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Abstract

Thermal conductivity models of frozen soils were analyzed and compared with similar models developed for frozen foods. In

total, eight thermal conductivity models and 54 model versions were tested against experimental data of 13 meat products in the

temperature range from 0 toK40 8C. The model by deVries, with waterCice (wi) as the continuous phase, showed overall the

best predictions. The use of wi leads generally to improved predictions in comparison to ice; water as the continuous phase is

beneficial only to deVries model, mostly from K1 to K20 8C; fat is advantageous only to meats with high fat content. The

results of this work suggest that the more sophisticated way of estimating the thermal conductivity for a disperse phase in the

deVries model might be more appropriate than the use of basic multi-phase models (geometric mean, parallel, and series).

Overall, relatively small differences in predictions were observed between the best model versions by deVries, Levy,

Mascheroni, Maxwell or Gori as applied to frozen meats with low content of fat. These differences could also be generated by

uncertainty in meat composition, temperature dependence of thermal conductivity of ice, measurement errors, and limitation of

predictive models.
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1. Introduction

Soils and foods are both heterogeneous porous media

and share some similar features as well as a number of

differences. Soils are mixtures of inorganic loose particles of
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Nomenclature

a, b, c axes of ellipsoidal food components

a0, a1, a2 constants in Eqs. (20) and (21)

F alternative function for qd used in Levy’s model

f fat as continuous phase

f-dGMM fat as continuous phase; l of dispersed phase

(d) evaluated by GMM (Eq. (3a))

f-ds fat as continuous phase; l of dispersed phase

(d) evaluated by s (Eq. (1))

f-dP fat as continuous phase; l of dispersed phase

(d) evaluated by
P

(Eq. (2))

fibGMM lfiber (models by Mascheroni)–evaluated by

GMM (Eq. (3a))

fibs lfiber (models by Mascheroni)–evaluated by s
(Eq. (1))

fibP lfiber (models by Mascheroni)–evaluated by
P

(Eq. (2))

g shape factor

k weighting factor

i ice as continuous phase

i-dGMM ice as continuous phase; l of dispersed phase

(d) evaluated by GMM (Eq. (3a))

i-ds ice as continuous phase; l of dispersed phase

(d) evaluated by s (Eq. (1))

i-dP ice as continuous phase; l of dispersed phase

(d) evaluated by
P

(Eq. (2))

M mass fraction

N the number of solid components

n number of phases, data records, etc.

p ellipsoid shape value (equatorial diameter/-

distance between ellipsoid poles)

RMSE root mean square error

sGMM solids l evaluated by GMM (Eq. (3a))

T temperature (8C)

w water as continuous phase

wi waterCice as continuous phase

wiGMM waterCiceZcontinuous phase; l evaluated by

GMM (Eq. (3a))

wis waterCiceZcontinuous phase; l evaluated by

s model (Eq. (1))

wiP waterCiceZcontinuous phase; l evaluated byP
(Eq. (2))

Greek

b variable in Eqs. (13) and (14)

q volume fraction

l thermal conductivity (W/m 8C)

r density

d ld/lcon
s variable in Eqs. (7) and (8)

x variable in Eqs. (15) and (16)

Subscripts

a air

ash ash/mineral

b bulk

bw bound water

car carbohydrate

con continuous phase

d dispersed phase

exp experimental

f initial freezing point

fat fat

fib meat-fibre

GMM geometric mean model

ice ice

j food component number

prot proteins

s solids

un unfrozen water

w water

wi waterCice

s heat flow s to fibers of meat

t heat flow t to fibers of meat
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various sizes and shapes, organic matter, water, and air. The

total volume fraction of water and air is known as the soil

porosity. Foods are heterogeneous capillary-porous colloidal

materials composed of numerous solid constituents, such as

carbohydrates, fats, proteins, vitamins and minerals, plus

water; air voids can also be present. In the food literature,

porosity generally refers to the air component only. Porosity of

soils (relative volume of air plus water) typically varies from

30 to 60% while for foods moisture content generally varies

from15 to90%.Thewater, containing dissolved substances, is

a major component in both soils and foods and its transition

from liquid into ice is the greatest factor influencing change in

thermal properties with temperature (T). In soils, water exists

in gravitational, capillary, and hygroscopic (bound) forms,
while foods contain only capillary and bound water. Foods are

generally saturated with water, while soils experience great

variation of water content, from dryness to a field capacity

(volumetricwater content at saturationminus the gravitational

water). A large part of the water, in both soils and foods,

freezes rapidly between 0 and K5 8C, therefore, very sparse

thermal conductivity (l) data is available in this T range.

