-domain characterization in a given bandwidth;

furthermore, explicit formulas to derive Volterra kernels from the TDNN parameters are

also presented. The TDNN and related Volterra models can predict the amplifier response

to different frequency excitations in the same bandwidth and power sweep. As a case study,

a PA, characterized with a two-tone power swept excitation, is modeled and simulations are

found in good agreement with training measurements; moreover, a model validation with

two tones of different frequencies and spacing is also performed. VVC 2007 Wiley Periodicals,

Inc. Int J RF and Microwave CAE 17: 160–168, 2007.
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I. INTRODUCTION

The development of analog RF and microwave cir-

cuits for advanced communications requires efficient

and accurate CAD modeling approaches for key

components, such as amplifiers, mixers, and oscilla-

tors, to be exploited within a circuit or system envi-

ronment to derive overall system performances.

In recent years, the measurement-based modeling

of power amplifiers (PAs) has been identified as a

particularly critical issue due to the peculiar features

of their nonlinear behavior (such as slow and fast

memory effects) and the related impact on the sys-

tem-level distortion and intermodulation. Behavioral

models have become the object of extensive research

during the last few years as a black-box, technology

independent tool to model off-the-shelf PAs starting

from conventional or ad-hoc measurements [1, 2].

Behavioral models generally have the structure of

a dynamic nonlinear system meant to provide an out-

put variable as a function of one or more input time

series. The model is considered as a ‘‘black-box,’’

meaning that no knowledge of the internal structure

is required and the modeling information is com-

pletely included in the device external responses [3].

The process of converting measured data into model

equations relies on fitting techniques [4]; however,

many of the available methods are useful when the

input and output data are well behaved over a given

range of the independent variables, and when the

object is known to follow a well-defined, also para-

meterized, mathematical model structure. On the

other hand, problems arise when the complex internal
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behavior of the modeled object as well as the model

structure are previously unknown. In such cases,

techniques that allow a wider degree of adaptability

are useful. In particular, a new technique that has

received increasing attention for the development of

PA behavioral models is the neural network (NN)

approach [5, 6], since model tailoring to the element

under study only needs a training procedure based on

input-output time- or frequency-domain data sets.

In this article, feedforward time-delay neural net-

works (TDNN) with finite memory duration are

exploited to enable to learn a nonlinear behavior with

medium-to-strong memory effects, along with high-

order nonlinearity, by carrying out the training with

input-output time-delayed data samples at different

power levels, simultaneously [7, 8]. This fact turns out

of outstanding importance to build behavioral models

of PAs, which are able to simulate the nonlinear per-

formance with different input spectra and power lev-

els. This approach aims at extracting a nonlinear rela-

tionship from a time-domain characterization set, to

build an input-output model able to generalize the non-

linear dynamic behavior of electronic components for

input waveforms not used at the training stage.

Volterra series approaches have played an impor-

tant role in behavioral, black-box modeling of

dynamic nonlinear elements. However, behavioral

models based on the Volterra series hold their valid-

ity only for weak nonlinearities and calculating the

kernels is a tiresome exercise that requires heavy

characterization efforts, especially when multitone

intermodulation is a matter of interest. A further

advantage of this approach is that we exploit NNs

able to derive equivalent (truncated) Volterra series

models. Our proposal is to obtain an analytical

expression for the model, either as neural analytical

model or as Volterra series expansion, calculated in

function of the NN model parameters. A new algo-

rithm to extract the Volterra kernels in the time-

domain directly from the NN parameters has been

found [9], and the resulting model represents a very

good approximation of the nonlinear behavior, with

only three order kernels, even with medium-to-strong

nonlinearities. This fact can be a great asset for

large-signal analysis, because Volterra series behav-

ioral models provide open information about the non-

linear amplifier behavior, and their implementation in

circuit simulators is generally less time-consuming.

In this article, we show, as a case study, the results

obtained from a PA input-output time-domain char-

acterization to build both neuronal- and Volterra-

series-based black-box models. The organization of

the article is the following: in the next section, the

NN model proposed is described; in Section III, the

Volterra modeling for PAs is presented; in Section

IV, the procedure for Volterra kernels extraction

using the parameters of a NN is explained; in Section

V, the model implementation into a commercial CAD

tool is described; in Section VI, the PA characteriza-

tion and the modeling results are compared. Finally,

some conclusions are reported in Section VII.

