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Abstract: the exactly soluble Luttinger model can be also analyzed from the point of view of the

renormalization group. A perturbation theory of the beta function of the model is derived. We argue that

the main terms of the beta function vanish identically if the anomalous dimension is properly treated and if

suitable properties of the exact solution are taken into account. Our treatment is purely perturbative and

we do not discuss the problems of convergence of the formal series defining the beta function: however the

property that the series defining it is convergent has been recently established.

§1 The Luttinger model

The recent interest on the Luttinger model, [A], motivates our discussion of its properties
in a formalism which admits extensions to higher dimensions, developed in [BG].

The model [L] describes two spinless fermions labeled by ~ω = ±1, with a one dimensional
hamiltonian:

H = [T0] + {HI} =
[ ∑

~ω=±1

∫ L

0

d~xψ̃+
~x,~ωβ0(i~ω~∂ − pF )ψ̃−~x,~ω

]
+

+
{

λ

∫ L

0

d~xd~yv(~x− ~y)(
∑

~ω=±1

q1,~ωψ̃+
~x,~ωψ̃−~x,~ω)(

∑

~ω=±1

q2,~ωψ̃+
~y,~ωψ̃−~y,~ω)+

+ ν
∑

~ω=±1

[q1,~ω + q2,~ω]
∫ L

0

d~xψ̃+
~x,~ωψ̃−~x,~ω + σ

∫ L

0

d~x
}

(1.1)

where ψ̃± are creation and annihilation field operators, ~x and ~y are position variables in
the interval [0, L] considered with periodic boundary conditions, pF = 2π

L (nF +1/2) is the
Fermi momentum (nF is an integer depending on L so that pF is independent of L up to
terms of order 1/L), and β0 is the velocity at the Fermi surface; λv(~r) is the interaction
potential, which will be supposed with short range, equal to a fixed length p−1

0 , and even
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as a function of ~r; the charges q1,~ω and q2,~ω are arbitrary constants. Finally ν and σ are
counterterms, necessary to balance the ultraviolet divergences due to the unrealistic linear
dispersion relation in the (kinetic energy − chemical potential) term T0; in fact a fermion
field of type ~ω and momentum ~k has energy β0~ω~k. We fix units so that the Fermi velocity
is β0 = 1.

The case considered by Luttinger was q1,+ = 1, q1,− = q2,+ = 0, q2,− = 1. The model
was solved in [ML], but the exact solution applies to the general choice of qi; the case
qi,± = 1/2 is explicitly treated in [ML] and extended to a simple spinning model in [M].

The values of ν and σ have to be computed by introducing a ultraviolet cut-off in (1.1)
(which otherwise does not have a well defined meaning) and, subsequently, by imposing
that the Schwinger functions of the model are well defined uniformly in the cut-off. Their
values depend upon the way the ultraviolet regularization is introduced and can be al-
tered by an arbitrary finite constant (possibly affecting the physical value of the Fermi
momentum or the Fermi velocity).

The regularization which is implicit in the exact theory of the ground state seems to
be simply the suppression of the modes with ~k < −2Up0 for the ~ω = +1 fermions and
~k > 2Up0 for the ~ω = −1 fermions, where p0 is an arbitrary (for the time being) momentum
scale and U is a cut-off parameter to be let to ∞ eventually. It is natural and convenient
to fix p0

−1 equal to the range of the interaction potential, supposed of finite range.
Since the momenta ±pF play a special role for the two fermions, it is convenient to

measure the momenta of the ~ω-type fermions from pF ~ω. If we call α±~k,~ω
the creation and

annihilation operators of the two fermions, we introduce the following field operators:

ψ̃±~x,t,~ω ≡ etT0 ψ̃±~x,~ωe−tT0 =
1√
L

∑

~k

e±[i~k~x+(~ω~k−pF )t]α±~k,~ω
=

= e±ipF ~ω~xψ±~x,t,~ω

ψ±~x,t,~ω ≡ etT0ψ±~x,~ωe−tT0 =
1√
L

∑

~k

e±(i~k~x+t~ω~k)a±~k,~ω

a±~k,~ω
≡ α±~k+pF ~ω,~ω

(1.2)

The following hamiltonian operators, necessary to establish contact with the existing
literature, will also be introduced, following [ML]:

T ′0 =
∑

~ω

∑

~k>0

~k(a+

~ω~k,~ω
a−

~ω~k,~ω
+ a−−~ω~k,~ω

a+

−~ω~k,~ω
) (1.3)

H ′
I = L−1λ

∑

~p>0

v̂(~p)[R1(~p)R2(−~p) + R1(−~p)R2(~p)]+

+ L−1λv̂(0)

[∑

~ω

q1,~ωN~ω

] [∑

~ω

q2,~ωN~ω

]

26/gennaio/2006 [2] 1:2



where:
Ri(~p) =

∑

~ω

qi,~ωρ~ω(~p), ρ~ω(~p) =
∑

~k

a+
~k+~p,~ω

a−~k,~ω

N~ω =
∑

~k>0

(a+

~ω~k,~ω
a−

~ω~k,~ω
− a−−~ω~k,~ω

a+

−~ω~k,~ω
)

(1.4)

note that T ′0 is equal to
∑

~ω,~k ~ω~ka+
~k,~ω

a−~k,~ω
up to a constant; but the constant, see below, is

infinite, hence this simpler form for T ′0 is not defined (although it can be very useful for
heuristic purposes).

One can check that the operators (1.3), (1.4) can be regarded as operators acting on a
Hilbert space H constructed as follows. Let:

|0〉 =
∏

~k≤0

a+
~k,+1

a+

−~k,−1
|vacuum〉 (1.5)

be an abstract vector, formally in Fock space. Let H0 be the abstract linear span of the
formal vectors obtained by applying finitely many creation and annihilation operators to
|0〉. We get an abstract linear space on which we introduce the scalar product between
two vectors by computing it in the obvious way as if they were Fock space vectors (no
problem arises because we only deal with vectors obtained by acting finitely many times
on |0〉 with the basic operators); then we define H to be the completion of H0 in the just
introduced scalar product.

With such definitions it is easy to check the following basic commutation relations:

[ρ~ω(ε~p), ρ~ω′(−ε~p
′
)] = −ε~ω~pδ~ω,~ω′δ~p,~p′

L

2π
, [ρ~ω(ε~p), T ′0] = −ε~ω~pρ~ω(ε~p)

[ρ~ω(ε~p),
∑

~p>0,~ω′
ρ~ω′(~ω′~p)ρ~ω′(−~ω′~p)] = −ε~ω~p

L

2π
ρ~ω(ε~p), ρ~ω(−~ω~p)|0〉 ≡ 0

(1.6)

for ~p > 0, ε = ±1.
Furthermore the operators (1.3), (1.4), regarded as operators on H with domain H0,

are essentially selfadjoint. A simple calculation shows that, if (setting qε =
∑

~ω qε~ω):

ν = −λv̂(0)(2Up0 + pF )/2π

σ = q+q−λv̂(0)(2Up0 + pF )2/(4π2)− L−1〈0|T0|0〉
(1.7)

then one has T ′0 + H ′
I = T0 + HI , in a formal sense as the T0 + HI is defined using a

ultraviolet cut off 2Up0. The latter relation becomes an identity in the limit U →∞.
Moreover one can also write:

T ′0 + H ′
I =

∑

~ω

∫
d~x : ψ+

~x,~ω(i~ω~∂)ψ−~x,~ω : +

+ λ

∫
d~xd~y v(~x− ~y) : (

∑

~ω

q1,~ωψ+
~x,~ωψ−~x,~ω) : : (

∑

~ω

q2,~ωψ+
~y,~ωψ−~y,~ω) :

(1.8)
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where : : denotes the Wick ordering with respect to the vacuum |0 > of H (i.e. the Wick
ordering of a product of creation and annihilation operators is obtained by rearranging the
order so that a+

−~k,+
, a−~k,+

, a+
~k,−, a−−~k,−,~k > 0 are always to the right of the other operators,

and the new product is multiplied by the parity sign of the permutation necessary to
produce it).