Excluding water, ice and air, the thermal conductivity of other

food components are similar, while in soils the thermal

conductivity of quartz is large compared with other

mineralogical constituents. Soil composition is usually given

by volumetric fractions, while for foods mass fraction is most

commonly employed.

Analysis, design and simulation of food freezing and



Fig. 1. Volumetric content of ice (qice), water (qw) and lwi-GMM vs. T

for leg-muscle-parallel.
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storage process demands reliable and easily accessible

thermal property data across a wide range of temperatures,

particularly below the freezing point. The l of frozen foods

is a key property to the above applications. In general,

experimental determination of l is difficult, time and labour

expensive, and error prone. Therefore, estimation of l from

predictive models, based on food composition, is often

employed. A similar modelling approach has also been used

in soils. Apart from the basic series and parallel models and

combination of these, the most commonly quoted thermal

conductivity models in the frozen food literature are the

Maxwell–Eucken equation [1], Levy’s modification to the

Maxwell–Eucken equation [2] and the effective medium

theory (EMT) [3]. Mascheroni et al. [4] proposed a model

for frozen meat which was verified against a limited set of

experimental data only. Pham [5] found Levy’s model the

most accurate of seven models (the model by Mascheroni

was not considered) tested for meats with low and high fat

content. Models developed for soil systems that could be

extended to frozen foods, include: the weighted average by

deVries [6], a cubic cell by Gori [7], self-consistent

approximation by Sundberg [8], and geometric mean by

Lichtenecker [9]. The existing literature shows lack of clear

evidence of the application of frozen soil models to frozen

foods.
2. Scope of the paper

The purpose of this paper is to evaluate the application of

frozen soil models to food systems and compare them with

the best frozen food models under assumption that thermal

conductivity of food components is not dependent on T. The

l models developed from the original Maxwell relationship

(Maxwell–Eucken, Levy, deVries) require component

information regarding the continuous (con) and dispersed

phases (d). Commonly, the dominant volumetric fraction of

food component (usually water or ice) is assumed as the

continuous medium. This assumption, however, may not be

entirely true, as at the beginning of freezing, the unfrozen
water content can still be a dominant phase, i.e. larger than

newly formed ice fraction (Fig. 1). In addition, changing the

continuous phase from water into ice leads to a discontinuity

problem, i.e. a step change of l as the liceO4lw. These

problems, might be eliminated if water and ice are treated as

one continuous phase (wi) whose lumped conductivity lwi
changes smoothly over the entire freezing T range, i.e. from

lw (unfrozen foods) to lice (fully frozen foods)—Fig. 1. The

lumped lwi and ld can be evaluated by one of the simple

multi-phase models such as geometric mean, parallel and

series. Therefore, another objective of this paper is to

examine the influence of the continuous phase selection

(water, ice, waterCice, fat) on the effective thermal

conductivity of frozen foods.
3. Review of predictive models for foods and soils
3.1. Basic multi-phase models

The majority of the above models require additional data

regarding the lumped thermal conductivity of the continu-

ous and dispersed phases. This information is usually

obtained by applying parallel, series, or geometric-mean

models. The parallel model (s) assumes parallel configur-

ation of the system components in the direction of heat

flow:

lZ

Pn
1 qjljPn
1 qj

(1)

The series model (
P

) assumes series configuration of

the system components in the direction of heat flow:

lZ

Pn
1 qjPn
1
qj

lj

(2)

The geometric-mean model (GMM), proposed by

Lichtenecker [9], is not based on any physical concepts,

but it is commonly used due to its simplicity.

lZ
Yn

1

l
qj

j (3a)

The results produced by the GMM model are inter-

mediate between the s and
P

model. Good predictive

results of this model, for frozen saturated soils, were

reported by Johansen [10] who used the following form

of this model:

lZ lqss l
qice
ice l

qun
un (3b)

This model structure can be easily applied for frozen

foods because the evaluation of the lumped conductivity

of solid components, ls, excludes the ice and other

water fractions.

