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ABSTRACT 
 
The method for contemporary measuring thermal conductivity, thermal diffusivity and thermal contact resistance up to 
1500°C has been assessed. First the heat propagation model has been developed to be used in least square procedure to 
process temperature data and give the best estimate on the unknown parameters. Second special devices to be used in the 
experimental procedure have been designed and built or are going to be built. In the meanwhile ambient temperature 
tests on bricks have been carried out to establish the data processing procedure, and to recognize the experimental 
troubles likely to be found. These tests shows that the experimental data well follow the theoretical prediction, the 
thermophysical parameter can be evaluated with good accuracy, and that care must be taken to satisfying the theoretical 
assumptions on the base of the model, and to accurately process data for taking into account mutual dependence of the 
parameters 
 

1. INTRODUCTION 
 
Thermophysical properties of matter are considered essential to evaluate thermal behaviour of components both in steady 
state (above all thermal conductivity λ) and transient state (thermal diffusivity α). At high temperature (above 1000°C) 
these properties are fundamental in order to guarantee thermal insulation, or from the other point of view, good thermal 
contact. For instance, in rocket technology, a good thermal insulation around 1500°C is strongly required to improve the 
performances of the engine nozzle (this is one of the main reason of the present activity within an international 
cooperation agreement between the authors’ University and the Harbin Institute of Technology, Harbin, People Republic 
of China). 
Among different methods to measure thermal conductivity and thermal diffusivity, the flat plane source methods, 
evolved in the hot strip method [1] [2], is well established, and supplies good results. Differently from other equally well 
established methods (probe method, for cylindrical samples, and flash method for flat thin samples), it can be used with 
bulk materials in many different shapes. Nevertheless, even if it has been applied at high temperature, further 
developments are required to solve some experimental and data processing problems. These problems can be 
summarizes as follows: 

- the heat source and sample holders must be accurately designed, and built in material able to work at high 
temperatures, so it is suggested to realize them in ceramics; 

- thermal contact resistance, unavoidable also at ambient temperature, at high temperatures is even higher, due to 
impossibility to increase contact pressure in ceramic sample holders; 

- the heated zone, where the sample and the sample holder is located, must accurately kept at constant 
temperature, in order to avoid unwanted thermal fluxes; 

From the other point of view, thermal contact resistance is a very difficult quantity to evaluate, due to its dependence on 
a large number of parameters: roughness, contact pressure, hardness of the surfaces in contact, and so on, e.g. [3]). So 
firstly a method that can contemporary measures thermophysical properties and thermal contact resistance may be 
profitably used in many different  applications, and, secondly, taking into account thermal contact resistance in 
evaluating thermophysical properties greatly adds accuracy to the results of the measuring procedure [4] [5] [6]. Other 
authors dealt with the problem, but generally they try to avoid thermal contact resistance by applying directly the heater 
to the sample, or to reduce it by interposing a coupling material between the heater and the sample. 
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In order to get the desired task, the analytical (or numerical) solution of the general conduction heat transfer equation 
must be solved for the used geometry and boundary conditions, and this solution used as model in a least square 
procedure, to get from the experimental data of temperature the best approximation of the unknowns, which in the 
present case are the thermal conductivity λ, the thermal volumetric capacitance ρ·cp (with ρ density and  cp specific heat), 
being α the ratio between the two, and the thermal contact conductance hc (in W/m2K), the inverse of the thermal contact 
resistance. 
The solution of the heat propagation can be used to evaluate temperature increase in a material with a surface heated by a 
step function power supply, from an initial time. Temperature increase of the temperature sensor, which at high 
temperature is the same heater (a platinum deposit on a thin ceramic slab), is evaluated from the temperature of the 
material beyond the layer by means of a lumped parameter procedure (no temperature distribution is foreseen in the 
heater). 
From the experimental point of view the following steps have been pursued: 

- realization (study and construction) of the thin flat heater; 
- sample holder building 
- measurement procedure assessment. 