We adopt the choice (1.7) of the counterterms because it allows the simple interpretation
(1.8) of the hamiltonian in terms of Wick ordering. However the model thus obtained is
not, strictly speaking, identical to the model of Luttinger as solved by Mattis-Lieb [ML].
They in fact add to (1.1) an extra term so that the operator H ′

I in (1.3) is just given by
the first line, i.e. v̂(0) is in some sense forced to vanish, without requiring v̂(~p) to vanish
continously when ~p → 0. But the second line in the definition (1.3) of H ′

I is an operator
C ′I commuting with T ′0, as well as with all the operators ρ~ω(~p) and this, of course, implies
that the model (1.1) with the choices (1.7) of ν, σ, i.e. (1.3) or (1.8), is exactly soluble in
the same sense of the Luttinger model and the two hamiltonians are defined on the same
Hilbert space and have the same eigenvectors. The only problem is that C ′I is not bounded
below; however it is easy to see that T ′′0 ≡ T ′0 + C ′I is still bounded below if λv̂(0) satisfies
the stability condition:

(λv̂(0)P )2 ≤ (2π + 2λv̂(0)q1+q2+)(2π + 2λv̂(0)q1−q2−)

P = q1+q2− + q1−q2+

(1.9)

In fact, if we consider the action of T ′′0 on the states with n1 excitations (i.e. number of
particles minus number of holes) of tipe ~ω = + and n2 of type ~ω = −, we have:

T ′′0 ≥
π

L
(n2

1 + n2
2) +

λv̂(0)
L

(q1+q2+n2
1 + q1−q2−n2

2)− |
λv̂(0)

L
P ||n1||n2| (1.10)

and the r.h.s. is bounded below if and only if (1.9) is satisfied.
As we shall see below, the condition (1.9) is implied by the solubility condition of the

model in the case considered in [ML] (qi,~ω = 1/2), but this is not true in general. However
(1.9) is always implied by the stability condition for the full hamiltonian, if v̂(p) is a
continuous function, as we shall suppose.

Let us now define H ′′
I ≡ H ′

I − C ′I , so that T ′0 + H ′
I = T ′′0 + H ′′

I . The basic remark of
[ML] is that the commutation relations in (1.6) imply:

[ρ~ω(±~p), T − T ′′0 ] ≡ 0, for ~p > 0 (1.11)

if T ≡ (2π/L)
∑

~p>0,~ω ρ~ω(~ω~p)ρ~ω(−~ω~p). Hence T ′′0 − T commutes with all the operators
ρ~ω(~p), and, therefore, with H ′′

I + T . In this way we realize T ′′0 + H ′′
I as the sum of two

commuting operators, the second of which is a sum of easily diagonalizable commuting op-
erators and this leads to the exact solubility of the model, see [ML]. This is done by deter-
mining an even function ϕ(p) such that setting S = 2πL−1

∑
all p 6=0 ϕ(p)p−1ρ+(p)ρ−(−p)
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then the operator eiS(H ′′
I + T )e−iS does not contain mixed terms, i.e. it can be written, if

E0(λ) is a suitable constant, in the form:

2π

L

∑
p>0

[ε+(p)ρ+(p)ρ+(−p) + ε−(p)ρ−(−p)ρ−(p)] + E0(λ) (1.12)

and one checks that this is achieved by taking:

tanh 2ϕ(p) = − λv̂(p)P
2π + λv̂(p)Q

,

{
P = q1+q2− + q1−p2+

Q = q1+q2+ + q1−q2−
(1.13)

and:

ε+(p) = c(p)2(1 +
λv̂(p)

π
q1+q2+) + s(p)2(1 +

λv̂(p)
π

q1−q2−)+

+
λv̂(p)

π
c(p)s(p)P

ε−(p) = s(p)2(1 +
λv̂(p)

π
q1+q2+) + c(p)2(1 +

λv̂(p)
π

q1−q2−)+

+
λv̂(p)

π
c(p)s(p)P

(1.14)

where c(p) = cosh ϕ(p), s(p) = sinhϕ(p). Of course one needs that the r.h.s. of the
definition (1.13) of the hyperbolic tangent be < 1 in absolute value: we shall call this the
”solubility condition”. Moreover (1.12) and (1.14) imply that the hamiltonian is bounded
below if and only if:

(λv̂(p)P )2 ≤ (2π + 2λv̂(p)q1+q2+)(2π + 2λv̂(p)q1−q2−) (1.15)

This stability condition is a consequence of the solubility condition only if q1+q2+ = q1−q2−,
as is the case considered in [ML] or in the original Luttinger model. In general only the
converse is true, i.e. the stability condition (1.15) implies that the r.h.s. of (1.13) is < 1
in absolute value, so that one should always assume the stability condition (1.15).

In the rest of this paper we shall consider, as in [ML], the case qi~ω = 1/2, i = 1, 2; then:

ε+(p) = ε−(p) = e−2ϕ(p) =
(
1 +

λv̂(p)
2π

)1/2 (1.16)

and the ground state energy is: E0(λ) =
∑

p>0 p(e−2ϕ(p) − 1).
Let us remark that the operator T ′′0 −T can be explicitly computed and it is a constant

in every linear space containing a given number of excitations (this is non trivial and is
implicit in [ML], as pointed out in [O]). The constant can be computed in a state with
n1 excitations of tipe ~ω = + and n2 of type ~ω = −, simply by evaluating the expectation
value of T ′′0 −T on the ground state with the same number of excitations, namely the state
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with the first n1 levels of type ~ω = + occupied and the first n2 of type ~ω = − occupied (if
ni < 0 then one means, of course, holes created). And the problem is solved by the remark
that the commutation rules (1.6) imply that eiSρ+(p)e−iS , eiSρ−(−p)e−iS are bosonic
creation operators while eiSρ+(−p)e−iS , eiSρ−(p)e−iS are bosonic destruction operators
annihilating the new ground state which is: |Ω〉 = eiS |0〉 as well as all the similar ground
states in the spaces with given numbers of excitations.