II. NEURAL NETWORK MODEL

The NN used to model the PA is a feedforward

TDNN with three layers, the input time-domain volt-

age samples and their delayed replies in the first one,

a nonlinear hidden layer, and a linear output. All the

neurons have bias values. The architecture is shown

in Figure 1, whereas eq. (1) represents the corre-

sponding input-output analytical expression in the

discrete time, when the nonlinear activation function

for the hidden neurons is the hyperbolic tangent.

VoutðnÞ ¼ b0

þ
XH
h¼1

vh tanh bh þ
XM
k¼0

wh;kþ1Vinðn� kÞ
" #

ð1Þ

This NN is trained with PA time-domain measure-

ments. The input and output waveforms are expressed

in terms of their samples in the time domain. M is the

number of the input lags and represents the finite dura-

tion of the memory effects of the PA. Since phase

delay changes with the input power, a minimum delay

element (D) can be added at the NN output. In this

way, input memory has to take into account only the

delay variation with the input power. The tap delay is

calculated from (2� BW)�1 to avoid spectral aliasing,

where BW is the desired characterization bandwidth.

The actual sampling time could be larger (multiple)

Figure 1. Feedforward TDNN architecture.
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than the tap delay. H is the number of hidden neurons

to perform the best fitting to the training waveforms

without overfitting problems. The NN parameters are

optimized with the backpropagation technique, based

on the Levemberg–Marquardt algorithm. Once the

NN has been trained, both Sigmoidal and Volterra se-

ries expansion models (explained in the next Section),

calculated in function of the NN parameters, can be

extracted. The procedure is presented in Section IV.

III. VOLTERRA MODELING OF
A POWER AMPLIFIER

The Volterra approach characterizes a system as a

mapping between two function spaces, which repre-

sent the input and output spaces of the system [10].

The Volterra series is an extension of the Taylor series

representation to cover dynamic systems, and it can be

exactly formulated by a converging infinite series

yðtÞ ¼
X1
p¼1

ypðtÞ ð2Þ

ypðtÞ ¼
Z 1

�1
. . .

Z 1

�1
hpðs1 . . . spÞ

Yp
j¼1

xðt� sjÞ dsj

ð3Þ

The terms h0, h1, h2,. . .,hp are known as the Vol-

terra kernels of the system. In general, hp is the pth-
order kernel of the series that completely character-

izes the pth-order nonlinearity of the system. The se-

ries can be described in the time-domain or in the

frequency-domain. In the time-domain, the Volterra

description can be defined using a continuous domain

series in eq. (4) or a discrete-time version in eq. (5),

where inputs and outputs are sampled versions of the

continuous time input-output signals. In practice, the

Volterra series must be truncated to avoid summa-

tions over an infinite number of terms. A sufficiently

accurate model can be obtained by using a finite

number of terms [11]:

yðtÞ ¼ h0 þ
Z 1

s¼0

h1ðsÞxðt� sÞ ds

þ
Z 1

s1¼0

Z 1

s2¼0

h2ðs1; s2Þ

� xðt� s1Þxðt� s2Þ ds1 ds2 þ . . . ð4Þ

yðnÞ ¼ h0 þ
X1
k¼0

h1ðkÞxðn� kÞ

þ
X1
k1¼0

X1
k2¼0

h2ðk1; k2Þxðn� k1Þxðn� k2Þ þ . . . ð5Þ

A Volterra series model in discrete form that rep-

resents the nonlinear dynamic behavior of a PA is

presented in eq. (6), where hp(k1,. . .,kp) is the pth-
order Volterra kernel. Typically, in the series repre-

sentation, only terms up to the third-order are

included. The summation interval [0–M] is limited to

the practically finite duration of the memory effect in

the device.

VoutðnÞ ¼ h0 þ
XM
k¼0

h1ðkÞVinðn� kÞ

þ
XM
k1¼0

XM
k2¼0

h2ðk1; k2ÞVinðn� k1ÞVinðn� k2Þ

þ
XM
k1¼0

XM
k2¼0

XM
k3¼0

h3ðk1; k2; k3Þ

� Vinðn� k1ÞVinðn� k2ÞVinðn� k3Þ ð6Þ

The Volterra series is the most general, rigorous

modeling approach for systems characterized by non-

linear dynamic phenomena. The Volterra series anal-

ysis is well suited to the simulation of nonlinear

microwave devices and circuits, in particular in the

weakly and mildly nonlinear regime, where a low

number of kernels (generally up to the third-order)

are able to capture the device behavior, e.g. for PA

distortion analysis [12]. We consider that the key to

system modeling by means of Volterra series is cap-

turing the Volterra kernels that represent the system.

