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Abstract

We show the existence and asymptotic stability of two fixed points
of the renormalization group transformation for the hierarchical two-
dimensional Coulomb gas in the sine-Gordon representation and tem-
peratures slightly greater than the critical one. We prove also that
the correlations at the fixed points decay as in the hierarchical mas-
sive scalar free field theory, that is as d−4

xy . We argue that this is the
natural definition of screening in the hierarchical approximation.

1 Introduction

In the last ten years the renormalization group ideas have been extensively
applied to the two dimensional Coulomb gas of identical charges ±e, in order
to rigorously understand the so called Kosterlitz-Thouless phase transition
[1].

∗Associate of the Department of Physics, Harvard University. Supported by Gruppo
Nazionale per la Fisica Matematica, CNR, Italy.
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For inverse temperatures β larger than the critical one, βc, and small
activity λ, it has been proved that there is no screening [2, 3]. This result
is strictly related to the fact that, in the field theoretical representation of
the model (the so called sine-Gordon representation), the effective potential
goes to zero as the scale goes to infinity [4]. All these results are valid also
in the hierarchical approximation of the model (see Sect. 2), where they are
obtained much easier [5, 6].

For β < βc screening is generally expected to be found, but this property
has been proved in the exact model only for β very small [7]. However, in the
case of the hierarchical approximation, a weak form of screening has been
proved for β.βc [6].

In this paper we study the hierarchical Coulomb gas in the sine-Gordon
representation in the region β.βc, by analyzing the renormalization group
transformation T of the effective potential. We prove that T has two non-
trivial asymptotic stable fixed points, which have the following screening
property: the two-charges truncated correlations decay as d−4

xy as the (hier-
archical) distance dxy goes to infinity, which is the decaying behaviour of the
truncated correlations of the massive hierarchical scalar field. Our analysis
also suggests that the effective potential for the hierarchical Coulomb gas on
scale 1 is in the domain of attraction of one of the fixed points, if the activity
is small enough, so that in this case as well screening should be observed.

The existence of the nontrivial fixed points was proved in [6] with a dif-
ferent technique, which does not use the sine-Gordon representation. The
proof of [6] extends to more general models, but allows one to study only
the simple (not truncated) correlations. This is why the analysis of [6] was
restricted to the screening for fractional charges; in fact, for the fractional
charges, the truncated correlations coincide with the simple ones.

Finally, we want to stress that the technique used in this paper is essen-
tially based on the bound discussed in the Appendix, which is a bound for
the Ursell coefficients of a system of arbitrary charges sitting in the same
point and interacting with a potential cQiQj. We were unable to find this
estimate, which we think is interesting by itself, in the literature.
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2 The hierarchical model

Let Qj, j ∈ N, be a sequence of compatible pavements of R2 made of squares
of side size γj, where γ ≥ 2 is an integer. To each ∆ ∈ Qj we associate a
gaussian variable z∆ such that

E(z2∆) =
1

2π
log γ , E(z∆z∆′) = 0 if ∆ ̸= ∆′ (2.1)

Then we define, ∀x ∈ R2:

φx =
∞∑
k=0

z
∆

(k)
x

(2.2)

where ∆(k)
x is the tessera of side size γk containing x.

Given x, y ∈ R2, let hxy be the smallest integer such that there exists a
∆ ∈ Qhxy containing both x and y. We shall call dxy ≡ γhxy , the side size of
∆, the hierarchical distance between x and y. By using (2.1) it is easy to see
that:

E((φx − φy)
2) = E

hxy−1∑
k=0

[z
∆

(k)
x

− z
∆

(k)
y
]2

 =
1

π
log dxy (2.3)

which justifies the claim that φx is a reasonable approximation of the two-
dimensional zero mass scalar field. In the following we shall denote the
corresponding Gaussian measure by P (dφ).

If v(z), z ∈ R1, is a real function such that

v(0) = 0 , v(z) = v(−z) (2.4)

and Λ is a finite volume belonging to QR, for some R > 0, we shall consider
the measure

µΛ
v (dφ) =

1

ZΛ
v

P (dφ)
∏

∆∈Q0∩Λ
ev(φ∆) (2.5)

ZΛ
v =

∫
P (dφ)

∏
∆∈Q0∩Λ

ev(φ∆) (2.6)

where φ∆ is the constant value of the field on the tessera ∆.
The choice

v(φ) = λ(cos(αφ)− 1) (2.7)
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corresponds to the hierarchical Coulomb gas in the volume Λ with activity
λ/2, charges ±e and temperature β−1, such that

βe2 = α2 (2.8)

For more details on this point see [5], where a rescaled field was used, instead
of (2.2).

Another interesting choice is

v(φ) = −m2φ2 ≡ um(φ) (2.9)

which should give rise to the two dimensional hierarchical scalar field of mass
m. It is important to remark, however, that this is not a good approximation
of the massive scalar field. In fact it is easy to show that

lim
Λ→R2

∫
µΛ
um

(dφ)φxφy ∝ d−4
xy (2.10)

in disagreement with the exponential decay of the massive scalar field (a sim-
ilar property is valid in other hierarchical models, see [8], chapter 4, exercise
2).

This observation will be very relevant in the following, since it implies
that the hierarchical Coulomb gas should have power decaying correlations
also in a screened phase, but with a power equal to 4 independently of β.