 

2. MODEL DESCRIPTION 
 
The temperature evolution in a flat slab heated with constant heat flux by a heater on one side and thermally insulated on 
the other side is described by the solution of the one dimension general heat conduction equation, with the following 
assumptions: 

- infinite slab, i.e. solution independent on height and wide of the slab but only on the thickness 
- perfect insulation, which experimentally can be obtained by good insulation on the external surfaces of the 

sample, and symmetry on the heated side, that is two identical samples sandwiching the heater 
- the heater is considered at uniform temperature, with thermal capacity Ch = mh·cph  , with mh the mass of the 

heater and cph its specific heat. The heater in the experiments is composed by the thin slab (0.1 mm in thickness) 
with the conducting coating deposited on it, and heat is generated by flowing of a constant current I through the 
deposit 

- a constant thermal contact conductance hc , inverse of the contact resistance, is assumed between the heater and 
the sample. 

The solution can be found in the wide collection of formulae of [7], p. 129, solution n. 3.13.ix. Unfortunately this solution 
is valid only in the material where the conduction takes place, while in the planned experiments the temperature is 
measured in the heater. In this location the solution must be calculated from the heat transfer through the contact 
resistance. This derivation is reported in Appendix 1, and the final temperature behaviour of the heater is given by the 
following formula: 
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with q =R·I2 /A the power supplied by the heater per unit area, L the thickness of the samples, / hk L Cλ α=  and 

/cZ h L λ= . As can be easily seen, most of the quantities in (1) include the unknown parameters: thermal contact 
conductance hc, thermal conductivity λ, and thermal diffusivity α. 
Eq. (1) is just the solution which must be used as model to perform a least square analysis to the experimental data, in 
order to get the best estimate of the unknown parameters. Other parameters, as Ch and q  are assumed to be known from 
the experimental procedure. The non linear regression analysis, carried out according to the procedure described in [8], 
gives as result the best estimate of the unknown parameters, their evaluated uncertainties, and the prevision uncertainty 
of data, which can be seen as the wideness of the distribution of experimental data around the used model (see par. 4.2). 
 



3. EXPERIMENTAL DEVICES 
 
The experimental setup of the high temperature tests is shown in Fig. 1.  
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Fig. 1: Set up for the experiments at high temperature (DAS: data acquisition system; DAC: digital to analogue converter interface to 

drive the power supply) 
 
The two identical samples are inserted in a special sample holder (see par. 3.1) together with the heather (par. 3.2), and 
the assemble is inserted into the oven, which is heated till to desired temperature (up to date 1200°C, future development 
1500°C). The heater (electrically heated by a current flowing through it and fed by a power supply) behaves 
contemporarily as thermal source and a thermometer, as the platinum deposit behaves as a four wire resistance. The 
precise measurement of the current supplied is made inserting a 0.1 Ω shunt in series with the feeding circuit, The DAS 
(data acquisition system, a Keithley 2700 multimeter with 6.5 digit resolution) acquires voltages from the heater, the 
shunt and the thermocouple used to control the oven. A preliminary calibration is used to recognize the relation between 
the heater resistance and temperature. From the results of this calibration and the measurement of the voltage drop 
through the heater, the heater temperature is evaluated and used for the further data processing. 
In the following the two innovative components of the system are described. 
 

3.1. The heater 
 
The heater is a platinum deposit on a ceramic thin substrate (yttria stabilized zirconia, 8YSZ), 0.1 mm thick, in square 
shape with 30 mm side. The material (generally used for fuel cell construction) is the thinnest ceramic substrate found 
and its thickness well represents the analytical solution, because a temperature variation along the thickness of the 
sample is unlikely. 
The platinum coating is obtained by sputtering the platinum on the substrate surface. In order to respect the symmetry of 
the sample-heater system, both surfaces of the substrate are deposited with platinum, and also on one side of the 
substrate ridge in order to get short circuit between one surface and the opposite. The deposit has been studied in order to 
get the following features: 

- resistance between 10 and 100 Ω in order to have good voltage resolution (and consequently temperature 
resolution) but within the range measurable with the DAS;  

- good temperature distribution during heating, so the paths have been designed with the same wideness, trying to 
avoid too narrow direction changes; 

 