In general, the thermal conductivity models can be

subdivided into two groups; the first group considering only



Fig. 2. Shape factor ga as a function of the ellipsoid shape value p.
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two phases, continuous and dispersed one (e.g. Maxwell–

Eucken, Levy), and the second one with more than two

phases (solid, liquid, gaseous).
3.2. Two-phases models
3.2.1. Maxwell–Eucken

Originally, this model was developed for predicting the

electrical conductivity of non-interacting homogeneous

spheres (dispersed phase) in a homogeneous continuous

phase. The of this binary system (conCd) was given by:

lZ lcon
1C 2

d
C2qdð1K

1
d
Þ

1C 2
d
Kqdð1K

1
d
Þ

(4)

where dZld/lcon. When applied to frozen foods, this model

gives different l values depending on which components are

chosen to be a part of the continuous and dispersed phases

and how the lumped l of each phase is estimated. Eq. (4) can

be converted into a weighted average form in terms of the

continuous and dispersed phases [11]:

lZ
kconqconlcon Ckdqdld

kconqcon Ckdqd
(5)

kd Z
1

3

X
xZabc

1CgxðdK1Þ
� �K1 Z

3

dC2
(6)

where, kconZ1, gx is a shape factor for each dimension of

particles in the dispersed phase.

For solid spheres (aZbZc), gxZ1/3. The ld can be
Fig. 3. Variation of kj factor vs. ljlcon for pZ1–3–4.
evaluated by one of basic multiphase models such as,
P

, s,
or GMM.
3.2.2. Levy modification to Maxwell–Eucken model

Levy [2] modified the Maxwell–Eucken model (Eq. (4))

by replacing the volume fraction of a dispersed phase, qd, by

a function F so that the predictions are independent of the

designation of phases as continuous or dispersed:

F Z
1

s
K

1

2
Cqd K

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

s
K1C2qd

� �2

K8
qd

s

s
(7)

sZ
ðd � 1Þ2

ðdC1Þ2 C0:5d
(8)

3.3. Multi-phases models
3.3.1. deVries model

Fricke [12] was the first to consider extension of the

Maxwell’s model to homogeneous ellipsoidal particles.

Later on, the same idea was used by de Vries [6] for

predicting l of moist soils; i.e. a spherical shape of solid

grains was replaced with rotated oblate ellipsoids dispersed

in the continuous medium (water, air).

lZ
kconqconlcon C

PN
1 kjqjlj

kconqcon C
PN

1 kjqj

(9)

where N is the number of solid components; each solid grain

of component (j) has the same weighting factor kj and the

same thermal conductivity lj.

If the axes (a, b, c) of ellipsoidal granules are oriented

randomly, kj can be obtained from

kj Z
1

3

X
xZabc

1C ð
lj

lcon
K1Þgx

� �K1

Z
ðVTÞj

ðVTÞcon
(10)

According to de Vries [6] kj represents the ratio of the

average T gradient in a solid constituent (j) to the average T

gradient in the continuous phase. In practice, kj is an

adjustment factor improving l predictions. Eq. (10) converts

to unity (kconZ1) if the j constituent is assumed as the

continuous phase (ljZlcon). For the dispersed phase, the kj

depends on lj/lcon and a solid particle ellipsoidal shape

factor for each of three axes (gxZa,b,c). The shape factors ga,

gb, and gc depend on ratios of the ellipsoid axes a, b, and c.

The sum of ga, gb, and gc is unity. For rotated ellipsoids (aZ
b), gaZgb, gcZ1K2ga. The ga values can be estimated from

equations given by Carslaw and Jaeger [13]: oblate

ellipsoids: pZa/cO1

ga Z
p2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 K1Þ3

p p

2
Karctanð

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 K1

p ÞK

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 K1

p
p2

" #

(11)

prolate ellipsoids: pZa/c!1



Fig. 4. Relative Dkj change with d (oblate ellipsoid, pZ3 wrt.

sphere, pZ1).