Let us now define the renormalization group transformation.
If F (z) is a function on R and < · >Λ

v denotes the expectation w.r.t. the
measure (2.5), then

< F (φ0) >v≡ lim
Λ→R2

< F (φ0) >
Λ
v=< LTk−1v · · ·LvF (φ0) >Tkv (2.11)

where

(Tv)(φ) = log

[∫
P0(dz)e

v(φ+z)∫
P0(dz)ev(z)

]γ2

(2.12)

(LvF )(φ) =

∫
P0(dz)e

v(φ+z)F (φ+ z)∫
P0(dz)ev(φ+z)

(2.13)

if P0(dz) denotes the gaussian measure on R1 of mean zero and covariance
1
2π

log γ.
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The operators T and Lv appear also in the expressions similar to (2.11)
valid for the expectations of any observable depending on the values of the
field φx in a finite set of tesserae ∆ ∈ Q0.

The operator (2.12) is the renormalization group transformation. It leaves
invariant the space Cα of the continuous functions periodic of period Tα =
2π/α and satisfying (2.4); then, if we want to study the hierarchical Coulomb
gas at temperature β−1, we have to restrict T to Cα with α =

√
βe2. In Ref.

[5] it was implicitly shown that v0(φ) = 0 is, for α2 > 8π, a fixed point of
(2.12) which is attracting for functions of the form (2.7), for λ small enough.
In fact one could also show that it is locally attracting in some subspace of
sufficiently regular functions.

In this paper we shall study the more difficult case α2 ≤ 8π and we
shall prove that there are two stable fixed points vα(φ) ̸= 0 (this result,
as discussed in the Introduction, has already been obtained with a different
technique [6]) in a suitable subspace of Cα.

Moreover, by studying the spectrum of (2.13) for v = vα in the space of
L2 functions periodic of period Tα, we shall prove that the integer charge
truncated correlations decay like d−4

xy . The restriction of Lv to periodic func-
tions is motivated by the fact that the truncated integer charge correlations
are given by the formula

ρT (x1, σ1; . . . ; xn, σn) =
∂n

∂ω1 · · · ∂ωn

log < exp{λ
2

n∑
j=1

ωje
iασjφxj } > |ωj=0

(2.14)
where σi ∈ {−1, 1} are the charges and xi are the positions of n particles.

3 The existence of two attracting nontrivial

fixed points

The proof of the existence of nontrivial fixed points for α2 < 8π is based
on the perturbative expansion of the renormalization group transformation
(2.12). If v(φ) ∈ Cα, we can write:

v(φ) =
∑

0̸=Q∈Z
vQ(e

iαQφ − 1) (3.1)
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where vQ = v−Q. Then, if v′Q are the Fourier coefficients of (Tv)(φ), (2.12)
can be written in the following form:

v′Q = γ2−
α2

4π
Q2

vQ + γ2
∞∑
n=2

1

n!

∑
Q1+···+Qn=Q

vQ1 · · · vQnFn(Q1, . . . , Qn) (3.2)

where
Fn(Q1, . . . , Qn) = ET (eiαQ1z; . . . ; eiαQnz) (3.3)

if we denote ET the truncated expectation with respect to the measure P0(dz).
In the appendix we prove the following nontrivial bound, which will play

a crucial role in the following:

|Fn(Q1, . . . , Qn)| ≤ nn−1

[
n∏

i=1

(4
√
κ|Qi|)

]
e−κQ2

n (3.4)

where κ = (α2/8π) log γ and Q =
∑n

i=1Qi.
The linearization of (3.2) around the fixed point v = 0 has a bifurcation

at α2 = 8π, where the Fourier coefficients v±1 become unstable. This bifur-
cation, as it is well known, is responsible for the Kosterlitz-Thouless phase
transition. In this paper we study the range of temperatures, immediately
above the critical one, given by the relation

0 < ε ≡ 2− α2

4π
≤ ε0 (3.5)

with ε0 small enough. We start by proving that (3.2) has two fixed points
different from zero.

We first look for approximate solutions, by imposing in (3.2) the condi-
tions |Q|, |Qi| ≤ 2 and n ≤ 2. Taking into account the symmetry property
vQ = v−Q, we obtain a system of two equations:

v′1 = γεv1 + av1v2 − fv31

v′2 = cv2 − bv21
(3.6)

where
a = γ2F2(−1, 2) = γε(1− γ−4(2−ε))

b = −1
2
γ2F2(1, 1) =

1
2
γ−2(1−ε)(1− γ−4+2ε)

c = γ−6+4ε

f = −1
2
γ2F3(−1, 1, 1) = 1

2
γε(1− γ−4+2ε)2

(3.7)
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If ε > 0 the system (3.7) has two solutions different from zero given by:

v̄21 =
(1− c)(γε − 1)

ab+ f(1− c)

v̄2 =
−b(γε − 1)

ab+ f(1− c)

(3.8)

Furthermore it is possible to see that, if v̄+1 and v̄−1 are, respectively, the
positive and the negative solution, there is a neighbourhood S of the origin
in R2, containing v̄+1 and v̄−1 , such that S ∩ {v1 > 0} and S ∩ {v1 < 0} are
in the domain of attraction, respectively, of v̄+1 and v̄−1 .