 
Fig.2: design of the heater and its current path 

 
With a 1 μm thickness of the platinum deposit and the shape designed and reported in Fig. 2, a total resistance of 60 Ω of 
the heater is calculated. 
In order to verify if the heater presents good performances, an electromagnetic finite elements model has been built in 
order to simulate the electric resistance in the path, and hence the thermal power generation.  
Fig. 3 reports the computed electric current density distribution in the central part of the heater, where the maximum 
disuniformity is expected. From this figure it is clearly possible to notice that only in the two points of direction 
inversion of the current flow a reduction of resistance, and hence an increasing of current, is expected. Even if this 
increase is very high (about 10 times the rest of the path), it is so concentrated in a very small region that its effect is 
practically undetectable. In fact a similar design had been already used for another heater, with a square winding of the 
electric path (see Fig. 4). The IR thermography detection of this heater (See Fig. 5) fed by an electric power does not 
reveal any meaningful temperature difference within the resolution of the IR camera (0.1 °C), even if in this heater many 
current inversion points are located. 
 

 
Fig. 3 computed electric current density distribution of the heater 

 



 
Fig. 4 Heater with square winding of the electric path 

 

 
Fig. 5 Thermography of the heater shown in fig. 4 

 

3.2. The sample holder 
 
The two identical samples and the heater must be located inside the furnace, in strict contact among them. Then the 
sample holder must assure this contact, must resist at high temperature, and must locate the two cylindrical samples and 
the square heater. The sample is positioned on the bottom of the holder, than the heater is put on it in its seat and then the 
other sample. A cap with a screwed side is used to keep all the items together and to impose the pressure to reduce the 
contact resistance. The material is a machinable ceramic (Aremco). Its look is shown in Fig. 6 
 



 
Fig. 6 holder for sample in high temperature measurements 

 

4. AMBIENT TEMPERAURE MEASUREMENTS 

 

4.1. Experimental setup 
 
Presently only tests at ambient temperature have been carried out, with a standard heater (Minco flat heater in capton 
with metallic deposit, in order to assess the experimental procedure and recognize the problems in the devices, 
experiment conduction and data processing. This heater was sandwiched between two samples of brick, and electric 
power supplied to it. So the experimental setup resulted the same as described before, except the oven and its control. 
 

4.2. Results and data processing 
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Fig. 7 non linear least square regression and residual analysis for test #1 
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Fig. 8 linear least square regression and residual analysis for test #2 

 
The results of two different tests with samples taken from the same material (brick) and capton heaters are reported in 
Fig. 7 and 8, as temperature versus time. 
From these data the presence of the thermal contact resistance is clearly noticeable, different in the two tests, and 
responsible of the high increasing of temperature in the first seconds of heating. 
Fig. 7 and 8 reported also the non linear least square regression of the data of these two tests, together with the residuals 
analysis (difference between the calculated and experimental data, and showing the behaviour of data around the model). 
The best approximation of the unknown, their uncertainty and the prevision uncertainty of data are reported in Table 1. 
From the results the following remarks can be made: 

- the analytical model well fits the data: an average difference of the data from the model of less than 0.1 °C is 
obtained 

- thermophysical properties of brick are in agreement with reference data 
- thermal contact resistance is different in the two tests, and in the first resulted 30% higher than in the second 
- at the beginning, during the initial quick heating, the maximum deviation between experimental and computed 

data is present: this difference is likely due to the non perfect accordance between theory and experiments, i.e. 
the thermal contact resistance can be non uniform, and sample roughness can influence heat propagation in 
unpredictable way 

 
 ( )-1 -1W m Kλ ⋅ ⋅  ( )2 -1m sα ⋅  ( )-2 -1W m Kch ⋅ ⋅  ( )°CT ts  

Test #1 1.048 0.001±  ( ) 76.76 0.02 10−± ⋅  90.97 0.57±  23.61 10−⋅  

Test #2 1.0492 0.0003±  ( ) 77.71 0.02 10−± ⋅  123.7 1.1±  21.74 10−⋅  
Table 1 – results of test #1 and #2 

 

5. UNCERTAINTY ANALISYS 
 
The uncertainty reported in table 1 is the propagation of the prevision uncertainty of data sT/t Being a result of the least 
square procedure, it can be seen as a type A uncertainty according to the definition of ISO GUM [9], because it is 
evaluated with a statistical method (least square regression). But this uncertainty represents only how experimental data 
are fitted by the analytical model, and by itself cannot be comprehensive of all the uncertainty causes. 
Then type B uncertainty must be added. This can be due to: 