V.R. Tarnawski et al. / International Journal of Refrigeration 28 (2005) 840–850844
ga Z 0:5
1

1Kp2
K

p2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1Kp2Þ3

p ln
1C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kp2

p
1K

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kp2

p
 !" #

(12)

Variation of the shape factor ga as a function of a shape

value p is shown on Fig. 2. Examples of the kj values, for

rotated ellipsoids (pZ3 and 4) and for a sphere (pZ1) vs.

the ratio lj/lcon, are shown in Fig. 3. The model is simple to

use when applied to saturated porous media. It requires,

however, knowledge regarding the shape of solid grains,

which can vary from oblate to prolate ellipsoids, thus

including also a sphere. For a system made of spherical

solids (aZbZc; gaZgbZgcZ1/3), Eq. (9) reduces to a

form very similar in appearance to the Maxwell’s model

(Eq. (5)). When both models (Eqs. (5) and (9)) are to be

applied to frozen foods, it is important to be aware of some

hidden disparities. First, it is more likely that solid

components resemble the shape of oblate ellipsoids (pO1)

rather then perfect spheres (pZ1). Secondly, Eq. (5) treats

the dispersed components as a single phase, while Eq. (9)

handles each dispersed component individually. The

spherical weighting factor kd depends on d only, while kj

depends on the d and also on the shape value p of each

individual component of the dispersed phase. For foods, d

varies approximately from 0.1 to 0.3 and the use of p values

for oblate ellipsoids rather than sphere (e.g. pZ3) leads to

relative change in kj ranging from 5 to 10% (Fig. 4).

Furthermore, in Eq. (5), ld is evaluated by one of simple

multi-phase models (Eqs. (1)–(3)), while individual lj

values are used in Eq. (9).
3.3.2. Gori’s model

The model assumes a cubic cell of lumped solids

surrounded by another cubic cell composed of unfrozen

water and ice as the continuous medium. For foods, the

model was converted from a three phase system (solids,

water, ice) into a two phase system consisting of food solids

as a dispersed phase and wi as the continuous phase. The

first model considers the horizontal parallel isotherms (hpi-

wi) in the cubic cell.
1

l
Z

bK1

lwib
C

b

lwi½b
2 K1�Cls

(13)

The second model takes into account a vertical parallel heat

flux (vphf-wi) in the cubic cell.

lZ
1

bðbK1Þ
lwi

C b
ls

Clwi
b2 K1

b2
; bZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1Kqw Kqa

3

s
(14)
3.3.3. Mascheroni’s model

The model was developed for solid frozen meats with the

following assumptions: water in fibres was treated as a

randomly dispersed phase in a continuous matrix of the

remaining food tissue; partially dehydrated fibres were

surrounded by ice; at TOTf all the water was within the

fibre; and, at T!Tf ice was being formed in the extra cellular

space at expense of water in the fibres. One model option

considers that heat flow is perpendicular (t) to the meat

fibres:

lt Z
licelfibð1KxiceÞ

xicelfib Cliceð1KxiceÞ
Clicexice (15)

The other model option is based on assumption that heat

flow is parallel (s) to the meat fibers:

ls Z licexice C ð1KxiceÞ

! licex
2
ice Clfibð1KxiceÞ

2 C
4xiceð1KxiceÞ

1
lfib

C 1
li

( )
(16)

where xiceZ1K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kqice

p
. Originally, the thermal conduc-

tivity of meat fibers, lfib, was evaluated by the Maxwell–

Eucken model using the fiber component composition. In

this paper, however, the lfib is modeled by simple multi-

phase models (GMM, s,
P

).

3.3.4. Self-consistent approximation (SCA)–effective

medium theory (EMT) model

The SCA model was originally developed by Brugge-

man [14] for predicting l of a mixture of isotropic materials.

Later on, the same expression was utilized by Landeauer

[15] as the effective medium theory (EMT) model and used

for evaluating the electrical resistance of binary metallic

mixtures. Then, the model was adapted to predicting the l of

vegetable foods [3].