In the following we shall consider only the solution with v̄1 > 0, but the
same considerations could be applied to the other one. We want to prove that
there is a fixed point of (2.12) which is approximately equal to the function

v̄(φ) = 2v̄1[cosφ− 1] + 2v̄2[cos(2φ)− 1] (3.9)

We want to apply the contraction mapping principle; hence we need to define
a suitable Banach space and find a T-invariant subset, containing (3.9), on
which T is a contraction with respect to a suitable metric.

Let us consider the functions of Cα, which are analytic and bounded in a
symmetric strip along the real axis of width 2b̃ such that

δ ≡ e−αb̃ ≡ āε
1
2 ≤ δ̄ < 1 (3.10)

These functions form a Banach spaceB, if we define the norm in the following
way:

||v|| = sup
Q≥1

δ−Q|vQ| (3.11)

Let Bd ⊂ B be the sphere of radius d with center at the origin. We want
to choose d and ā, see (3.10), so that the smaller sphere Bd/2 contains the
function v̄, see (3.9). From (3.8) it follows that this is possible if

2

√
1− c

ab+ f(1− c)

γε − 1

ε
≤ dā

2
b

ab+ f(1− c)

γε − 1

ε
≤ dā2

(3.12)
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The bounds (3.12) and (3.10) can be satisfied for any d, if ā is sufficiently
large and ε is sufficiently small, as we shall suppose in the following.

We want now to define a subset D ⊂ Bd containing the functions which
are close to v̄. Let us define:

vi = v̄i + ri , v′i = v̄i + r′i , i = 1, 2 (3.13)

and consider the linear change of coordinates which diagonalizes the lin-
earization of the system (3.6) around its fixed point, that is:(

r1
r2

)
= S

(
u1
u2

)
(3.14)

where

S =

(
1 −aσv̄1

−2bσv̄1 1

)
(3.15)

with

σ =
1

1− c−K(γε − 1)

K =
4(1− c)

(1 + 2fv̄21 − c)
[
1 +

√
1− 8(1−c)(γε−1)

(1+2fv̄21−c)2

] (3.16)

D is the set of functions v ∈ Bd, such that:

|u1| ≤ d̃ε1+η

|u2| ≤ d̃ε3/2
(3.17)

where 0 < η < 1/2 and d̃ is any fixed positive constant.

Theorem 3.1 There exist a positive constant d0 and, for any given d, d̃, η,
such that 0 < d ≤ d0 and 0 < η < 1/2, another constant ε0, so that the set
D is invariant under the transformation T, if ε ≤ ε0.

Proof - (3.2) and (3.4) imply that, if v ∈ Bd and Q ≥ 1:

|v′Q| ≤ γ2−Q2(2−ε)d δQ +
∞∑
n=2

(Bd
√
κ)ne−κQ2

n

∑
Q1+···+Qn=Q

n∏
i=1

|Qi|δ|Qi|

≤ γ2−Q2(2−ε)d δQ +
∞∑
n=2

(B1d
√
κ)ne−κQ2

n

∑
Q1+···+Qn=Q

|Qi|≥1

n∏
i=1

δ
|Qi|
1 (3.18)

8



where B,B1 are suitable positive constants and δ1 is chosen so that

δ̄ < δ1 < 1 (3.19)

We now have to carefully bound the sum:

I ≡
∞∑
n=2

(B1d
√
κ)ne−κQ2

n

∑
Q1+···+Qn=Q

|Qi|≥1

n∏
i=1

δ
|Qi|
1 (3.20)

We can write:
I = I0 + I1 (3.21)

with

I0 =
Q∑

n=2

(B1d
√
κ)ne−κQ2

n δQ1 Nn(Q) (3.22)

I1 =
∞∑
n=2

(B1d
√
κ)ne−κQ2

n

n−1∑
k=1

(
n
k

) ∞∑
s=k

δQ+2s
1 Nk(s)Nn−k(Q+ s) (3.23)

where the combinatorial factor Nk(Q) is defined as

Nk(Q) =
∑

Q1+···+Qk=Q

Qi≥1

1 =


(
Q− 1
k − 1

)
for Q ≥ k ≥ 1

0 for 1 ≤ Q < k

(3.24)

It is easy to see that

I0 ≤ κQe−κQ(B1d)
2(1 +B1d

√
κ)Q−2δQ1 (3.25)

In order to bound I1, we use the inequality(
s
k

)
≤ sk

k!
≤ eρs

ρk
(3.26)

valid for any positive ρ and we choose ρ so that

δ2 ≡ δ1e
ρ < 1 (3.27)

Then we have:

I1 ≤ δQ2 (δ1B1d
√
κ)2

∞∑
n=2

(
B1d

√
κ

ρ

)n−2

e−κQ2

n
(1 + δ22)

n − 1− δ2n2
δ22(1− δ22)

(3.28)
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If d is sufficiently small, we have also:

B1d
√
κ

ρ
(1 + δ22) ≤ δ̄ < 1 (3.29)

which is compatible with (3.10) and (3.12) for ε small enough and ā large
enough. (3.22), (3.28) and (3.29) easily imply that

I ≤ Ā(B1d)
2δQ (3.30)

for a suitable positive constant Ā, only depending on δ̄ and δ1.
The inequalities (3.18) and (3.30) imply that, if Q ≥ 3, |v′Q| ≤ dδQ

provided that
γ2−9(2−ε)d+ Ā(B1d)

2 ≤ d (3.31)

which can be satisfied if d is sufficiently small. Then, in order to prove that
D is invariant, we still have to check that the condition (3.17) is preserved.