For completeness we give the argument (see [H]) showing that T ′′0 − T is constant
on the space with a fixed number of excitations. Since C ′I is clearly constant on this
space, it is sufficient to consider the case λ = 0, so that T ′′0 = T ′0. It is an immediate
consequence of (1.11) that, if Ej(n1, n2) are the eigenvalues of T ′0 − T in the space with
excitations numbers n1, n2, then each of the corresponding eigenstates |n1, n2, j〉 generates
a family of eigenvectors with the same eigenvalue simply by applying the operators ρ+(p)
and ρ−(−p) an arbitrary number of times. Such vectors are all pairwise orthogonal and
non zero. Furthermore the eigenvector |n1, n2, j〉 with eigenvalue Ej(n1, n2) can be so
chosen that ρ+(−p) and ρ−(p) annihilate it. Then we see that by applying the operators
ρ+(p) and ρ−(−p) an arbitrary number of times to |n1, n2, j〉 one gets a family of vectors
with the property that (T ′0 − T ) has eigenvalue E(n1, n2, j) on each of them while T

has eigenvalue
∑

p>0 p(n+(p) + n−(p)), where n+(p), n−(p) are the number of times the
operators ρ+(p), ρ−(−p) are applied. Clearly the partition function for T ′0 at positive
temperature β−1 can be computed in two ways: one is by observing that it is the partition
function of a free Fermi gas with two particles with dispersion relation ~ω(k − pF ), which
is obviously:

Z = [
∏
n>0

(1 + z2n−1)]4 (1.17)

where z = e−βπ/L (recall that pF = 2π/L(nF + 1/2)). Another way is to note that the
above basis of vectors |n1, n2, j, {n+(p)}, {n−(p)}〉 is obviously complete and the operator
T ′0 ≡ (T ′0−T ) + T has on it eigenvalues E(n1, n2, j) +

∑
p>0 p(n+(p) + n−(p)), so that the

partition function is:

Z = (
∑

j,n1

e−βE(n1,0,j))2
(∏

n>0

(1− z2n)−1
)2

(1.18)

where the independence of the two species of fermions with ~ω = ±1 produces the squaring
of the partition functions and the identity E(j, n1, n2) = E(j, n1, 0) + E(j, 0, n2).

Note that, as remarked above, we know explicitly at least one among the eigenvectors
|j, n1, n2〉 of T ′0 − T , namely the one in which all the levels are filled up to the level n1

(above k = pF ) with fermions of type + and down to the level n2 with fermions of type
−. Furthermore on such states it is easy to see that T has eigenvalue 0 while T ′0 has
value (n2

1 + n2
2)π/L. We see that if, and only if, such states were the only ones with

n1, n2 excitations it would follow that the (
∑

j,n1
e−βE(n1,0,j))2 would have to be the sum

(
∑

k∈Z zk2
)2. But (

∑
j,n1

e−βE(n1,0,j))2 can be obviously ([ML]) computed by remarking
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that the two above methods of computing the partition function of the free gas must
yield the same result (i.e. (1.17) equals (1.18)): so the property that there is only one
eigenstate of T ′0 − T which has the quantum numbers n1, n2 and which is annihiilated by
ρ+(−p), ρ−(p) is equivalent to the validity of the following identity among power series:

+∞∑

k=−∞
zk2

=
∞∏

k=1

(1 + z2k−1)2(1− z2k) (1.19)

which is a well known identity about theta functions (see [GR], 8.180, 8.181). Had we
taken the Fermi momentum to be pF = 2πnF L−1 (instead of pF = 2π(nF +1/2)L−1) and
performed consistently the above analysis, we would have found instead of (1.19) another
remarkable identity:

∞∑

k=0

zk(k+1)/2 ≡
∞∏

k=1

(1 + zk)2(1− zk). (1.20)
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§2 Schwinger functions

By repeating the classical analysis of [LW], one finds expressions for the Schwinger
functions of the Gibbs state at inverse temperature β for the system confined in a box
[0, L] with periodic boundary conditions.

If x ≡ (~x, t), β > ti > 0, ti 6= tj if i 6= j, εi = ±1 and {π(1), . . . , π(n)} is the permutation
of {1, . . . , n} (with parity σπ) such that π(1) > π(2) > . . . > π(n), then:

SL,β(x1, ~ω1, ε1; . . . ; xn, ~ωn, εn) = (−1)σπ

[
Tr e−β(H−E0)

]−1

·

· Tr e−(β−tπ(1))(H−E0)ψ
επ(1)

~xπ(1),~ωπ(1)
e−(tπ(1)−tπ(2))(H−E0) . . . ψ

επ(n)

~xπ(n),~ωπ(n)
e−tπ(n)(H−E0)

(2.1)

is the standard definition of the Schwinger functions, where E0 is the ground state energy.
Therefore, if |Ω〉 denotes the ground state of H, it is:

lim
β→∞

SL,β(x1, ~ω1, ε1; . . . ; xn, ~ωn, εn) ≡ SL
n =

= (−1)σπ 〈Ω|ψεπ(1)

~xπ(1),~ωπ(1)
e−(tπ(1)−tπ(2))(H−E0) . . . ψ

επ(n)

~xπ(n),~ωπ(n)
|Ω〉

(2.2)

The mean number of particles with momentum ~k+pF ~ω and type ~ω can be, consequently,
evaluated as:

n~k,~ω = [ lim
L→∞

lim
β→∞

1
L

∫
d~xd~yei~k(~x−~y)SL,β((~x, 0+), +, ~ω); (~y, 0),−, ~ω)] (2.3)

where 0+ means that 0+ should be replaced by t > 0 and then the limit of the square
bracket as t → 0 has to be considered.

The r.h.s. of (2.2) can be explicitely evaluated; for example, for the model with ρi(~ω) =
1/2, i = 1, 2, one can show, [Ma], that:

SL
n = e−QL

n SL
0,n (2.4)

where SL
0,n are the free Schwinger functions and:

QL
n(x1, ~ω1, ε1; . . . ; xn, ~ωn, εn) =

=
2π

L

∑

~p>0

1
~p

∑

~ω=±1

{
s(~p)2[

n

2
+ 2

∑
i,j∈I~ω

i<j

εiεje
−~p|ti−tj |/c2(~p) cos ~p(~xi − ~xj)]+

−
∑

i,j∈I~ω
i<j

εiεj [e−~p|ti−tj | − e−~p|ti−tj |/c2(~p)] cos ~p(~xi − ~xj)+

− c(~p)s(~p)
∑
i∈I~ω

j∈I−~ω

εiεje
−~p|ti−tj |/c2(~p) cos ~p(~xi − ~xj)+

− i~ω
∑

i,j∈I~ω
i<j

ti − tj
|ti − tj | [e

−~p|ti−tj | − e−~p|ti−tj |/c2(~p)] sin ~p(~xi − ~xj)
}

(2.5)
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Here I~ω denotes the set of indices such that ~ωi = ~ω and we have set:

s(~p) = sinh ϕ(~p), c(~p) = cosh ϕ(~p), c2(~p) = e2ϕ(~p)

tanh 2ϕ(~p) = − λv̂(~p)
λv̂(~p) + 4π

(2.6)

Of course the positions (2.6) are meaningless, unless:

λv̂(~p) > −2π (2.7)

that we shall suppose satisfied in the following. We have seen that the physical meaning
of (2.7) is simply that of the stability of the model, (i.e. boundedness from below of the
energy spectrum, proportionally to the number of particles and holes).

Denoting S(x, ~ω) ≡ limL→∞ limβ→∞ SL,β(x, ~ω,−; 0, ~ω, +) and S0(x, ~ω) the correspond-
ing free function, we find:

S(x, ~ω) = S0(x, ~ω)e−Q(x)−R(x)−i~ω t
|t| I(x) (2.8)

with, see [Ma] for details:

Q(x) =
∫ ∞

0

d~p
2s(~p)2

~p
(1− e−~p|t|/c2(~p) cos ~p~x)

R(x) =
∫ ∞

0

d~p
cos ~p~x

~p
(e−~p|t| − e−~p|t|/c2(~p))

I(x) = −
∫ ∞

0

d~p
sin ~p~x

~p
(e−~p|t| − e−~p|t|/c2(~p))

(2.9)

and:

S0(x, ~ω) =
1

(2π)2

∫
dk0d~k

e−i(k0t+~k~x)

−ik0 + ~ω~k
=

1
2π

1
i~ω~x + t

(2.10)

The (2.9) and (2.6) imply that R(~x, 0) = I(~x, 0) = 0 and that Q(~x, 0) → +∞ as |~x| → ∞
like 2η log |~x|, with, if λ1 ≡ λv̂(0):

2η = 2[sinh ϕ(0)]2 =

= [(1 +
λ1

2π
)1/2 + (1 +

λ1

2π
)−1/2 − 2]/2 =

1
8
(
λ1

2π
)2 + · · ·

(2.11)

This shows, using (2.3) and (2.8), that the occupation number n~k,~ω behaves, near ~k = 0,

i.e. near the Fermi surface, as a − ε(~k)~ωb|~k|min{2η,1}, with ε(~k) = sign~k and a, b two
suitable positive numbers; hence we have no discontinuity at the Fermi surface, if λ1 6= 0,
but just a singularity in the derivatives of sufficiently high order, depending on the value
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of η (the first order if 2η < 1). Note also that the stability condition enters naturally in
the solubility restriction (2.7).