Xn

1

qj

lj Kl

lj C2l
Z 0 (17)

Sundberg [8] used the same model, a slightly different form,

for predicting l of soils.

lZ
1

3

1P3
1

qi

ljC2l

(18)

In both forms (Eqs. (17) and (18)), qj and lj are the volume

fraction and thermal conductivity of the j component,



Table 1

Mass composition of the meats under investigation

Food Code # Mw Mprot Mfat Mash Mcar

Leg muscle s 1 0.736 0.199 0.047 0.011 0.007

Leg muscle minced 2 0.739 0.186 0.045 0.01 0.02

Hearts 3 0.698 0.15 0.123 0.012 0.017

Hearts minced 4 0.688 0.149 0.139 0.01 0.014

Livers 5 0.689 0.194 0.062 0.015 0.04

Livers minced 6 0.677 0.208 0.037 0.02 0.058

Brains 7 0.79 0.103 0.076 0.014 0.017

Kidneys 8 0.799 0.145 0.031 0.013 0.012

Thymus 9 0.7919 0.143 0.064 0.001 0.0001

Thymus minced 10 0.7589 0.135 0.092 0.014 0.0001

Leg muscle t 11 0.725 0.193 0.072 0.009 0.001

Fat 12 0.1329 0.032 0.834 0.001 0.0001

Fat minced 13 0.1109 0.029 0.858 0.002 0.0001

Note. The Mcar have been causing a calculation problem in the model by Mascheroni, therefore, instead of 0 a very small number 0.0001 was

assigned, at expense of Mw.
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respectively. If the system is composed of more than two

phases, both equations have an implicit form and must be

solved by an iterative method. In fact, frozen foods and soils

are examples of three-phase systems, i.e. consisting of

unfrozen water, ice and solids.

l1 Z lw q1 Z qun l2 Z lice q2 Z qice

l3 Z ls q3 Z 1Kqw Kqa
3.3.5. Modified resistor series model

Cleland [16] proposed a modified resistor series model

applied to calculating l of frozen foods.

qw Cqbw Cqs

l
Z

qw Cqbw

lw
C

qsPn
jZ1

qj

qs
lj

(19)
4. Experimental data and model testing

The reviewed models were tested against the exper-

imental l data in the T range 0 toK40 8C for 13 meats with

low and high fat content (Table 1) published by Pham and

Willix [17]. The food component mass fractions in this data

set do not always sum exactly to 1. When the mass fractions

were smaller than 1, then the remainder was arbitrarily

assigned to carbohydrates. If there was a surplus, then all the

component mass fractions were proportionally reduced.

None of the products contained significant air voids. The

experimental data covers only a few points for each product,

which restricts comparison with the predictive models.

Therefore, instead of the real experimental data, the

following empirical equations, developed by Pham and

Willix [17] were used.

TOTf lZ lf Ca0ðT KTfÞ (20)
T!Tf lZ lf Ca1ðT KTfÞCa2
1

T
K

1

Tf

� �
(21)

The fitted parameters are given in Table 2. The thermal

conductivity and density data for the food product

components used to make predictions was assumed to be

T independent and their values (Table 3) were given by Choi

and Okos [18].

The mass fraction of unfrozen water (including bound

water) was estimated from:

Mun ZMw KMice (22)

In the frozen range, the mass fraction of ice content was

estimated from the widely used empirical relationship,

developed by Schwartzberg [19], which is based on Raoult’s

law of dilute solutions and the Claussius–Clapeyron

relationship:

Mice Z Mw KMbw

� 	
1K

Tf

T

� �
(23)

The freezing point and bound water mass fractions were

based on the data and relationships given by Pham and

Willix [17]:

Tf ZK0:9 8C Mbw Z 0:4Mprot (24)

The mass fractions of all components were converted to

volumetric fractions.

qj ZMj

rbðTÞ

rj

(25)

The bulk density of frozen food rb(T) for T!Tf can be

obtained from:

rbðTÞZ
1Pn

jZ1
Mj

rj

(26)