Let us notice that:(
r′1
r′2

)
=

(
1− 2fv̄21 av̄1
−2bv̄1 c

)(
r1
r2

)
+

(
ψ1

ψ2

)
+

(
ṽ1
ṽ2

)
(3.32)

where
ψ1 = ar1r2 − 3fv̄1r

2
1 − fr31

ψ2 = −br21
(3.33)

and

ṽ1 = γ2
∞∑
n=2

1

n!

∑
Q1+···+Qn=1
|Q1|+···|Qn|≥5

vQ1 · · · vQnFn(Q1, . . . , Qn)

ṽ2 = γ2
∞∑
n=2

1

n!

∑
Q1+···+Qn=2

|Q1|+···|Qn|≥4

vQ1 · · · vQnFn(Q1, . . . , Qn)
(3.34)

Proceeding as before, it is easy to show that, if d is sufficiently small,
then

|ṽ1| ≤ dδ5 = dā5ε5/2

|ṽ2| ≤ dδ4 = dā4ε2
(3.35)

The previous considerations imply that there exists d0 > 0, such that,
given d ≤ d0, (3.10), (3.12), (3.29), (3.31) and (3.35) are satisfied for ε
sufficiently small.
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By some simple algebra and using (3.14), it is possible to show that(
u′1
u′2

)
=

(
λ1u1
λ2u2

)
+

(
R1

R2

)
+

(
ṽ1 + aσ̃v̄1ṽ2
ṽ2 + 2bσ̃v̄1ṽ1

)
(3.36)

where
λ1 = 1−K(γε − 1)

λ2 = γ−6+4ε +K(γε − 1)− 2fv̄21
(3.37)

and  R1

R2

 = σ̃

 ar1r2 − (3f + abσ)v̄1r
2
1 − fr31

−br21 + 2bσ̃v̄1(ar1r2 − 3fv̄1r
2
1 − fr31)

 (3.38)

σ̃ =
σ

1− 2abσ2v̄21
(3.39)

By using (3.8), (3.14), (3.35), and (3.36), it is easy to prove that, if
0 < η < 1/2, and ε is sufficiently small, say ε ≤ ε0, then

|u′1| ≤ λ1d̃ε
1+η + c1d̃

3ε5/2+η + c2dā
5ε5/2

|u′2| ≤ λ2d̃ε
3/2 + c3d̃

3ε2+2η + c4dā
5ε2

(3.40)

for suitable constants ci, i = 1, . . . , 4. Then the conditions (3.17) are pre-
served if

λ1 + c1d̃
2ε3/2 + c2

d

d̃
ā5ε3/2−η ≤ 1

λ2 + c3d̃
2ε1/2+2η + c4

d

d̃
ā5ε1/2 ≤ 1

(3.41)

By looking at (3.37), it is immediate to see that (3.41) can be satisfied, given
any 0 < η < 1/2, if ε is small enough. In order to prove that Tv ∈ D, we
still have to check that

|v′1| ≤ dδ , |v′2| ≤ dδ2 (3.42)

which is again true for any η < 1/2, if ε is small enough, by (3.13), (3.17)
and the fact that v̄ ∈ Bd/2.

We now want to show that D contains a fixed point v∗ of the transfor-
mation T and that, given any v ∈ D, ||Tnv − v∗|| → 0 as n→ ∞.
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Given two elements of D, v(1) and v(2), we define r
(j)
i = v

(j)
i − v̄

(j)
i , j, i =

1, 2, and u
(j)
i as in (3.13) and (3.14); then we define:

m(v(1), v(2)) = max{δ−1|u(1)1 −u(2)1 |, δ−2|u(1)2 −u(2)2 |, sup
Q≥3

δ−Q|v(1)Q −v(2)Q |} (3.43)

It is easy to see that

|v(1)1 − v
(2)
1 | = |r(1)1 − r

(2)
1 | ≤ c5 δm(v(1), v(2))

|v(1)2 − v
(2)
2 | = |r(1)2 − r

(2)
2 | ≤ c5 δ

2m(v(1), v(2))
(3.44)

and
|u(1)1 − u

(2)
1 | ≤ c5 δ ||v(1) − v(2)||

|u(1)2 − u
(2)
2 | ≤ c5 δ

2 ||v(1) − v(2)||
(3.45)

for some constant c5.
The inequalities (3.44) and (3.45) imply that m and the norm (3.11)

generate the same topology. Therefore, in order to prove the existence of
a fixed point v∗ in D and its asymptotic stability, the following theorem is
sufficient.

Theorem 3.2 There exist a positive constant d1 ≤ d0 and, for any given
d ≤ d1 and 0 < η < 1/2, another constant ε1 ≤ ε0, such that, for any ε ≤ ε1:

m(Tv(1),Tv(2)) ≤ νεm(v(1), v(2)) (3.46)

with νε < 1 and νε → 1 as ε→ 0.