The (2.9) and (2.6) also imply that R(~x, t) + i~ω(t/|t|)I(~x, t) and Q(~x, t) behave respec-
tively as log[(i~ω~x+ c2(0)−1t)/(i~ω~x+ t)] and η log(~x2 + c2(0)−2t2), for ~x2 + t2 →∞, so that
the asymptotic behavior of S(x, ~ω) is:

1
2π

1
i~ω~x + c2(0)−1t

A(λ1)
(~x2 + c2(0)−2t2)η

(2.12)

where A(λ1) is a constant such that A(λ1) → 1 as λ1 → 0.
Formula (2.12) can be written:

Ŝ(p, ~ω) ' B(λ1)
|q|2η

−iq0 + ~ω~q
for |p| → 0 (2.13)

where q0 = p0 and ~q = c2(0)−1~p. This implies that there is no discontinuity at the Fermi
surface and that the Fermi velocity is equal to c2(0)−1, which goes to 1 as λ → 0. It is
however possible to consider a variation of the model (1.1), such that the Fermi velocity
stays equal to 1 for any λ. In fact, if we add a term δ̄ T0 to the Hamiltonian, the model
is still exactly soluble and the Schwinger functions are obtained from (2.4),(2.5) by the
replacements [Ma]:

t → (1 + δ̄)t

c2(~p) → (1 +
λv̂(~p)

2π(1 + δ̄)
)−1/2

(2.14)

It is possible to choose δ̄ so that:

Ŝ(p, ~ω) ' B(λ1)|p|2ηŜ0(p, ~ω) for |p| → 0 (2.15)

and δ̄ is given by the condition [Ma]:

c2(0)−1(1 + δ̄) = 1 (2.16)

The exact solution (2.4) allows us to deduce all the properties of the Luttinger model.
It is however interesting to investigate another approach to the theory of the ground state,
which does not rest in principle on the solvability of the model and can then be extended
to more realistic examples.

Starting from the expression (1.8) and going trough the well known pattern of deductions
used to set up the theory of the ground state as a problem of the analysis of a suitable
functional integral, one can easily find a functional integral formulation of the Luttinger
model.
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If we introduce a family of grassmanian fields ψ±x,~ω, which we denote with the same
symbols already used for the Fermi field operators (following a common practice, source
of a lot of confusion), the (2.1) can be rewritten:

SL,β(x1, ~ω1, ε1; . . . ; xn, ~ωn, εn) = Ξ−1

∫
PL,β

g (dψ)ψε1
x1,~ω1

. . . ψεn

xn,~ωn
e−V (ψ)

Ξ ≡
∫

PL,β
g (dψ)e−V (ψ)

(2.17)

where V (ψ) is:

λ

∫
d~xd~ydt v(~x− ~y) : (

∑

~ω

q1,~ωψ+
~x,t,~ωψ−~x,t,~ω) : : (

∑

~ω

q2,~ωψ+
~y,t,~ωψ−~y,t,~ω) : (2.18)

which is an element of the grassmanian algebra generated by ψ±x,~ω (hence it is not an
operator), and the integrals over ψ in (2.17) are defined by expanding exp[−V (ψ)] in
powers of V (ψ), hence of ψ, and evaluating the integrals using the Wick rule with field
propagator vanishing for all the pairings except for those between a ψ− field and a ψ+

field; in the latter case the propagator has the value:

∫
PL,β

g (dψ)ψ−x,~ωψ+
0,~ω =

δ~ω~ω′

(2π)2

∫ (L,β)

dk0d~k
e−i(k0t+~k~x)

−ik0 + ~ω~k
≡ δ~ω~ω′S

L,β
0 (x, ~ω) (2.19)

where (2π)−2
∫ (L,β) means

∑
~k

∑
k0

(Lβ)−1, with the sums running over the values ~k =
2πL−1n, k0 = 2πβ−1(m + 1/2), m and n integers. The latter structure of k ≡ (~k, k0)
means that one should regard the inverse temperature interval [0, β] with antiperiodic
boundary conditions: ψ±~x,0,~ω = −ψ±~x,β,~ω.

In the following sections we shall study, instead of the functions (2.17), the truncated
Schwinger functions, which are simply related to them and can be derived by a well known
procedure from the generating function ST (ϕ) in the following way (we suppress the indices
L, β):

ST
2n(x1, ~ω1; . . . ; xn, ~ωn; y1, ~ω

′
1; . . . ; yn, ~ω′n) =

δ2nST (ϕ)
δϕ+

x1~ω1
. . . δϕ−yn~ω′n

∣∣∣
ϕ=0

ST (ϕ) ≡ log
∫

Pg(dψ)e−V (ψ)+(ϕ+,ψ−)+(ψ+,ϕ−)

(2.20)

where ϕ±x~ω are auxiliary grassmanian variables, anticommuting also with the ψ±x~ω fields, δ

denotes the formal functional derivative which, togheter with the logarithm and exponen-
tial, is defined in the sense of formal power series, and

(ϕ+, ψ−) ≡
∑

~ω

∫
dxϕ+

x~ωψ−x~ω (2.21)
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The truncated Schwinger functions are then constructed as power series in λ, whose
terms are represented by suitable Feynman graphs. As long as L, β < ∞, the series can be
shown to be convergent. One could then try to collect terms of the series so that the limits
L, β → ∞ can be taken, using renormalization group techniques. This is what we shall
do, using however a different infrared cutoff, which has a meaning only with respect to the
representation (2.20) of the Schwinger functions ( it seems that our method does not work
with the original cutoff). In order to solve the problem we use essential information from
the fact that the model is exactly soluble. However the results that we obtain can be easily
extended to the more realistic system of spinless electrons interacting with a symmetric
potential (which is not soluble), see [BG]. Furthermore there is an intrinsic interest in the
technique that we shall explain in the following sections, because of the anomalous scaling
(2.12), which can be completely understood in this model from the point of view of the
renormalization group.
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§3 Anomalous scaling and running couplings.

We consider the grassmanian integration with propagator:

δ~ω~ω′

∫
dk0d~k

(2π)2
e−i(k0t+~k~x)

−ik0 + ~ω~k
≡ δ~ω~ω′g(x, ~ω) (3.1)

which is the limit of (2.19) when L, β → ∞. The expression (3.1) must be handled
with care; in fact one can see that the perturbative expansion of the Schwinger functions,
expressed in terms of Feynman graphs, can agree with the exact expression (2.4) (in the
limit L → ∞) only if one calculates each contribution with an ultraviolet cutoff on the
space momentum, |~k| ≤ 2Up0, and then takes the limit U →∞.

