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Abstract

This paper proposes a new technique based on artificial neural network useful for the characterization of superplastic behaviour,
in particular for PbSn60 alloy. A three-layer neural network with back propagation (BP) algorithm is employed to train the
network. The network input parameters are: alloy grain size, strain and strain rate. Just one is the output: the flow stress. Exper-
iments are performed to evaluate the behaviour of PbSn60 alloy, subject to uniaxial tensile test, when the cross speed is kept con-
stant. The strain rate sensitivity value (m) has been estimated analyzing the slope of the log r– log _e curve. It is shown that BP
artificial neural network can predict the flow stress and, consequently, the m index during superplastic deformation with consider-
able efficiency and accuracy.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Artificial neural network modelling is a relatively new
technique. It consists in a ‘‘black-box’’ operational
linking input to output data, using a particular set of
dynamic systems. Since artificial neural network model-
ling is a nonlinear statistical technique, it can be useful
to solve problems that could not be approached with
conventional statistical methods.

In the past few years there has been increasing inter-
est in neural network modelling in different fields of
materials science [1–4]. In this paper the application of
the artificial neural network in the forecast of the super-
plastic behaviour of PbSn60 alloy is proposed. A super-
plastic material exhibits great elongation (200 < e <
1.000%) prior to failure with low deformation resistance.
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These features are obtained with high strain rate sensi-
tivity values

m ¼ d logðrÞ
d logð_eÞ > 0.5 ð1Þ

Besides, it is established that a fine grain size is funda-
mental requirement for superplastic forming. There is
an increasing interest in producing metals with very
small grain size. This interest arises because a reduction
in grain size leads to better mechanical properties at
room temperature and, if the small grain size are stable
at high temperature, where diffusion is reasonably rapid,
is possible to achieve good formability and superplastic
ductility. Furthermore, because the strain rate in super-
plasticity is proportional to 1/d2, where d is the material
grain size, a reduction in grain size can increase the
strain rate with optimum superplasticity. This possibility
is important because any expansion of commercial
superplastic forming is currently restricted by the rela-
tively slow strain rates (about 10�3–10�2 s�1) for the
fabrication of each superplastic component [5–11].
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Except for grain size, during the superplastic defor-
mation process there are many factors that influence
the flow stress and the strain rate sensitivity (m) of the
metal. The value of ‘‘m’’ is the most important charac-
teristic of a superplastic material. There is a great num-
ber of reports in literature where various experimental
methods to determine the value of m are described
[6,12]. At the same time analysis shows that ‘‘m’’ value
depends on a few factors: strain, strain rate, structure
evolution, deformation mode and type of applied load.
The effects of these factors on ‘‘m’’ and on flow stress
are very complex and the relationships between the
strain rate sensitivity index and these factors are non-lin-
ear: consequently, it is very difficult to describe the flow
stress of a metal during superplastic deformation with a
mathematical expression by the method of regression of
experimental data.

In this paper, an artificial neural network is applied to
establish a constitutive law and correlate the relation-
ship between the microstructure and process parameters
during superplastic deformation of PbSn60 alloy. Dur-
ing the training of the network, the process parameters
and the grain size of superplastic deformation are con-
sidered as input variables and the flow stress is taken
as output. A set of experiments is performed to evaluate
the flow stress of PbSn60 alloy, subject to uniaxial ten-
sile test at constant cross speed, varying the microstruc-
tural parameters.

The artificial neural network at first was developed
using a set of experimental data for training and then
another one to validate the neural model.
Fig. 2. The cycles of folding.
2. Materials and experimental procedure

The material used in the experimental procedure is a
two phase PbSn60 alloy, in the form of extruded bars
(thickness 3.6 mm). It consists lead (60 wt.%) and tin
(40 wt.%).

In this work the choice of the PbSn60 alloy has been
dictated by the opportunity to carry out the superplastic
deformation process at room temperature. With the pur-
pose to determine an optimal range of the microstruc-
tural requisites, some cycles of rolling and folding with
different deformation steps have been performed on
the alloy.
Fig. 1. The cycle
The first series of rolling reduces the thickness of the
bars to around 0.3 mm (step 1). Four foils are over-
lapped and rolled again to reach a thickness of around
0.3 mm (step 2) (Fig. 1).