Once they are known, the system response to any ar-

bitrary input can be predicted with relative ease.

Unfortunately, kernel identification is a difficult pro-

cess, which has been studied for some time. Several

methods have been proposed for kernels identifica-

tion [13, 14]. However, at microwave frequencies,

suitable instrumentation for the measurement of the

kernels is still lacking [15]. In spite of this drawback,

the Volterra series is actually used for microwave cir-

cuit design, by means of complex and time-consum-

ing calculations [16, 17].

We have found a procedure in Ref. 9 that allows

generating the Volterra series and its kernels, for the

modeling of a nonlinear electronic device with mem-

ory, using the weights and bias values of a feedfor-

ward TDNN, after it has been trained with time-do-

main measurements. This is briefly explained in the

next Section, where it is also presented a new
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approach for the identification of the Volterra ker-

nels, based on a simpler NN model.

IV. VOLTERRA KERNELS EXTRACTION

The procedure to obtain the Volterra kernels is based

on a NN like the one presented in Figure 1 and

expressed in analytical form by eq. (1), when the

activation function is the hyperbolic tangent. This

NN is trained with time-domain device measure-

ments, up to a predetermined number of epochs or a

desired accuracy. Once the NN has been trained and

its weights and bias values have been fixed, the NN

input-output expression is developed as a Taylor se-

ries around the bias values of the hidden nodes, that

is calculating the hidden neurons activation function

derivatives for zero input voltage. If the resulting

expression is arranged in common terms, the Vol-

terra kernels can be easily identified and combined

to form a Volterra series model representation of the

device under study. The general formula that builds

the Volterra model, including up to any order kernel,

using the NN parameters (weights and bias), is shown

in Ref. 7, being f p(bh) the hyperbolic tangent deriva-
tive of order p calculated in the neuron bias. The ker-
nels can be identified as the terms outside brackets.

VoutðnÞ ¼
X1
p¼0

1

p!

XH
h¼1

vh
XM
k1¼0

. . .
XM
kh¼0

� wh;k1þ1 . . .wh;khþ1f
pðbhÞ

� ½Vinðn� k1Þ . . .Vinðn� khÞ�p ð7Þ

Even if a Sigmoidal neural model can reach a

high degree of accuracy in modeling a nonlinear

behavior, a Volterra series model extracted from

Taylor expansion is close to the neural model only

for low-to-medium power signals.

A more straightforward manner to calculate the

kernels has been suggested in Ref. 18, where it is

proposed a new kind of NN, with a particular topol-

ogy, having distinct polynomials series with trainable

Figure 2. ADS implementation of the PA Sigmoidal and Volterra models with four input memory lags.
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coefficients (i.e. ax þ bx2 þ cx3 þ . . .) as activation
functions in the hidden layer. Volterra kernels, this

time, can be directly extracted from neural network

parameters at the end of the training process. This

approach, however, requires a special training

algorithm for updating the polynomials coefficients

(a, b, c).
In this article, the identification of the Volterra

kernels has been achieved using a simpler NN

model, like the one presented in Figure 1, where the

activation function in each hidden neuron is a p-
order power (instead of a polynomial series with

optimizable coefficients), using also a standard train-

ing algorithm such as backpropagation for the NN

weights and bias updating. Equation (8) represents

the corresponding input-output analytical expression

in the discrete time. This simplified form is generally

easier to implement in the most used NN software,

obtaining very similar results for the purpose of this

work.

VoutðnÞ ¼ b0 þ
PH
h¼1

vh bh þ
PM
k¼0

wh;kþ1Vinðn� kÞ
� �p

ð8Þ

For example, developing the NN output express-

ed in eq. (8) for third degree polynomials (p ¼ 3)

yields

Figure 3. Measurement setup for PA characterization.