Table 4 gives the volumetric composition of the unfrozen
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Fig. 5. Performance of deVries model vs. ellipsoids shape factor p.
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products calculated from the mass fraction composition

data. Table 5 shows four continuous phases used in this

paper, namely: water, ice, waterCice, fat. When a phase

consists of more than one component, a lumped l was

estimated from the component data using the s,
P

or GMM

models as these are the simplest to apply. These three

models were also used to calculate the lumped l for the solid

components (other than ice) and lfib in the model by

Mascheroni [4]. In deVries model (Eq. (9)), food com-

ponents were considered as rotated oblate ellipsoids whose

shape values (p) were selected upon results of preliminary

simulation (Fig. 5). A change from the spherical shape (pZ
1) to flattened ellipsoids (pZ2–4) is without a doubt

beneficial to the model predictions. For example, the

deVries-wi model performance is improving with p increase

from 1 to 3 and then it remains constant. For that reason, pZ
3 was applied to all solid components of the frozen foods

(Table 6).
5. Results and discussion

The 54 versions of the eight thermal conductivity models

have been analyzed and compared with the experimental

data for frozen foods. The root mean square error (RMSE)

was used to determine how well the predictive models fit the

measured data.

RMSEZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

1

lexp Kl

lexp

� �2s
(27)

The RMSE was evaluated for the 54 l model versions and

four T ranges (0 toK40 8C;K1 toK40 8C;K1 toK20 8C;

K1 to K5 8C). Each version of the predictive model was

assessed on a basis of data generated by that model (lmodel)

and lexp obtained from equations by Pham and Willix [17].



Table 3

Thermal conductivity and density of food components by Choi and Okos (1986)

Component Water Ice Protein Fat Ash Carbohydrate

l (W/m K) 0.56 2.21 0.20 0.18 0.33 0.20

r (kg/m3) 1000 917 1380 930 2424 1600

Table 4

Volume composition of the unfrozen meats under investigation

Food Code # rb qw qprot qfat qash qcar

Leg muscle s 1 1055.5 0.779 0.158 0.054 0.005 0.005

Leg muscle minced 2 1056.8 0.783 0.148 0.051 0.004 0.013

Hearts 3 1040.3 0.728 0.117 0.138 0.005 0.011

Hearts minced 4 1036.2 0.715 0.116 0.156 0.004 0.009

Livers 5 1069.5 0.739 0.156 0.072 0.007 0.027

Livers minced 6 1087.2 0.738 0.170 0.043 0.009 0.039

Brains 7 1032.8 0.818 0.080 0.085 0.006 0.011

Kidneys 8 1045.3 0.838 0.114 0.035 0.006 0.008

Thymus 9 1029.5 0.818 0.111 0.071 0.000 0.000

Thymus minced 10 1033.3 0.786 0.105 0.103 0.006 0.000

Leg muscle t 11 1047.9 0.762 0.152 0.082 0.004 0.001

Fat 12 944.4 0.126 0.023 0.851 0.000 0.000

Fat minced 13 942.6 0.105 0.021 0.874 0.001 0.000
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For T range from K1 to K5 8C, the T increment was

K0.5 8C, and K2.5 8C, from K5 to K40 8C.

Tables 7–9 summarize the average RMSE for the best 10

model versions applied to 11 low fat meats (high water

content), two high fat meats (low water content) and all 13

meats under investigation, respectively. As far as the l of

lean meats (11 foods with high water content) is concerned,

Masch-t-fibs, deVries-wiGMM and de Vries-w model offer

clearly the best predictions in T range from K1 to K5 8C

and K1 to K20 8C. Slightly less accurate predictions in

these two T ranges are given by Gori-vphf-wi and Maxwell-

wiGMM (Fig. 6). In the T range from K1 to K40 8C),

deVries-wiGMM produces the best predictions followed by

deVries-i and then by a large group of models (Maxwell-

wiGMM, Gori-vphf-wi, Masch-s-fibGMM, Masch-s-fibP,

ETM-sGMM, deVries-w), whose performance is more or

less at the same level. The predictive performance of the

Vries-w and the Masch-t-fibs model, however, is declining

for T ranging from K20 to K40 8C, i.e. when a large

majority of water has been converted into the ice. The

Masch-s-fibGMM and Maxwell-wiGMM predict well in all

three ranges of freezing T. The Levy-wis model performs
Table 5

Options for continuous and dispersed phases in frozen foods

Continuous phase (con) Dispersed phase (d)