Proof - By proceeding as in the proof of Theorem 3.1 and using the identity

v
(1)
Q1

· · · v(1)Qn
− v

(2)
Q1

· · · v(2)Qn
=

n∑
k=1

v
(1)
Q1

· · · v(1)Qk−1
[v

(1)
Qk

− v
(2)
Qk
]v

(2)
Qk+1

· · · v(2)Qn
(3.47)

and (3.44), it is easy to show that, if Q ≥ 3 and d is sufficiently small, then

δ−Q|(Tv(1))Q − (Tv(2))Q| ≤ [γ2−9(2−ε) +B2d]m(v(1), v(2)) (3.48)

for some constant B2, depending only on δ̄ and δ1.
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Moreover, by using (3.36), it is easy to show that

δ−1|u′(1)1 − u
′(2)
1 | ≤ [λ1 + c6ε

3/2 + c6ε
2]m(v(1), v(2))

δ−2|u′(1)2 − u
′(2)
2 | ≤ [λ2 + c6ε

1/2+η + c6ε]m(v(1), v(2))
(3.49)

for d small enough, say d ≤ d1 ≤ d0, and some constant c6 depending on d̃, ā
and d1.

All the claims of the theorem easily follow.

Theorem 3.2 is not completely satisfactory, since we are interested in the
properties of the measure (2.5) with potential v(φ) = λ(cosφ− 1) ≡ v(λ)(φ).
The properties of the approximate transformation (3.6) (see discussion after
(3.8)) suggest that v(λ) is in the domain of attraction of v∗, for λ positive and
sufficiently small, and that a similar result holds for λ < 0; moreover, the
computer simulation is in complete agreement with this conjecture. In order
to rigorously prove this claim, however, we should investigate more accurately
the properties of the equation (3.36), trying to show that Tnv(λ) ∈ D for any
λ sufficiently small, if n is large enough. We think that this is possible, but
we did not try to fill in the details.

4 The correlation functions

Let us suppose that ε, η and d are chosen so that there is in D a fixed point
v∗ of the transformation T. We want to study the linear operator Lv, see
(2.13), for v = v∗; let us simply call it L.

We shall consider the action of L on the Hilbert space H of the functions
periodic of period Tα = 2π/α with inner product

(G,F ) =
1

Tα

∫ Tα

0
dφ q(φ)G∗(φ)F (φ) (4.1)

where
q(φ) = ev(φ)

∫
P0(dz)e

v(φ+z) ≡ ev(φ)N(φ) (4.2)

Proposition 4.1 L is a trace class positive self-adjoint operator of norm 1.
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Proof - It is very easy to verify that L is self-adjoint, by using the fact that
the measure P0(dz) is even in z.

Let us now observe that the functions

ψQ(φ) = q(φ)−
1
2 eiαQφ , Q ∈ Z (4.3)

are a base of H and that we can write:

ev(φ)q(φ)−
1
2 =

∑
Q

gQe
iαQφ ,

∑
Q

|gQ|2 <∞ (4.4)

Then we have:

Tr(L) =
∑

Q(ψQ,LψQ) =

=
∑
Q

∫
P0(dz)

1

Tα

∫ Tα

0
dφ[ev(φ)ψ∗

Q(φ)][e
v(φ+z)ψQ(φ+ z)] =

=
∑
Q,Q′

|gQ′−Q|2
∫
P0(dz)e

iαQ′z =
∑
Q,Q′

|gQ′−Q|2γ−
α2

4π
Q′2

=

= (
∑
Q

|gQ|2) (
∑
Q′
γ−

α2

4π
Q′2

) <∞

(4.5)

which proves that L is trace class.
If F ∈ H, evF ∈ L2 and therefore we can write

ev(φ)F (φ) =
∑
Q

f̃Qe
iαQφ ,

∑
Q

|f̃Q|2 <∞ (4.6)

Then, by proceeding as before, we can check that

(F,LF ) =
∑
Q

|f̃Q|2γ−
α2

4π
Q2

(4.7)

which proves that L is a positive operator. Moreover

(F,LF ) = |(F,LF )| ≤

≤
∫
P0(dz)

1

2Tα

∫ Tα

0
dφev(φ)+v(φ+z)[|F (φ)|2 + |F (φ+ z)|2] =

=
1

Tα

∫ Tα

0
dφev(φ)|F (φ)|2Nv(φ) = (F, F )

(4.8)
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Since LF = F , if F is a constant function, ||L|| = 1.

By Prop. 4.1 L is a positive compact operator, then it has a pure discrete
point spectrum with positive eigenvalues, at most finitely degenerate. Fur-
thermore the subspaces H+ and H− of H, which contain the functions even
and odd in φ respectively, are invariant under the action of L. Let L± be
the restriction of L to H±.

For ε = 0 (and hence v = 0) the eigenvalues of L+ and L− are the same,
that is:

λ±n (0) = γ−2n2

, n = 0, 1, . . . (4.9)

and they are all simple. By using the properties of v proven in Sect. 3
and known results about the perturbation theory of compact operators, it
is possible to show that the eigenvalues of L± can be written as suitable
functions λ±n (ε), which are continuous in ε = 0.

Since the constants are eigenfunctions of L for any ε ≤ ε1:

λ+0 = λ−0 = 1 (4.10)

and 1 is a simple eigenvalue of L. All the other eigenvalues are strictly less
than 1.

Let {µn}n≥0 be the set of all eigenvalues, ordered so that µn+1 ≤ µn, and
let Gn the corresponding eigenfunctions, normalized so that Gn is real and

(Gn, Gm) = δnm (4.11)

In particular µ0 = 1 and

G0 =

[
1

Tα

∫ Tα

0
dφq(φ)

]− 1
2

(4.12)

Moreover, it is possible to show, by the technique used below in the proof of
Theorem 4.1, that the Gn are smooth functions.