The foil has been subjected to four folding cycles. In
the first one and in the fourth cycle (step 3 and 5) the
PbSn60 alloy has been folded three times and subse-
quently rolled, in the second and in the third cycle (step
4 and 6) the material has been folded four times and
rolled, to get one foil with a thickness of 0.3 mm (Fig. 2).

At the end of each step a few samples have been
obtained for metallographic analysis with optical
microscope and for tensile tests.

Observations with optical microscope and the image
analyses have been performed in order to study the
microstructural variations during the successive steps
of rolling. For the mechanical characterization a set of
samples have been submitted to tensile test. For every
step the tests have been performed at different cross
speed (0.016, 0.05, 0.083, 0.166, 0.216, 0.283, 0.333,
0.400, 0.533, 0.716, 0.966, 1.283, 1.733 and 2.333 mm/
s). The results have been reported on log-log diagrams
ðlog r� log _eÞ, r calculated at fixed deformation (10,
20, 30, 40, 50, 60, 70 and 80%) but evaluated at different
strain rate (= v/l in which v is the crosshead speed in
mm/s and l is the length in mm of the sample). The value
of m has been determined analyzing the slope of the log–
log curve. In this paper, based on above experimental
data, a three-layer feed-forward network with a back-
propagation learning rule has been employed to investi-
gate the constitutive relationship of PbSn60 alloy. The
method used for this study has been the Levenberg–
Marquardt algorithm, which can be regarded as a com-
promise between Gauss–Newton and Steepest–Descent,
heavily favouring the former. Typically, the use of
Levenberg–Marquardt leads to a reduction of orders
of magnitude in the number of training iterations re-
quired if compared with back-propagation and is highly
reliable [13,14]. In this paper the neural network models
were designed and trained using the Matlab package.
s of rolling.
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The experimental results, related to the evolution
of the flow stress as a function of the strain rate, have
been organized for every step in the two sets of data
Equivalent diameter of grains

Cross speed 

Strain

Strain rate

Fig. 3. Architecture of the n

Fig. 4. The microstructures of the PbSn60 allo
(training and validation set) to use for the training and
validation of the neural network. The parameters
used for the elaboration of the neural network and the
Flow stress

eural network model.

y after the different steps of deformation.



Table 1
The equivalent diameters at successive steps of deformation

Step 1 2 3 4 5 6

deq (lm) 8.37 3.36 1.88 1.70 0.75 0.70
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corresponding architecture (Fig. 3) are reported in the
following:

No. of input neurons = 4,
No. of hidden neurons = 14,
No. of output neurons = 1.

Training set = 23 curves · 12 points.

Step 1; e = 10, 40, 50%;
Step 2; e = 10, 20, 60, 70%;
Step 3; e = 10, 40, 50, 80%;
Step 4; e = 20, 30, 50, 70%;
Step 5; e = 10, 60, 70, 80%;
Step 6; e = 10, 30, 40, 80%.

Validation set = 8 curves · 12 points.

Step 1; e = 20%;
Step 2; e = 40, 80%;
Fig. 5. log r– log
Step 3; e = 70%;
Step 4; e = 60%;
Step 5; e = 30%;
Step 6; e = 50, 70%.

Minimum error = 10�5.
No. of epochs = 2000.
The neuron in exit is represented by the logarithm of

the tension, plotted vs the logarithm of the strain rate
(�3 to 0 s�1). All data should normalized and then sub-
mitted to the neural network so that they are confined
between 0 and 1. Therefore, ‘‘m’’ value analogously
has been determined analyzing the slope of the trend
of the log r– log _e curve.
_e diagram.
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3. Results and discussion

In Fig. 4 the microstructures of the samples obtained
with the six following stages of folding and rolling are
shown. For all the examined samples, through a tech-
nique of digital image analysis, the equivalent mean
diameter of the grain has been calculated:

deq ¼
ffiffiffiffiffiffi
4A
p

r
ð2Þ

where A is the area of the circle with the same area of the
correspondent object.
Fig. 6. Trend of ‘‘m’’ as a function of the strain for different steps.

Fig. 7. Comparison among the trend of the log r (MPa) in relation to log _e (s�1): neural analysis (red triangles) and the experimental data (blue
points) in the training phase are overlapped. (For interpretation of the references in colour in this figure legend, the reader is referred to the web
version of this article.)
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In Table 1 the equivalent mean diameters are
reported for the different steps measured on the micro-
graphies of Fig. 4. Measurements have been repeated
on 10 micrographies of the same sample.