We now consider the scaling decomposition:

g(x, ~ω) =
1∑

n=−∞
g(n)(x, ~ω)

g(n)(x, ~ω) =
∫ p−2

0 2−2n

p−2
0 2−2n−2

dα

∫
dk0d

d~k

(2π)2
e−i(k0t+~k~x)−α(k2

0+~k2)(ik0 + ~ω~k), if n ≤ 0

(3.2)

while g(1) is given by the same integral over α with a different domain, namely α ∈
[0, p−2

0 /4]. Of course the remark which follows (3.1) affects only g(1), which represents the
ultraviolet part of the propagator.

We introduce, in correspondence with (3.2), a sequence of grassmanian fields ψ
(n)±
x,~ω with

propagators δn,n′δ~ω~ω′g
(n)(x, ~ω). The reason for introducing them, as well as the related

fields:

ψ
(≤h)±
x,~ω =

h∑
n=−∞

ψ
(n)±
x,~ω (3.3)

is to define a recursive method to study the functional integrals in (2.17).
The normal scaling approach would simply be to use that Pg(dψ) =

∏1
n=−∞ P (dψ(n)),

in the sense that the integral of a function of ψ is the same regarding ψ as a field with
propagator g or regarding it as ψ = ψ(≤1) via (3.3) and integrating over the various
fields ψ(n).The integration should be done recursively over ψ(1), ψ(0), ψ(−1), . . ., trying to
find recursive estimates. It will be clear, however, that such approach is bound to fail.
Therefore we set up an anomalous scaling approach, as it has been done in the theory of
scalar fields in 4− ε dimensions, where a normal scaling approach could not have worked.

We write ψ = ψ(1) + ψ(≤0) and perform the integration over ψ(1) defining:

e−V̄ (0)(ψ(≤0)) ≡
∫

P (dψ(1))e−V (ψ(1)+ψ(≤0)) (3.4)
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This is a preliminary step dealing with the ultraviolet part of the propagator; it is a step
which has no relation with the long range slow decay of the propagator g, which is the
main difficulty. Heuristically, one expects that V̄ (0) is not very different from the original
V . This can be checked by studying the perturbation series for V̄ (0) in powers of λ.

From the point of view of field theory, the evaluation of V̄ (0) is a problem of renormaliz-
able type, then it is not trivial. However one can easily show that the theory is divergence
free (once ν, σ are properly chosen as in §2) and that, to all orders of perturbation theory,
V (0) is an interaction containing terms of arbitrary degree in the fields, but with coeffi-
cients decaying exponentially fast on the scale p−1

0 . We think it possible to show that,
for λ small enough, one can sum the terms of the same degree in the fields (there is some
preliminary result in this direction [Ge]). We therefore proceed by assuming that V (0) has
the form of a short range potential with many-body components (i.e. terms containing
any number of ψ± fields), becoming very small as the number of bodies increases.

It is important to realize why it is inconvenient to break also g(1) into scales ranging from
p−1
0 to 0 (in geometric progression with ratio 2); in fact at first sight this seems to provide

the possibility of a symmetric treatment of the problem in its ultraviolet and infrared parts.
But this would be illusory, for the simple reason that the interaction can be regarded as
short ranged only on scales p−1

0 or larger. In the ultraviolet scales the interaction is very
long ranged and we should rather treat it as a mean field. The only case in which it would
seem reasonable not to distinguish between ultraviolet and infrared scales is the case of a
delta function interaction (which has no scales intrinsic to it); this case is, however, well
known to be pathological [ML] and in our formalism it is not even allowed because we
suppose p−1

0 < ∞. In fact the model with the δ interaction is equivalent to the Thirring
model for a quantum relativistic field theory and requires wave function renormalization
to remove the ultraviolet divergences (absent if the range p−1

0 of the potential is positive),
see [K, Ma].

To perform the integrals over ψ(≤0) using an anomalous scaling method, we introduce
a sequence Z0, Z−1, . . . of constants. While Z0 is fixed to be Z0 = 1, the others are left
free to be determined inductively. The choice Zj = 1 would give back the normal scaling
procedure, but it will not be our choice, although most of what we do holds also for this
choice (but the results are not useful, as it will appear).

In order to proceed we need:
1) the notion of relevant terms,
2) a more flexible notation for grassmanian integration.

The second point is an easy one; we denote P
(h)
Z (dψ) or P

(≤h)
Z (dψ) the grassmanian

integrations with propagators:

Z−1g(h) or Z−1g(≤h) (3.5)

If we introduce the convolution operator Ch with Fourier transform:

Ch(k) = e(k2
0+~k2)2−2hp−2

0 /4 (3.6)
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we can write, formally:

P
(≤h)
Z (dψ) ∝ e−Z

∑
~ω

∫
dxψ+

x,~ω
(∂t+i~ω∂~x)Ch(∂)ψ−

x,~ωdψ (3.7)

Coming to the notion of relevant operators, we consider a general element of the grass-
manian algebra and we define the operation L, the localization operation, as follows. L is
a linear operator which annihilates all monomials in the field operators of degree > 4. Its
definition on the monomials of degree 4 or 2 is simply:

Lψ+
x1~ω1

ψ−x2~ω2
= ψ+

x1~ω1
(ψ−x1~ω2

+ (x2 − x1)∂ψ−x1~ω2
)

Lψ+
x1~ω1

ψ+
x2~ω2

ψ−x3~ω3
ψ−x4~ω4

= 2−1
∑

j=1,2

ψ+
xj~ω1

ψ+
xj~ω2

ψ−xj~ω3
ψ−xj~ω4

(3.8)

This implies that the action of L on a V of the form:

V (ψ) =
∑

n

∑
~ω1,...,~ωn
~ω′
1

,...,~ω′n

∫
Wn(x1, ~ω1; . . . ;xn, ~ωn; y1, ~ω

′
1; . . . ; yn, ~ω′n)

ψ+
x1,~ω1

· · ·ψ+
xn,~ωn

ψ−y1,~ω′1
· · ·ψ−yn,~ω′n

dx1 . . . dyn

(3.9)

gives a result which can be written, by collecting similar terms:

LV (ψ) = λ′
∫

dxψ+
x,+ψ+

x,−ψ−x,−ψ−x,+ + ν′
∑

~ω

∫
dxψ+

x,~ωψ−x,~ω+

+ ζ ′
∑

~ω

∫
dxψ+

x,~ω∂tψ
−
x,~ω + iα′

∑

~ω

∫
dxψ+

x,~ω~ω∂~xψ−x,~ω

(3.10)

provided the W ’s in (3.9) are not too singular distributions.
To make precise what we mean by not too singular we introduce the following fields:

ψ±x,~ω , ∂ψ±x,~ω

D±
x,y,~ω = ψ±x,~ω − ψ±y,~ω , S1

x,y,~ω = ψ−x,~ω − ψ−y,~ω − (x− y)∂ψ−y,~ω

S2
x,y,~ω = ∂ψ−x,~ω − ∂ψ−y,~ω , S3

x1,x2,x3,x4,~ω = (x3 − x4)S1
x1,x2,~ω

K
(h)
x,~ω = (∂t + i~ω∂~x)(1− Ch(∂))ψ−x,~ω

(3.11)

where Ch is the operator in (3.6).
We shall only consider V ’s of the form (3.9), which can be rewritten as:

V (ψ) = LV (ψ) +
∑

n

∫
dξ1 . . . dξnW̃n(ξ1, . . . , ξn)Φξ1 . . . Φξn (3.12)
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where Φξ denotes one of the fields in (3.11) and ξ is (x, ~ω) or (x, y, ~ω) or (x1, x2, x3, x4, ~ω)
and dξ means integration over the x, y, . . . coordinates and summation over the ~ω coordi-
nates; furthermare the W̃ are products of ordinary smooth kernels by suitable time delta
functions.