Let us consider a function F ∈ H such that its expansion in terms of the
Gn:

F (φ) =
∞∑
n=0

fnGn(φ) (4.13)
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has good convergence properties. Then, by (2.11) we have:

< F (φ0) >v=< (LkF )(φ0) >v=

=
∑
n

fnµ
k
n < Gn(φ0) >v −−−→k→∞ f0G0 = (G0, F )G0

(4.14)

Let us now suppose that we want to calculate the correlation between
F (φ0) and F ∗(φx). This problem arises, for example, if we are interested
in the two charges correlation; in this case F (φ) = eiαφ, whose expansion
has the needed convergence properties, as it is possible to show with some
standard calculation, using the smoothness of the functions Gn and the fact
that they are small perturbations of the functions eiαQ.

If h is the smallest integer so that there exists a ∆ ∈ Qh containing both
0 and x, we can write:

< F (φ0)F
∗(φx) >v=< |(ThF )(φ0)|2 >v=

=
∑
nm

fnfmµ
h
nµ

h
m < Gn(φ0)Gm(φ0) >v

(4.15)

But, by (4.11) and (4.14):

< Gn(φ0)Gm(φ0) >v= (G0, GnGm)G0 = G2
0(Gn, Gm) = G2

0δnm (4.16)

Then

< F (φ0)F
∗(φx) >

T
v = < F (φ0)F

∗(φx) >v −| < F (φ0) >v |2 =

= G2
0

∞∑
n=1

µ2h
n |fn|2

(4.17)

and, as a consequence

< F (φ0)F
∗(φx) >

T
v

≃
x→ ∞ cµ2h

1 = cd−τ
0x (4.18)

with c a suitable constant and

τ = −2 logγ µ1 (4.19)

We now want to show that

µ1 = γ−2 (4.20)
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at least for ε small enough. We start by observing that, since Tv = v, by
(2.12):

e
1
γ2

v(φ)
=

∫
P0(dz)e

v(φ+z)∫
P0(dz)ev(z)

(4.21)

By calculating the φ-derivative of both sides, it is easy to check that:

L
dv

dφ
= γ−2 dv

dφ
(4.22)

Since dv
dφ

∈ H−, this implies that

λ−1 (ε) = γ−2 , ∀ε ≤ ε1 (4.23)

But µ1, for ε small enough, is the minimum between λ+1 (ε) and λ
−
1 (ε); hence,

in order to show (4.20) it is sufficient to prove that λ+1 (ε) is smaller than γ−2.
We notice that (2.13) can be written also in the following way:

(LvF )(φ) =
d

dλ
log

∫
P0(dz)e

v(φ+z)+λF (φ+z)

∣∣∣∣
λ=0

(4.24)

If F ∈ H, F ∈ L2, then we can write:

F (φ) =
∑
Q

fQe
iαQφ (4.25)

Moreover, since (LvF )(φ) does not change if we add a constant to v(φ) , we
can replace in (4.24) v(φ) by the expansion

∑
Q ̸=0 vQe

iαQφ, whose coefficients
are the same as in (3.1). Then we obtain:

(LvF )(φ) =
∑
Q

fQγ
−α2

4π
Q2

eiαQφ+

+
∞∑
n=2

1

(n− 1)!

∑
Q1,...,Qn

vQ1 · · · vQn−1fQnFn(Q1, . . . , Qn)e
iα(
∑n

i=1
Qi)φ

(4.26)

If λ < 1, the eigenvalue equation LvF = λF is satisfied if f0 = 0 and

λfQ = fQγ
−α2

4π
Q2
+

+
∑∞

n=2
1

(n−1)!

∑
Q1+···+Qn=Q vQ1 · · · vQn−1fQnFn(Q1, . . . , Qn)

(4.27)
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for |Q| ̸= 0.
We are interested in the dependence on ε of the eigenvalue λ+1 (ε) and of

the Fourier coefficients fQ(ε) = f−Q(ε) of the corresponding eigenfunction,
which we shall normalize so that

f1(ε) = f−1(ε) = 1 (4.28)

For ε = 0, we have

f1(0) = f−1(0) = 1 , fQ = 0 if|Q| ̸= 1 (4.29)

We shall now rewrite (4.27), for λ = λ+1 (ε), as a fixed point equation in
a suitable Banach space, where the existence of a unique solution will follow
from the contraction mapping principle.

Let us define:

GQ(F ) =
∞∑
n=2

1

(n− 1)!
·

·
∑

|Q′|≥2

fQ′
∑

Q1+···+Qn−1=Q−Q′
vQ1 · · · vQn−1Fn(Q1, . . . , Qn−1, Q

′)
(4.30)

Eq. (4.27) gives, for Q = 1:

λ+1 (ε) = γ−2 + r(ε) +G1(F ) (4.31)

where

r(ε) = γ−2(γε − 1) + v2F2(2,−1) +
∞∑
n=3

1

(n− 1)!
·

·
∑

Q=±1

∑
Q1+···+Qn−1=1−Q

vQ1 · · · vQn−1Fn(Q1, . . . , Qn−1, Q)
(4.32)

If |Q| ≥ 2, we have:

[λ+1 (ε)− γ−
α2

4π
Q2

]fQ = hQ +GQ(F ) (4.33)

where

hQ =
∞∑
n=2

1

(n− 1)!