The complete cycle of the grain refinement, based on
the rolling and the folding at room temperature, has in-
duced a considerable reduction of the grain size (Fig. 4).
The gradual increase of the deformation rate influences
the method of nucleation during recrystallization. It can
be attributed to the different distribution of the disloca-
tions inside the grains; in the rolled structure, in fact, the
Fig. 8. Comparison among the trend of the log r (MPa) as a function of log _e
phase.
plastic deformation is generally heterogeneous and leads
to the sites of deformation and dislocations cells.
Besides, the irregular deformation produces a notable
increase of potential sites of nucleation for the following
recrystallization and therefore it conducts to a finer
structure [15].

Fig. 4 shows that increasing deformation rate also in-
volves a modification of the grain size and shape. In the
first step of refinement, grains are elongated in the roll-
ing direction; in the last three stages of deformation,
grains show finer and equiaxed features. Small-equiaxed
(s�1) for the neural analysis and the experimental data in the validation
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grains and biphasic structure are the main requirements
for grain boundary sliding mechanism and allow super-
plastic flow. From tensile test data the flow stress has
been calculated as a function of the strain rate for a fixed
value of the strain. For every log r– log _e curve the angu-
lar coefficient m has been calculated as the slope of the
curve. Fig. 5 shows the log r– log _e curve obtained with
different grain size, at fixed strain (e = 50%) and the cor-
respondent values of m.

In the first and second steps the coefficient m has been
found lower than the limit of superplasticity, and the
elongation to failure, for all the test conditions, has been
lower than 200%.

For each grain size the evolution of the strain rate
sensitivity value has been evaluated as a function of
the strain. Fig. 6 shows that, for a fixed microstructure,
the higher the strain applied the lower the ‘‘m’’ coeffi-
cient. The behaviour can be correlated to the state of
hardening of the material and is function of the grains
size and shape. According to these results for lower val-
ues of the grain size <1.88 lm (steps 3–6) the alloy
exhibits superplastic behaviour under all the test condi-
tions. The fine and equiaxed microstructure enhances
grain boundary sliding and consequently the superplas-
tic deformation also for higher values of the strain rate.
For higher values of the grain size >1.88 lm (steps 1 and
2) low values of the ‘‘m’’ coefficient are found and con-
sequently superplastic behaviour is observed in a small
range of flow stress and strain rate. As a results in these
microstructural conditions superplastic forming results
economically disadvantageous.

The experimental results have been used to develop
the artificial neural network. From a first analysis of
the curves, in the training phase, it is observed that the
neural network, implemented for the forecast of the
superplastic behaviour of a PbSn60 alloy, reaches a
good level of learning (Fig. 7).

The value of the ‘‘m’’ coefficient, in analogous way to
experimental data, has been determined analyzing the
slope of the curve log r– log _e, supplied by the artificial
neural network in the validation phase. In Fig. 8 a com-
parison between the experimental trend log r– log _e and
those calculated by the neural network while validating
is shown. In Table 2 the error committed by the neural
Table 2
The experimental and neural values of the ‘‘m’’ coefficient, calculated
in different microstructural condition and strain during the validation
phase

Step e (%) m (experimental) m (neural network) Error (%)

1 30 0.1476 0.1145 3.31
2 80 0.2556 0.2186 3.7
3 70 0.2803 0.277 0.3
4 60 0.3377 0.3336 0.4
5 50 0.3789 0.3958 1.69
6 70 0.4048 0.4129 0.8
analysis in the determination of the ‘‘m’’ value has been
reported.

The percentage error is negligible if the equivalent
grain diameter of the alloy is lower than 1.88 lm, while
as the grain size increases the ability of generalization of
the neural network (steps 1 and 2) is lower.
4. Conclusions

The artificial neural networks are a good forecast tool
also in metallurgy to study non linear phenomenona. In
the strain rate range in which the PbSn60 alloy shows
superplastic behaviour the neural network is perfectly
able to foresee the course of the flow stress in relation
to the strain rate and consequently to evaluate with
accuracy the value of ‘‘m’’. Besides, with the aid of the
neural analysis is possible to determine quickly the tran-
sition of the plastic–superplastic behaviour. Particularly
in the field of the superplasticity it is possible to evaluate
the influence of the grain size, of the strain and of the
strain rate, in the quantitative evaluation of the coeffi-
cient ‘‘m’’. Therefore, it is possible to forecast the super-
plastic behaviour, reducing time and cost of the
experiments.
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