- non perfect insulation of the sample from the environment: a deviation of the temperature values at longer times 
can take place, and influence the estimated parameters 

- thermal capacity of the heater, at the moment evaluated only by reference data (in the future, when the final 
version of the heater will be available, its thermal capacity will be accurately determined) 
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- some amount of dependency of the two thermophysical parameters: thermal conductivity and thermal 
diffusivity. In fact the minimum sum of square of residual results little dependent on the variation of the two 
parameters. This corresponds to the so called “ill conditioned problem” [10], which sometimes make the least 
square procedure somehow faint. 

On the contrary little uncertainty is attributed to propagation from other experimental conditions: supplied electric 
current, resistance variation of the heater during the test, length of the sample. So the sum in quadrature of these 
uncertainties to the others can be neglected. 
As a conclusion a total uncertainty of ±5% (±1 σ) can be roughly estimated at the moment. A good assessment of the 
total uncertainty at high temperatures will be carried out with the analysis of all the uncertainty causes and tests with 
reference materials. 
 

6. CONCLUSIONS 
 
Contemporary measurement of thermal conductivity, thermal diffusivity and thermal contact resistance has been carried 
out with the flat plane source method. In order to perform this task, a data processing technique base upon non linear 
least square algorithm has been developed. This algorithm uses the analytical solution of the conduction heat transfer, 
and the lumped parameter equation for the heat stored in the heater and then transmitted to the sample through the 
thermal contact resistance. For high temperature tests (up to 1500°C) special devices (heater and sample holder) have 
been sized, designed and they are going to be realized in the next future. In the meantime assessment of the method has 
been carried out by means of a standard ambient temperature flat heater. Results show a good capacity of determining 
both thermophysical properties and contact resistance, even if the two properties evaluated are not completely 
independent on each other. 
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APPENDIX 

Analitical solution of the equation to be used as model in the least square regression 
The geometry of the described experiments is sketched in Fig. A1. The differential equation is the usual Fourier equation  
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where Ts is the temperature of the sample, an α the thermal diffusivity. The heat generation is assumed as a lumped 
parameter first order differential equation in the Th , temperature of the heater: 
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with Ch = mh cph the thermal capacity of the heater per unit area (mh the 
mass per unit area of the heater, and cph its specific heat), and 

2 / 2q RI A= , with R resistance of the heater and I the electric current 
flowing through it. The number 2 takes into account that the power is 
equally supplied to the two samples. 
Eq. (A1) and (A2) are the two differential equations of a system whose 
unknowns are Ts and Th. The other boundary condition is the following: 
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i.e. thermal insulation at the border of the sample, on the non heated 
side. This condition can be eventually modified if different 
experimental setups are used 
The initial condition is  

Ts = Th = T0    (A3) 
with T0 the initial temperature of the test 
The temperature differences from the beginning are defined: 

0s sT Tϑ = −   0h hT Tϑ = −   (A4) 
And the solution, computed in x=0, is given by [7], and is for sϑ   
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With the following positions 
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zn are the infinite solutions of the eigenvalue equation : 
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which must be found numerically. 
In order to have the analytical expression of ϑh  which must be compared with the experimental data, the eq. A2 must be 
solved. According to the general rules of the linear differential equations, the equation A2 in the form 
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being /c hK h C= , must be solved first solving the associated homogeneous equation: 
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(a.h.= associated homogeneous), whose solution is  
. .

1
a h Kt

h C eϑ −=       (A10) 
and than the particular solution. Taking into account that f(t) contains constant terms, one linear term in t and a sum of 
exponentials, the particular solution can be written as: 
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Fig. A1: geometry of the analytical  
solution 



where 2
n
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α
β = . Naming A1, B1 and Cn

1 the linear in t coefficient of f(t), the constant and the coefficient of the 

exponentials, i.e.  
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the quantities A, B, and Cn  are evaluated substituting (A11) in (A8), and equalizing the same order terms.  
This leads to: 
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The general solution is then: 
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The integration constant C1 is found imposing ( ) 0   for   0h t tϑ = = , and results 
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And the final solution is  
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