We shall write the function V̄ (0) in (3.4) as:

V̄ (0)(ψ) = ζ̄(ψ+, (∂t + i~ω · ∂~x)C0(∂)ψ−) + V (0)(
√

Z0ψ) (3.13)

where ζ̄ is the coefficient of (ψ+, ∂tψ
−) in the expansion of V̄ (0)(ψ), and we set:

Z0 ≡ 1 + ζ̄ (3.14)

We can now set up a recursive procedure for the analysis of the integral (which coincides
with the Ξ in (2.17), because of (3.4) and the last two definitions):

∫
P

(≤0)
Z0

(dψ)e−V (0)(
√

Z0ψ) (3.15)

by writing P
(≤0)
Z0

(dψ) = P
(0)
Z0

(dψ̄)P (≤−1)
Z0

(dψ̃), ψ = ψ̄ + ψ̃. Integrating over ψ̄ and using
(3.7), we write (3.15) as:

∫
P

(≤−1)
Z0

(dψ)e−Ṽ (−1)(
√

Z0ψ) =

= const
∫

dψe−Z0

∑
~ω

∫
dxψ+

x,~ω
(∂t+i~ω∂~x)C−1(∂)ψ−

x,~ω ·

e−LṼ (−1)(
√

Z0ψ)−(1−L)Ṽ (−1)(
√

Z0ψ)

(3.16)

which we rewrite, using (3.7), as:

const
∫

P
(≤−1)
Z−1

(dψ)e−(Z0−Z−1)
∑

~ω

∫
dxψ+

x,~ω
(∂t+i~ω∂~x)C−1(∂)ψ−

x,~ω ·

· e−ζ′
∑

~ω

∫
dxψ+

x,~ω
(∂t+i~ω∂~x)C−1(∂)ψ−

x,~ω
+other relevant terms ·

· e−(1−L)Ṽ−ζ′
∑

~ω

∫
dxψ+

x,~ω
K

(0)
x,~ω

(3.17)

where const is a formally infinite but trivial constant, which we shall neglect in the
following, together with similar ones.

In the anomalous scaling procedure one chooses Z−1 so that Z0−Z−1 + ζ ′ = 0, i.e. the
coefficient of

∫
dxψ+

x,~ω(∂t + i~ω∂~x)C−1(∂)ψ−x,~ω vanishes and (3.17) becomes (thus defining
V (−1)): ∫

P
(≤−1)
Z−1

(dψ)e−V (−1)(
√

Z−1ψ) (3.18)
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where V (−1) can be expressed in terms of the fields (3.11) as in (3.12), with h ≥ −1, if
V (0) was expressible in terms of them as in (3.12). The latter property is seen to hold
order by order of perturbation theory.

The iteration produces a sequence Z0, Z−1, . . ., as well as a sequence of potentials V (h)

such that, up to a trivial constant:
∫

P
(≤0)
Z0

(dψ)e−V (0)(
√

Z0ψ) =
∫

P
(≤h)
Zh

(dψ)e−V (h)(
√

Zhψ) (3.19)

and a sequence of coefficients ~rh = (νh, δh, λh), called running couplings, which are defined
by writing:

LV (h) = Z2
hλh

∑

~ω

∫
dxψ+

x,+ψ+
x,−ψ−x,−ψ−x,++

+ Zhiδh

∑

~ω

∫
dxψ+

x,~ω~ω∂~xψ−x,~ω + Zh2hνh

∑

~ω

∫
dxψ+

x,~ωψ−x,~ω

(3.20)

Furthermore the W̃h-functions, appearing in the expansion of (1−L)V (h) in powers of
the fields, are also produced as formal power series in ~rh+1, . . . , ~r0. No term proportional
to

∫
dxψ+

x,~ω∂tψ
−
x,~ω appears in (3.20), because of our definition of the sequence Zh. Finally,

using the oddness of the propagator, it is easy to see that, for each h:

νh = 0 (3.21)

This property of the potential is related to the fact that, in the Luttinger model, the
interaction does not modify the position of the Fermi surface, so that we have effectively
only two running couplings.

Of course one could envisage other prescriptions to construct the sequence Zj , but it
will appear that only one of them has the possibility of being applicable to our problem,
namely the just illustrated anomalous scaling choice.

On heuristic grounds we expect that an asymptotic behaviour of the running couplings
like:

a)





Zh = z2−2ηh

νh → 0
δh → 0
λh → λ−∞

b)
{ |νh|, |δh|, |λh| < C0|λ0|

e−qε|λ0| < |Zh+q

Zh
| < eqε|λ0| q ≥ 0 (3.22)

for some z, η, λ−∞, ε, C0, implies that the pair correlation function S2(x, ~ω) ≡ ST
2 (x, ~ω; 0, ~ω)

behaves like:
Ŝ2(k) ∝ |k|2ηŜ0(k), k → 0 (3.23)

and that the four points truncated Schwinger function ST
4 , which we write as:

ST
4 (k1+, k2+, k3−, k4−) = −δ(k1 + k2 − k3 − k4)W (k1, k2, k3, k4)

4∏

i=1

Ŝ0(ki, ~ωi) (3.24)
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verifies:
W (k, k, k, k) ∝ |k|4η[λ−∞ + O(λ2

−∞)] k → 0 (3.25)

In section 5 we show that the relations between the running couplings:

~rh = (λh, δh, νh) and the scalings Zh (3.26)

of different h’s is such that (3.22) can hold if and only if the beta function vanishes.
On the other hand we know from the exact solution that (3.23), (3.24) hold rigorously

[Ma]. Hence we conclude that the beta function of the model ought to vanish.
In fact b) in (3.22) alone implies the vanishing of the beta function and is implied by

it. Thus the vanishing of the beta function is implied by the boundedness assumption b)
in (3.22). Once this is supposed to hold it follows that the model must have anomalous
scaling properties, (3.23), (3.24), and in fact one can compute the expansion in powers of
λ0 of the anomalous exponent η.
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§4 Schwinger functions and running couplings.

Let us now discuss the connection between the potentials V (h) and the truncated
Schwinger functions (2.20).

We define the effective potential Veff (ϕ) by:

e−Veff (ϕ) =
∫

Pg(dψ)e−V (ψ+ϕ) (4.1)

and we introduce, see (3.6):

Q̂1(k, ~ω) = (−ik0 + ~ω~k)−1

Q̂h(k, ~ω) = Q̂1(k, ~ω)Ch(k)−1 , h ≤ 0
(4.2)

By using the formal relation Pg(dψ) ∝ e−(ψ+,Q−1
1 ψ)dψ and by doing in (4.1) the formal

change of variable ψ → ψ − ϕ, it is easy to see that:

ST (ϕ) = (ϕ+, Q1ϕ
−)− Veff (Q1ϕ) (4.3)

The evaluation of the effective potential can be conveniently performed iteratively, start-
ing from (3.13):

e−Veff (ϕ) =
∫

P
(≤0)
1 (dψ)e−V̄ (0)(ψ+ϕ) =

=
∫

P
(≤0)
1 (dψ)e−(Z0−1)(ψ++ϕ+,Q−1

0 (ψ−+ϕ−))−V (0)(
√

Z0(ψ+ϕ))

=
∫

P
(≤0)
Z0

(dψ)e−(Z0−1)(ϕ+,Q−1
0 ϕ−)−(Z0−1)[(ϕ+,Q−1

0 ψ−)+(ψ+,Q−1
0 ϕ−)]−V (0)(

√
Z0(ψ+ϕ))