∑
|Q′|=1

∑
Q1+···+Qn−1=Q−Q′

vQ1 · · · vQn−1Fn(Q1, . . . , Qn−1, Q
′)

(4.34)
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By proceeding as in the proof of Theorem 3.1, it is easy to show that
there exist constants a1 and A1, only depending on δ̄ and δ1, such that

|r(ε)| ≤ a1ε (4.35)

|hQ| ≤ A1dδ
|Q|−1 , if |Q| ≥ 2 (4.36)

Let us now consider the Banach space E of the even functions F (φ),
periodic of period Tα, such that f0 = 0, f1 = f−1 = 1 and

||F || ≡ sup
Q≥2

δ−Q+1|fQ| <∞ (4.37)

We denote ED the sphere of radius D and center at the origin and we consider
the operator K from ED to H+, defined so that, if (KF )(φ) =

∑
Q̸=0 f

′
Qe

iαQφ,
then

f ′
Q = f ′

−Q =
hQ +GQ(F )

γ−2 + r(ε) +G1(F )− γ−
α2

4π
Q2

, if Q ≥ 2

f ′
1 = f ′

−1 = 1 , f ′
0 = 0

(4.38)

By (4.31) and (4.33) F is a solution of (4.27) for λ = λ+1 (ε), belonging to
ED, if and only if F is a fixed point of the operator K.

Theorem 4.1 There exist a positive constant d2 ≤ d1 and, for any given
d ≤ d2 and 0 < η < 1/2, other constants ε2, D0 and D1, such that ED is
invariant under the transformation K, if ε ≤ ε2 and D0 ≤ D ≤ D1; moreover
K is a contraction as an operator from ED to ED.

Proof - By proceeding as in the proof of Theorem 3.1, it is possible to
show that, if Q ≥ 2 and Dd is small enough:

|f ′
Q| ≤

A1d(1 +D)δQ−1

γ−2 − a1ε−DdA1δ − γ−
α2

π

(4.39)

Therefore ED is invariant under the transformation K if

D ≥ A1d(1 +D)

γ−2 − a1ε−DdA1δ − γ−
α2

π

(4.40)
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and it is easy to see that there exist d2, ε2, D0 and D1 such that (4.40) is
satisfied if d ≤ d2, ε ≤ ε2 and D0 ≤ D ≤ D1.

Let us now consider two elements F1, F2 ∈ ED such that, for Q ≥ 2,

|f1Q − f2Q| ≤ ρδQ−1 (4.41)

It is easy to check that, for any Q ≥ 1:

|GQ(F1)−GQ(F2)| ≤ ρdA1δ
Q−1 (4.42)

Moreover, if Q ≥ 2, by (4.38):

f ′
1Q − f ′

2Q = {hQ[G1(F2)−G1(F1)] + bQ[GQ(F1)−GQ(F2)]+

+GQ(F1)[G1(F2)−G1(F1)] +G1(F1)[GQ(F1)−GQ(F2)]}/

/{[bQ +G1(F1)][bQ +G1(F2)]}

(4.43)

where

bQ = r(ε) + γ−2 − γ−
α2

4π
Q2

(4.44)

Then it is very easy to show that, for d small enough,

|f ′
1Q − f ′

2Q| ≤ ᾱρ , ᾱ < 1 (4.45)

which immediately implies, together with Theorem 3.1, all the claims of this
theorem.

From (4.30), (4.31), (4.32), Theorem 4.1 and some simple algebra follows
that:

λ+1 (ε) = γ−2 − ε log γ(1 +
ab

ab+ f(1− c)
) +O(ε3/2) (4.46)

Then, if ε is small enough
λ+1 (ε) < λ−1 (ε) (4.47)

so that (4.20) is satisfied.
This means that, if v = v∗, the integer charge truncated correlations

decay as d−4
xy . With some more computational effort one could show that this

result is true also if v is in the domain of attraction of v∗.
We conclude by two remarks. The first remark, anticipated in the dis-

cussion preceding (4.13), is that the technique used in this section can be
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applied to any eigenvalue of Lv with similar results. In particular, one can
show that, for any given n and ε small enough (how small depends on n),
λ±n (ε) < λ±n (0).

The second remark is that we could study the fractional charges correla-
tions, by using similar arguments, in spite of the fact that the function eiαφ

must be substituted by eiαξφ, 0 < ξ < 1, which is not periodic of period Tα.
It is only sufficient to observe that, if F̄ (φ) = eiαξφF (φ), with F ∈ H, then

(LvF̄ )(φ) = eiαξφ(L(ξ)
v F )(φ) (4.48)

(L(ξ)
v F )(φ) =

∫
P0(dz)e

iαξφev(φ+z)F (φ+ z)∫
P0(dz)ev(φ+z)

(4.49)

and L(ξ)
v is again a self-adjoint operator from H to H, whose spectrum can be

studied in the same way as the spectrum of Lv, obtaining the same results
reported in Ref. [6].
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A Proof of the bound (3.4)

Let I = {1, . . . , n} be the set of the first n positive integers and, for each
i ∈ I, let Qi be a fixed integer (Qi ∈ Z). If zt is a random gaussian variable
with mean 0 and covariance

E(z2t ) = t ≤ 1 (A1)

and c is a fixed positive constant, we define:

F (I, t) = ET (ei
√
cQ1zt ; . . . ; ei

√
cQnzt) (A2)

where ET denotes the truncated expectation with respect to zt. It is a well
known fact that:

F (I, t) = e−
c
2

∑n

i=1
Q2

i tf(I, t) (A3)
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with
f(I, t) =

∑
G

∏
ij∈G

(e−cQiQjt − 1) (A4)

where G is the family of all connected graphs on n vertices labeled by the
elements of I, with bonds denoted by ij(i, j ∈ I).