VoutðnÞ ¼ b0 þ
XH
h¼1

vhb
3
h þ

XH
h¼1

3vhb
2
h

XM
k¼0

wh;kþ1

� Vinðn� kÞ þ
XH
h¼1

6vhbh
XM
k1¼0

XM
k2¼0

wh;k1þ1wh;k2þ1

� Vinðn� k1ÞVinðn� k2Þ

þ
XH
h¼1

3vhbh
XM
k¼0

ðwh;kþ1Þ2Vinðn� kÞ2

þ
XH
h¼1

3vh
XM
k1¼0

XM
k2¼0

XM
k3¼0

wh;k1þ1wh;k2þ1wh;k3þ1

� Vinðn� k1ÞVinðn� k2ÞVinðn� k3Þ

þ
XH
h¼1

vhbh
XM
k¼0

ðwh;kþ1Þ3Vinðn� kÞ3 ð9Þ

Comparing terms in the Volterra expansion in eq.

(6) and the ones obtained in eq. (9), the Volterra ker-

nels are easily identified, and can be calculated using

eq. (10).

Even if third-order polynomial NNs perform less

degree of global accuracy respect to sigmoidal ones

in modeling a nonlinear behavior, we will demon-

strate that they perform a tradeoff between small-

and large-signal accuracy, when trained with small-

to-large-signal waveforms, simultaneously, thus ena-
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bling Volterra models, directly extracted from poly-

nomial NN parameters as in eq. (10), to efficiently

represent low-to-high distortion behaviors as well.

h0 ¼ b0 þ
XH
h¼1

vhb
3
h

h1ðkÞ ¼
XH
h¼1

3vhb
2
hwh;k

h2ðk1; k2Þ ¼

XH
h¼1

6vhbhwh;k1wh;k2

XH
h¼1

3vhbhðwh;kÞ2 ðk1 ¼ k2 ¼ kÞ

8>>>>><
>>>>>:

h3ðk1; k2; k3Þ ¼

XH
h¼1

3vhwh;k1wh;k2wh;k3

XH
h¼1

vhðwh;kÞ3 ðk1 ¼ k2 ¼ k3 ¼ kÞ

8>>>>><
>>>>>:

ð10Þ

V. IMPLEMENTATION OF
THE MODEL IN ADS

The extracted neural model for the PA voltage trans-

fer function have been implemented on a commercial

CAD simulator such as Agilent advanced design sys-

tem (ADS), where the PA input-output behavior can

be simulated and compared with measurements.

The behavioral model has been implemented on

the circuit schematic of the ADS simulator using the

symbolically defined device (SDD) from the equa-

tion-based nonlinear device library. A proprietary

code is used to extract, from the NN file, the corre-

sponding analytical model in its general form shown

in eqs. (1) or (8), for Sigmoidal or Volterra models,

respectively. The model equation for the voltage at

the output port, expressed as a function of the voltage

at the first input port and its delayed replies at the

other input ports, is then printed in text format on a

netlist file linked to the circuit schematic. A constant

delay, corresponding to the minimum envelope delay

(D) in Figure 1, is added at the output port. The com-

plete model schematic is shown in Figure 2. Efforts

in model implementation are greatly reduced in this

way. Validation of the models against measurements

is then carried out in ADS. Both models have demon-

strated very fast simulation convergence in the char-

acterization power range.

VI. EXPERIMENTAL RESULTS

A. Measurement Setup

As a case study, we consider a Cernex 2267 PA, with

a 2–6 GHz bandwidth, a 42 dB gain, and 1 dB com-

pression at 32 dBm, stimulated with two tones at cen-

ter frequency 4.1 GHz and frequency spacing

100 MHz, generated by an HP83640A synthesized

sweeper and an Anritsu MG3692 CW generator,

respectively. Each power is swept from �30 to

�8 dBm, that is 4 dBm over the 1 dB compression

point for the combined input power.

The amplifier output has been connected to a

Tek11801B digital sampling oscilloscope (DSO),

Figure 4. MSE comparison between Polynomial and

Sigmoidal NN.

Figure 5. Time-domain comparison between measure-

ments (*), Sigmoidal (solid) and Volterra (dashed) model

simulation of global (upper) and detailed (lower) voltage

response, with the training input tones at 4.05 and 4.15

GHz, for Pin ¼ �25, �13, �5 dBm, respectively.
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that has been triggered with the common 10 MHz RF

reference from the generators; despite of this low fre-

quency trigger, repetitive sampling allows the instru-

ment to exploit the full 50 GHz analog bandwidth

of the testing probe. The waveform oversampling

is used to decrease the noise level through average

settings.