(4.4)

and, by doing in (4.4) the formal change of variable ψ → ψ− Z0−1
Z−1

ϕ, we get, up to a trivial
constant:

e−(1− 1
Z0

)(ϕ+,Q−1
0 ϕ−)

∫
P

(≤0)
Z0

(dψ)e−V (0)(
√

Z0(ψ+ ϕ
Z0

)) (4.5)

Hence, by iteration, one can easily prove that, for any p ≤ 0:

e−Veff (ϕ) = e
−

∑1

j=p+1
( 1

Zj
− 1

Zj−1
)(ϕ+,Q−1

j−1ϕ−)
∫

P
(≤p)
Zp

(dψ)e−V (p)(
√

Zp(ψ+ ϕ
Zp

)) (4.6)

having set Z1 ≡ 1. So that, if Z2 is defined to be equal to ∞:

ST (ϕ) =
2∑

j=p+1

(
1

Zj−1
− 1

Zj
)(ϕ+, Q1Cj−1ϕ

−)+ log
∫

P
(≤p)
Zp

(dψ)e−V (p)(
√

Zp(ψ+
Q1ϕ

Zp
)) (4.7)
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Let us now remark that it is not possible to take the limit p → −∞ in (4.7); in fact the
sum in the r.h.s. is divergent in this limit, because of the bad dependence on k of Cj(k),
see (3.6). However the analysis of the potentials V (h) [BGPS] shows that they all have
the form of a short range potential on scale (2hp0)−1, with many-body components which
are convergent power series in the running couplings near zero. Therefore we see that the
evaluation of the integral in (4.7), with ϕ having support in 2pp0 ≤ |k| ≤ 2p+1p0), is the
same type of calculation, up to a trivial rescaling, that one would perform to evaluate
the correlations on the scale of the potential. We can suppose that the latter problem is
solvable, by the same techniques of [BG] suitably extended, and that the result is of order
one (uniformly in h).

These considerations and (4.7) imply that the Fourier transform of the pair correlation
function S2(x− y, ~ω) can be written, for momenta of order 2hp0, in the following way:

Q̂1(k)−1Ŝ2(k, ~ω) =
2∑

j=h+1

(
1

Zj−1
− 1

Zj
)Cj−1(k)+Z−1

h Q̂1(k)[−δh~ω~k− 2hV̄ (h)(2−hk)] (4.8)

where V̄ (h)(k) is a smooth function of k, which has a smooth limit as h → −∞ and is of
the second order in the running couplings.

The equation (4.8) implies that, if k = 2hk̄, with |k̄| > 0 and independent of h, and if
limh→−∞ |h|−1 log Zh = η̃ > 0, then the asymptotic behaviour, for h → −∞, of Ŝ2(k, ~ω)
is of the type:

Ŝ2(k, ~ω) ' |k|η̃
(−ik0 + ~ω~k)

{
b(k̄) +

~ω~k

−ik0 + ~ω~k
[δh + a(k̄)]

}
(4.9)

We can not compare (4.9) with the asymptotic behaviour of the pair correlation (2.13),
because our renormalization procedure fixed the Fermi velocity to 1, which is not the value
in the model (1.1). Instead of modifying the renormalization procedure, we choose to study
the new model discussed after (2.13), obtained by adding a term δ̄T to the Hamiltonian,
so that the Fermi velocity is fixed to 1, independently of λ. Then, by comparing (2.15)
and (4.9), we see that b(k̄) is a function of |k̄|, a(k̄) = 0 (it should be possible to derive
directly these two results, but we did not do that) and

δh → 0 as h → −∞ (4.10)

η̃ = 2η = 2[sinh ϕ(0)]2 (4.11)

A similar discussion for the four fields Schwinger function yields a similar result, that is:

ŜT
4 (p1,+, p2,−; p3, +, p4,−) = −δ(p1 + p2 − p3 − p4)·

· g(>h)(p1, +)g(>h)(p2,−)g(>h)(p3,+)g(>h)(p4,−)
1

Z2
h

Ŵ
(h)
4 (p1, p2, p3)

(4.12)
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where, for momenta of order 2h:

Ŵ
(h)
4 (p1, p2, p3) = λh + W̄

(h)
4 (2−hp1, 2−hp2, 2−hp3) (4.13)

with W̄
(h)
4 having a smooth limit as h → −∞ and being of the second order in the running

couplings.
The asymptotic behaviour of the l.h.s. in (4.12) can be calculated from the exact

solution and one can see [Ma] that it is compatible with (4.12) and (4.13) only if λh has a
finite limit as h → −∞:

λh → λ∞(λ1) (4.14)

.
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§5 The beta function.

The above analysis not only permits us to define the running couplings ~rh and the
scalings Zh, (4.5), but also to find an expression of ~rh−1, Zh−1/Zh in terms of ~r≥h, Z≥h/Zh.
The latter can be studied from the explicit expressions of ~rh in terms of the Feynman graphs
of the model, which are constructed from the formal integration formula:

eV̄ (ψ) ≡
∫

P (dψ̄)eV (ψ+ψ̄) = exp
∞∑

n=1

1
n!
ET (V ; . . . ; V ) (5.1)

where ET denotes the truncated expectation with respect to the integration over ψ̄. The
latter is defined simply by imposing that, in the evaluation of the integrals E(V n) with the
Wick rule, only some terms are to be retained. Namely, if we think all the fields appearing
in a monomial in one of the V factors as lines and we represent a Wick contraction by
suitably joining together pairs of lines, then we only retain terms corresponding to Wick
contractions generating a connected graph of lines.

The theory of the estimates of the series expansion of ~rh−1, Zh−1/Zh in powers of
~r≥h, Z≥h/Zh is technically involved, see [BG], where the main result is that the formal
power series has coefficients of order n bounded uniformly in the scale parameter h, pro-
vided for some ξ > 0:

e−qξ < |Zh+q/Zh| < eqξ, for q > 0 (5.2)

by the bound:
DξC

n−1
ξ (n− 1)! (5.3)

for some Cξ, Dξ and all h ≤ 0.
In fact the model is technically very similar to the one flavour Gross-Neveu model and it

seems reasonable to us that one could improve (5.3) by taking out the n! from the bounds.
It is in fact possible to prove [GeS], [BGPS], that there is a convergent power series

expansion:
~rh−1 =Λ~rh + B′

h(~rh, Zh+1/Zh, ~rh+1, . . . , Z0/Zh~r0)

Zh−1

Zh
=(1 + B”h(~rh, Zh+1/Zh, ~rh+1, . . . , Z0/Zh~r0)

(5.4)

where Λ is a 3×3 diagonal matrix, with elements 1, 1, 2, see below, and with the functions
Bσ

h being holomorphic when all their arguments ~r-arguments are in a small enough disk
with h-independent radius while the arguments Zh+q/Zh, q ≥ 0 vary in an annulus like
(5.2) for some ξ small enough. Furthermore the limit limh→∞Bs

h converging to a holo-
morphic function of infinitely many variables B(~z1, ϑ1, ~z

2, ϑ2, . . .), holomorphic in a disk
of some radius ρ > 0 for the ~z variables and in an annulus like (5.2) for the ϑq variables
with some ξ > 0. So that if lim~rh = ~r−∞ and lim Zh+q/Zh = ϑq exist then ~r−∞ is a

26/gennaio/2006 [22] 5:1



fixed point of the relation ~r−∞ = Λ~r−∞ + B∞(~r−∞) where B∞(~r) is defined by setting
B∞(~r) = B′(~r, ϑ1, ~r, ϑ2, ~r, . . .).