Using the results of Ref. [9], in particular Lemma 3.3 and the recurrence
relation for f(I, t) which follows from it (see pag. 40 of [9]), it is very easy
to show that:

F (I, t) =



− c
2

∫ t

0
dse−

c
2
Q2

I(t−s)
∑

∅≠J$I

QJQI\JF (J, s)F (I\J, s)

if |I| = n ≥ 2

e−
c
2
Q2

I t if |I| = 1

(A5)

where we used the definition, for J a subset of I:

QJ =
∑
i∈J

Qi (A6)

We want now to describe the solution of the recurrence relation (A5). Let
us consider, for n ≥ 2, the family Γn of all planar binary trees with root r
and n endpoints labeled by the elements of I, oriented from the root to the
endpoints, see Fig. 1.

We call vertices the root, the endpoints (e.p. in the following) and the
branch points of the tree; the branch points will be called also nontrivial (n.t.
in the following) vertices. If v is a vertex different from r, we shall denote
by v′ the vertex immediately preceding it in the tree and we shall say that
i ∈ v if the e.p. with label i follows v; moreover v0 will denote the vertex
immediately following the root. We define:

Qv =
∑
i∈v

Qi (A7)

Finally we label each vertex v with a real number sv such that:

t ≥ sv′ ≥ sv ≥ 0
sr = t

sv = 0 if v is an e.p.
(A8)
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It is easy to see that, if |I| ≥ 2:

F (I, t) =
∑
θ∈Γn

∫ ( ∏
v n.t.

−dsv
2

)
χθWθ (A9)

where χθ is the characteristic function of the set (A8) and

Wθ =
n∏

i=1

(
√
cQi)

(∏
v e.p.

e−
c
2
Q2

i sv′

)
·

·

 ∏
v n.t.
v ̸=v0

(
√
cQv)e

− c
2
Q2

v(sv′−sv)

 e− c
2
Q2

I(t−sv0 )

(A10)

We want to show that

|F (I, t)| ≤ nn−1
n∏

i=1

(2
√
c|Qi|)e−

c
4n

Q2
I t (A11)

The first step in the proof is to get rid of the “bad” factors Qv in (A10),
using the bound

√
c|Qv|e−

c
2
Q2

v(sv′−sv) ≤ 1√
sv′ − sv

e−
c
4
Q2

v(sv′−sv) (A12)
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Then, if |I| ≥ 2, we can write, using also that 0 ≤ t− sv0 ≤ 1:

|F (I, t)| ≤
n∏

i=1

(
√
c|Qi|)E(I, t) (A13)

where

E(I, t) =



1

2

∫ t

0

ds√
t− s

e−
c
4
Q2

I(t−s)
∑

∅̸=J$I

E(J, s)E(I\J, s)

if |I| = n ≥ 2

e−
c
2
Q2

I t if |I| = 1

(A14)

We now prove, by induction on n = |I|, that:

E(I, t) ≤ (2n)n−1e−
c
4n

Q2
I t (A15)

In fact (A15) is true for n = 1; moreover, if we suppose that it is true for
1 ≤ k < n, we have, using (A14):

E(I, t) ≤ 2n−3
∑

∅≠J$I

kk−1(n− k)n−k−1G(I, J, t) (A16)

where k = |J | and

G(I, J, t) = e−
c
4
Q2

I t
∫ t

0

ds√
t− s

e
c
4
s[Q2

I−Q2
J/k−Q2

I\J/(n−k)]
(A17)

If [Q2
I −Q2

J/k −Q2
I\J/(n− k)] ≥ 0, then

G(I, J, t) ≤ e
− c

4
t[Q2

J/k+Q2
I\J/(n−k)]

∫ t

0

ds√
t− s

≤ 2e−
c
4n

tQ2
I (A18)

where we used the fact that t ≤ 1 and the inequality, valid for two arbitrary
real numbers a and b:

a2

k
+

b2

n− k
≥ 1

n
(a+ b)2 (A19)

If [Q2
I −Q2

J/k −Q2
I\J/(n− k)] ≤ 0, then

G(I, J, t) ≤ e−
c
4
tQ2

I

∫ t

0

ds√
t− s

≤ 2e−
c
4n

tQ2
I (A20)
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(A16), (A18) and (A20) imply that:

E(I, t) ≤ 2n−2e−
c
4n

Q2
I t

n−1∑
k=1

(
n

k

)
kk−1(n− k)n−k−1 ≤ (2n)n−1e−

c
4n

Q2
I t (A21)

where we used the identity (see [9]: Lemma 4.2):

n−1∑
k=1

(
n

k

)
kk−1(n− k)n−k−1 = 2(n− 1)nn−2 (A22)

Then (A15) is proved; if we insert it into (A13), we obtain the bound
(A11).
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