To compare the frequency response of the ampli-

fier measurements and simulations of the two behav-

ioral models, an HP71000 spectrum analyzer (SA)

has been connected to the amplifier output, and spec-

tra have been measured for different input power lev-

els. For full automatic control of the measurement

setup and data acquisition, controlling programs

throughout the GPIB link have been developed using

the Matlab1 instrument drivers. The characterization

setup is shown in Figure 3.

B. Model Training

Experimental sampled data, for each input power,

have been linked together in a single input and output

vector, to simultaneously train the NN with the full

power range. To build the NN input matrix, the input

vector has been copied and delayed as many times,

as necessary to take into account the duration of

memory effects. A characterization bandwidth of

22 GHz has been used to calculate the tap delay, to

take into account up to fifth-order harmonic distortion.

Both the Sigmoidal and the Volterra TDNN, rep-

resented by eqs. (1) and (8), respectively, have been

trained with the full power sweep, with M ¼ 4 mem-

ory deep and N ¼ 5 hidden neurons, for sake of com-

parison. For larger memory duration the NNs tend to

become unstable. Results are shown in Figure 4. As

expected, the MSE as function of the iteration num-

ber has better reduction at the end of the training

process in the TDNN using the Sigmoidal model

than the Volterra model.

At the end of the training process, measurements

and ADS transient simulation waveforms of both

models have been compared in Figure 5 for three

input levels.

Figure 8. Power comparison between measurements (*),

Sigmoidal model (solid) and Volterra model (dashed) simu-

lations of intermodulation response, with the validation

input tones at 4.29 and 4.31 GHz, for Pout (at f1 ¼ 4.31

GHz), IMD3 (at 2f2 � f1 ¼ 4.33 GHz) and, only for the

Sigmoidal model, IMD5 (at 3f2 � 2f1 ¼ 4.35 GHz).

Figure 7. Time-domain comparison between measure-

ments (*), Sigmoidal (solid) and Volterra (dashed) model

simulation of global (upper) and detailed (lower) voltage

response, with the validation input tones at 4.29 and 4.31

GHz, for Pin ¼ �25, �13, �5 dBm, respectively.

Figure 6. Power comparison between measurements (*),

Sigmoidal model (solid) and Volterra model (dashed) sim-

ulations of intermodulation response, with the training

input tones at 4.05 and 4.15 GHz, for Pout (at f1 ¼ 4.15

GHz), IMD3 (at 2f2 � f1 ¼ 4.25 GHz) and, only for the

Sigmoidal model, IMD5 (at 3f2 � 2f1 ¼ 4.35 GHz).
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To see the modeling performance in the frequency

domain, ADS harmonic balance simulations and

spectra measurements from an HP7000 spectrum an-

alyzer have been compared. The results are presented

in Figure 6, where power amplitudes at fundamental,

third-order and, only for the Sigmoidal model, fifth-

order intermodulation have been plotted against the

input power. Concluding, both models show well

matched behaviors both in the time- and frequency-

domain in the full power range. Better performance

of the Sigmoidal model is hardly discriminated.

C. Model Validation

To demonstrate the validity of the modeling

approach for signals not used in the training stage,

measurement data were obtained by stimulating the

amplifier with two-tone input signals at different fre-

quencies, in particular 4.3 GHz center frequency,

20 MHz frequency spacing, and the same power

sweep. Time-domain envelopes from ADS model

simulations and experimental measurements are

shown in Figure 7 for three input levels, whereas fre-

quency-domain comparisons are presented in Figure

8. As it can be seen, the third-order Volterra model is

less accurate than the Sigmoidal model around the 1

dB compression point, still demonstrating a good

modeling performance for low-to-high distortion,

especially in the time-domain.

VII. CONCLUSIONS

New large-signal behavioral models for the nonlinear

dynamic modeling of PAs, based on feed-forward

TDNN, have been presented. Measurements have

demonstrated the validity of the modeling approach

for high distortion and memory effect characteriza-

tion in PA. Although the method employs time-

domain characterization data, also frequency domain

simulations are consistent with intermodulation

measurements.

Moreover, an efficient procedure to extract time-

domain Volterra kernels from the parameters of a

polynomial neural network has been proposed, thus

providing a simple way to construct very compact

and accurate Volterra models to be used over 1 dB

compression. Even if Sigmoidal models are often

more accurate to characterize hard nonlinearities,

Volterra models provide open information about the

nonlinear amplifier behavior, and their implementa-

tion in circuit simulators is generally less time-con-

suming, especially when a Volterra model dedicated

library is provided.
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