For this reason we shall call beta function the function of three complex variables Λ~z +
B∞(~z), while we call beta functional the functions Bs

h in (5.4), depending on h arguments.
The beta function in the above sense is a function whose fixed points are the limit values
of the running couplings ~rh of our model.

In the literature one also considers often the function relating ~rh−1 to ~rh: it follows
from the above that the latter also has a well defined expansion around ~rh = ~0 but its
coefficients grow as n! with the order, hence it is not a priori well defined, and it seems to
us that even if it is well defined it will be such because of non generic cancellations, absent
in the case of spin non zero, for instance. The proof of the above convergence properties
can be found in [GeS],[BGPS]. Hence we shall assume them and study their implications.

We stress, before continuing, that the above results would also hold if one used the
normal scaling procedure. The bounds (5.3) and our convergence conjecture hold also in
the normal scaling approach. The importance of the scaling does not come in at this point,
yet.

If λ≥h denotes the sequence λh, λh+1, . . . , λ0 and a similar notation is adopted for
δ≥h, ν≥h, then the computation, via the Feynman graphs, of the running couplings leads
to the following:

λh−1 =(Zh/Zh−1)2
[
λh + λ3

hB1(λ≥h) + δhλ3
hB2(λ≥h, δ≥h)+

+ λ2
hν2

hB3(λ≥h, δ≥h, ν≥h) + 2hR̄1(λ≥h, δ≥h, ν≥h, 2h)
]

δh−1 =(Zh/Zh−1)[δh + λ2
hδhB4(λ≥h) + ν2

hB5(λ≥h, δ≥h, ν≥h)+

2hR̄2(λ≥h, δ≥h, ν≥h, 2h)
]

νh−1 =2(Zh/Zh−1)[νh + νhλ2
hB6(λ≥h, δ≥h, ν≥h)+ (5.5)

+ 2hR̄3(λ≥h, δ≥h, ν≥h, 2h)
]

1 =(Zh/Zh−1)[1 + λ2
hB8(λ≥h)+

+ δhλ2
hB9(λ≥h, δ≥h) + λ2

hν2
hB10(λ≥h, δ≥h, ν≥h) + 2hR̄4(λ≥h, δ≥h, ν≥h, 2h)

]

where all the Bj functions do depend also on the ratios Zh+q/Zh, q ≥ 0, as discussed above,
but such dependence is noty explicitly indicated to simplify the notation. Furthermore we
have computed a little more carefully the lowest terms to find out the minimal power to
which each running constant is raised; in particular we have used the following facts:
a) the graphs containing two λh-vertices and any number of δh-vertices cancel out;
b) since the propagator is an odd function of x, in the equation for νh−1 there is no

contribution due to graphs containing only λh-vertices (and therefore an odd number
of innner lines) or containing only λh- and δh-vertices (a δh-vertex does not change the
parity of the graph).
As we have stressed in the previous section, νh is exactly zero in the model (1.1), so we

could cancel out the third equation in (5.5). However we prefer to study the complete set
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of equations (5.5), since they are valid also in the model with an ordinary kinetic energy,
where νh is not zero, see [BG].

As a consequence of the discussion preceding (5.5), the functions Bj , R̄j should be
analytic in their arguments λ≥h, δ≥h, ν≥h (with a suitably small radius M of convergence)
and in Zh+q/Zh, q > 0 (in a suitably thin annulus around the unit circle, see (5.2)).
Furthermore the Bj can be shown to have a limit as j → −∞ while the R̄j terms disappear
in this limit. The R̄j vanish to second order in λh, δh, νh, see [BGPS].

Had we used the normal scaling approach, we would have found an equation like (5.5)
with δh (or δ≥h) replaced by a pair (αh, ζh) of constants (or by (α≥h, ζ≥h), representing
the coefficients of

∫
dxψ+

x,~ωi∂~xψ−x,~ω and
∫

dxψ+
x,~ω∂tψ

−
x,~ω, and each of the two new relations

would have had a non vanishing term proportional to λ2
h. The reason why such term is

missing in (5.5) is precisely due to our definition of anomalous scaling combined with the
symmetry in the propagator between ~x and t, which makes identical the contributions
to the variations of αh and ζh due to graphs only involving λh-vertices, hence it makes
idenically identically zero the contributions to δh of the same graphs.

It is convenient to eliminate completely the factors Zh/Zh−1 from (5.5), using the last
of (5.5) and expanding the denominators in power series:

λh−1 =λh + λ3
hG1(λ≥h) + δhλ3

hG2(λ≥h, δ≥h) + ν2
hλ2

hG3(λ≥h, δ≥h, ν≥h)+

+thR1(λ≥h, δ≥h, ν≥h, th)

δh−1 =δh + λ2
hδhG4(λ≥h, δ≥h) + ν2

hG5(λ≥h, δ≥h, ν≥h) + thR2(λ≥h, δ≥h, ν≥h, th)

νh−1 =2νh + νhλ2
hG6(λ≥h, δ≥h, ν≥h)+

+ thR3(λ≥h, δ≥h, ν≥h, th) (5.6)

th−1 =2−1th

having set th = 2h, and not having once more written explicitly the dependence of the Gj

on the variables ϑq,h = Zh+q/Zh, q > 0.
The relation (5.6), defining the beta functional, does not permit us to infer much about

the properties of the model; but we can derive extra information about the Gj functions
from the fact that the model is exactly soluble.

Let us assume:
1) that the flow (5.6) admits, for each λ0 6= 0 small enough, initial values δ0(λ0), ν0(λ0)

such that:
δh, νh → 0 , λh → λ∞(λ0)

Zh ' 2−ηh , η = O(λ2
0) > 0

|~rh| ≤ C0|λ0|
(5.7)

where ' means that the logarithms of both sides, divided by |h|, have the same limit
(see (4.3)), and λ−∞(λ), η(λ) being analytic near λ = 0.
Call Ḡ1(λ, η) ≡ limh→−∞G1(λ≥h), with λj ≡ λ and ϑq,j = 2−2ηq, and let us suppose

that:
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2) the function G1 in the first equation of (5.6) is analytic and not identically zero.
The assumption (5.7) immediately implies that Ḡ1(λ∞, η) = 0; then λ∞ is independent

of λ0, as a consequence of the analyticity hypothesis. But the hypotheses (5.7) and imply
that |λ∞| ≤ C0|λ0| has to hold for all λ0 small enough, so λ∞ = 0 and the fourth of (5.5)
tells us that Zh/Zh−1 → 1, which is incompatible with η > 0.

In conclusion, if the assumptions 1), 2) above are satisfied:

Ḡ1(λ) = 0 (5.8)

This makes more precise the argument leading to the conjecture given in [BG]. A similar
property has been proposed in [DM], supported by a symmetry argument.

We now observe that 1), i.e. (5.7), should be deducible from the exact solution of the
model, using (2.11), (3.23), (3.25). Moreover λ∞ = λ0 +O(λ3

0), so that, if λ0 is small, also
λ∞ is small. Also 2) should be provable by known techniques, as discussed above.

Then, by the previous discussion, our basic result is that the main term in the beta
function not only is zero to second order, where it is easily calculated, but vanishes to all
orders. We have checked by explicit calculation that (5.8) is verified also to third order
[Ma].

It is remarkable that (5.8) holds: in fact as it can be used in other models which are
not exactly soluble, but which can be shown to have the same Gi functions. One case,
see [BG], is the model of one spinless species of fermions interacting via a short range
interaction and with an ordinary kinetic energy (namely (~k2 − p2

F )/2m).
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