Ice (i) Food solid componentsCwater

WaterCice (wi) Food solid components

Water (w) Food solid componentsCice

Fat (f) Food solid componentsCiceCwater
better than Levy-i-dGMM and offers acceptable performance

in DT range fromK1 to K20 8C and K1 toK40 8C (8 and

9th place, respectively), but it largely over-predicts the data

near the freezing point (K1 toK5 8C). The EMT-sGMM and

Gori-vphf-wi models are simple in form and provide good l

estimates for frozen and unfrozen foods. The model by

Cleland [16] gives acceptable performance (10th place) in

the full range of freezing T only. With regard to high fat

meats (two foods with very low water content), Levy-wis,

deVries-w and a wide variety of Levy model versions show

the best predictions in T range fromK1 toK5 8C andK1 to

K20 8C. For the full range of freezing T (K1 to K40 8C),

Levy-f-ds, Levy-wis, deVries-w, and Levy-i-ds have the best

predictions with very small differences between them. For
Fig. 6. The experimental l vs. predictive data (frozen lamb leg

muscle parallel).



Table 6

Shape factors for food components

Meat components Water Protein Fat Ash Carb-hyd Ice

Shape value (p) 100 3 3 3 3 3

Shape factor (g) 0.01 0.18 0.18 0.18 0.18 0.18

Table 7

Best predictive models—low fat meats (1–11)

0 8C RMSE hK1 8C.K5 8Ci RMSE hK1 8C.K20 8Ci RMSE hK1 8C.K40 8Ci RMSE

GeoMean-sGMM 0.041 Masch-t-fibs 0.047 Masch-t-fibs 0.048 deVries-wiGMM 0.050

Levy-w 0.046 deVries-w 0.048 Gori-vphf-wi 0.051 deVries-i 0.058

Levy-f-dGMM 0.046 deVries-wiGMM 0.048 deVries-wibGMM 0.047 Maxwell-wiGMM 0.058

EMT-sGMM 0.047 Maxwell-wiGMM 0.052 deVries-w 0.052 Gori-vphf-wi 0.058

deVries-w 0.048 Masch-t-fibGMM 0.057 deVries-i 0.060 Masch-s-fibGMM 0.058

Gori-vphf-w 0.048 EMT-sGMM 0.058 Masch-s-fiGMM 0.063 Masch-s-fibP 0.059

Maxwell-f-dGMM 0.050 deVries-i 0.059 Maxwell-wiGMM 0.064 EMT-sGMM 0.061

deVries-f 0.050 Masch-s-fibGMM 0.061 Levy-wis 0.064 deVries-w 0.061

Maxwell-w 0.050 Gori-vphf-wi 0.061 Masch-s-fibP 0.066 Levy-wis 0.070

Masch-t-fibGMM 0.050 Masch-s-fibP 0.067 EMT-sGMM 0.067 Cleland 0.071

Table 8

Best predictive models—high fat meats (12–13)

0 8C RMSE hK1 8C.K5 8Ci RMSE hK1 8C.K20 8Ci RMSE hK1 8C.K40 8Ci RMSE

deVries-w 0.003 Levy-wi-ds 0.028 Levy-wi-ds 0.032 Levy-f-ds 0.031

deVries-f 0.004 deVries-w 0.029 de Vries-w 0.032 Levy-wis 0.034

Gori-vphf-w 0.004 Levy-f-ds 0.033 Levy-f-ds 0.036 deVries-w 0.036

Levy-f-ds 0.005 Levy-wiGMM 0.036 Levy-i-ds 0.039 Levy-i-ds 0.037

Maxwell-w 0.006 Maxwell-wiP 0.037 Levy-wiGMM 0.040 deVries-f 0.046

Gori-hpi-w 0.008 deVries-wiP 0.038 deVries-wiP 0.047 Levy-wiGMM 0.046

Maxwell-f-ds 0.012 Levy-i-ds 0.041 Levy-i-dGMM 0.049 Levy-iGMM 0.053

Levy-w 0.015 Levy-i-dGMM 0.048 Levy-f-dGMM 0.055 deVries-wiP 0.060

Levy-f-dGMM 0.026 Levy-f-dGMM 0.051 Levy-i-dP 0.065 Levy-f-dGMM 0.064

EMT-sGMM 0.027 deVries-f 0.060 Levy-wiP 0.069 Levy-i-dP 0.071
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all meats under investigation (11 leanC2 high fat), deVries-

wiGMM, deVries-w and Levy-wis exhibit the best perform-

ance in all T ranges followed by Masch-t-fibs, Gori-vphf-wi

and ETM-sGMM. The l of all unfrozen meat products (0 8C)

was predicted very well by a large group of models

(Table 9).
6. Conclusions and recommendations

The analysis of computer simulation confirms that

deVries-wiGMM has overall the best predictions for frozen

meats, while for unfrozen meats, a large majority of tested

models show very accurate predictions. In general, the

model by deVries has a good physical basis, requires

relatively small calculation effort and has a potential for

further improvement, particularly in the shape description of

oblate ellipsoids. The results of this work suggest also that
the more sophisticated way of estimating the ld for a

disperse phase in the deVries model might be more

appropriate than the use of basic multi-phase models

(GMM, s,
P

). This could also be a reason that in general

the deVries model performed slightly better than the other

models. It appears that the performance of predictive

models, as applied to frozen foods, is strongly influenced

by the choice of continuous phase. The use of wi has a sound

physical basis as both water and ice exist practically in the

full range of freezing T. The freezing process, particularly

between K1 and K5 8C, is simulated better with the use of

wi than i alone. For this reason, the choice of wi as the

continuous phase leads to improved l predictions in

comparison to ice (i). In addition, it is also easier to assess

the ld of the dispersed phase as the thermal conductivities of

solid food components are more or less in the same range.

The use of wi in deVries model requires, however,

additional calculations for kj, which strongly depends on



Table 9

Best predictive models—overall (1–13)

0 8C RMSE hK1 8C.K5 8Ci RMSE hK1 8C.K20 8Ci RMSE hK1 8C.K40 8Ci RMSE

Levy-w 0.042 deVries-w 0.045 deVries-w 0.049 deVries-wiGMM 0.057

Gori-vphf-w 0.042 deVries-wiGMM 0.052 Masch-t-fibs 0.057 Levy-wis 0.065

GeoMean-sGMM 0.042 Masch-t-fibs 0.055 Levy-wis 0.059 Levy-i-ds 0.068

deVries-w 0.043 Masch-t-fibGMM 0.058 deVries-wiGMM 0.060 EMT-sGMM 0.068

deVries-f 0.045 Maxwell-wiGMM 0.059 Levy-i-dGMM 0.064 Masch-s-fibP 0.069

EMT-sGMM 0.046 EMT-sGMM 0.062 Gori-vphf-wi 0.064 Masch-s-fibGMM 0.069

Maxwell-w 0.046 Levy-i-dGMM 0.065 Masch-t-fibGMM 0.071 deVries-w 0.072

Levy-f-ds 0.047 Levy-wis 0.065 Masch-s-fibGMM 0.072 Gori-vphf-wi 0.073

Masch-t-fibGMM 0.051 Gori-vphf-wi 0.066 EMT-sGMM 0.072 Maxwell-wiGMM 0.074

Gori-hpi-w 0.053 Masch-s-fibGMM 0.066 deVries-i 0.073 Masch-t-fibs 0.080
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lwi. Consequently, the kj must be evaluated individually for

each meat having different initial water content. Evaluation

of lwi by the GMM model appears to be beneficial to

deVries andMaxwell model, while the smodel works better

for Levy model. The use of w as the continuous medium is

beneficial only to deVries model, particularly from K1 to

K20 8C. The use of fat as the continuous medium is

beneficial only to foods with high fat content.

Overall, relatively small differences in predictions were

observed between the best model versions by deVries, Levy,

Mascheroni, Maxwell or Gori as applied to frozen meats

with high water content. These differences could also be

generated by uncertainty in food composition, temperature

independent thermal conductivity of ice, measurement

errors, and limitation of predictive models. The above

results are preliminary and need to be confirmed by testing

the models against the experimental data representing a

wider variety of frozen foods. In addition, it would be

beneficial to investigate the influence of temperature

dependent thermal conductivity of all food components on

the predictive model performance.
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