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Abstract

This paper involves experimentation on coating process of metal substrates in an electrostatic fluidized bed (EFB). Several operational
parameters were covered like coating time, applied voltage and gas flow rate fed to the fluidized bed.

First, a design of experiment (DOE) approach was used to define the experimental campaign and a general linear model based on
analysis of variance (ANOVA) was used to elaborate and interpret the influence of all the operational parameters on coating thickness
trends.

Second, the experimental data were modelled using artificial neural networks. Different neural networks and training algorithms were
employed to find the best technique to predict the coating thickness trends. The reliability of the best neural network solutions was
checked by comparing them with a built ad hoc regression model. The multi-layer perceptron (MLP) neural network trained with back-
propagation (BP) algorithm was found to be the fittest model. Besides, a genetic algorithm (GA) was also employed to improve the
capability of MLP model to provide the best fit of experimental results all over the investigated ranges.

Finally, a verification experimental plan was performed and a related analytical model was developed to check the reliability of the
neural network model with GA to predict the whole coating thickness trends according to the operational parameters. A comparison

between the neural network model and an analytical model was also carried out.

© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the last two decades, painting and coatings industry
has undergone significant changes in chemicals of raw
materials (Weiss, 1997). New products like waterborne,
high solid contents, UV curable and powder paints have
seen their market share remarkably increased. In particu-
lar, the market share of powder coatings has been
characterized by a noteworthy evolution. In 1994, about
6% of the whole painting market belonged to the powder
paints (Weiss, 1997). In 1999, this share turned to 9%
(Anon, 1995). In 2005, a further increase to 15% of the
whole market has been predicted (Cudin, 2005). The
increase in the powder paints diffusion is attributed to
four essential factors: the good performance and quality
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exhibited by the formulation of newest products, which
assure fair aesthetic aspects and good properties of
resistance to corrosion, wear and durability; the progres-
sive reduction of products cost in spite of an increase in
overall costs of raw organic materials; the low energy
consumption connected to the curing process because of
the dryness of the powder coating; the low environmental
impact and contamination connected to the massive use of
products in powder, being the residuals absolutely dry and
the products solvent free.

The fast evolution of painting products was not
associated to analogous changes in application systems.
In particular, powder paints are always applied by
electrostatic spray deposition, while electrostatic fluidized
bed (EFB) and conventional hot dipping fluidized bed are
used just for special applications such as the coating of
metal coils, tubes, bands, chains and wires (ASM Metal
Handbook, 1995) as well as the coating of peculiar
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components like rotors, fences, webs, appliances, external
furniture and so on (ASM Metal Handbook, 1995).
Besides, the running and control of coating processes as
well as the settings of operational parameters were
entrusted to the experience of skilled technicians (Guskov,
2002), to the politics of small adjustments (Barletta and
Tagliaferri, 2006a) and, at best, to the employment of
empirical models (Barletta and Tagliaferri, 2006b). Never-
theless, process modelling and optimization are very
important issues in coating engineering and coating
processes are too complicated to be empirically managed
(Guskov, 2002), to justify the use of simple analytical
models often based on many assumptions, which contra-
dict reality (Barletta et al., 2006) or to have recourse to
complicated finite elements (FE) (Barletta et al.) or volume
elements (VE) models (Ali and Inculet, 2000; Ye et al.,
2002), which cannot be implemented on line and often
require laborious calibration procedures and heavy and
recursive solution methods (Ye and Domnick, 2003).

Because of the complexity of coating processes, neural
network models, which can map the input/output relation-
ships, possess massive parallel computing capability and
which can be implemented ‘real time’ (Cho, 2001),
represent a valid alternative to conventional modelling
solutions. Besides, several industrial segments in manufac-
turing already employ neural network models for control
and automation purposes (Cho, 2001). On the contrary, in
the authors’ knowledge, no significant contributions about
the employment of neural network solutions in modelling
and simulation of coating process can be found in the
technical and scientific literature.

In this context, our paper focuses its attention on an
application of neural network solutions to an EFB coating
process of metal thin sheets with hybrid epoxy—polyester
powder paints. First, a design of experiment (DOE)
approach was used to investigate the operational para-
meters of EFB coating process, that is, coating time,
applied voltage and air flow fed to the fluidized bed. In
such a way, the trends of coating thickness according to
process parameters were also achieved. An approach based
on the analysis of variance (ANOVA) was also used to
assess the meaningfulness of each operational parameter
and to evaluate the simple and interaction effects. Second,
a wide set of neural network models was examined to
determine the best solution in predicting experimental
trends and in simulating the whole coating process. Multi-
layer perceptron (MLP), general feed forward multi-layer
perceptron (GFF-MLP) and radial basis function (RBF)
neural networks models employing standard back-propa-
gation (BP) and Levenberg—Marquardt (LM) algorithms
were trained, tested and their performances were compara-
tively evaluated. MLP trained with BP algorithm displayed
the best performance. Genetic algorithms (GAs) to train
the best MLP model were also tested and it was found to be
the finest solution to improve the simulation process and to
increase the accuracy in coating process modelling.
However, a validation of both the MLP model with BP

algorithm and GA was performed comparing their
capabilities in predicting experimental results with the
capability of a built ad hoc regression model.

Finally, a verification experimental plan was performed
to check the reliability of the MLP model with GA to
predict the experimental trends of coating thickness
according to the operational parameters and a straight
comparison between the related analytical model and the
best neural network solution was also proposed.

2. Experimental apparatus and procedure
2.1. Fluidized bed system and materials

A thorough description of the EFB system and of the
deposition process is reported in a previous paper (Barletta
and Tagliaferri, 2006b). For the purposes of the present
work, it is important to remark that our fluidization system
consisted of a circular grounded column 250 mm in
diameter and 500 mm in height. A porous plate distributor
in polymeric material 8 mm thick and a homogenization
section 250 mm in diameter and 200 mm in height were
employed (Fig. 1). A fixed bed of hybrid epoxy—polyester
powders (dielectric constant of about 3 and surface
resistivity around 10''-10'>W/square) 230 mm in height
was pre-loaded in the column onto the porous plate
distributor. The powder had a distribution peak set at
25 um with 90% of the distribution below 55 pm. With such
powders, the fluidized bed had a minimum fluidization flow
of 0.65m’/h corresponding to a minimum fluidization
velocity of 0.0032m/s. The bubbling regime was main-
tained within an airflow range of 3.5-7 m*/h corresponding
to superficial velocities 5-10 times the minimum fluidiza-
tion velocity. Bubbling regime was still on at a flow rate of
10-11 m?/h, but powder spouts started to rise from dense
phase of the bed to the free board, hence discouraging the
employment of faster airflows. A set of electrodes fed by a
high voltage supply (dc 0-100kV), with a negative polarity
on electrodes, was placed inside the porous plate dis-
tributor of the fluidized bed so that the powder material
would be charged as the fluidizing air, coming from
homogenization section, caused it to rise up.

From low carbon steel thin sheets, 2m long, 1 m wide
and 1 mm thick, workpieces 100 mm long and 50 mm wide
were cut by fine blanking. The employed metal substrate
was characterized by a very low resistivity (nearly
10mQcm) suitable for electrostatic deposition. Before
being coated, the workpieces were polished by abrasive
blast cleaning, followed by phosphoric acid cleaning, and
then a water rinse, a chromic acid rinse, and a forced-air
rinse. A primer was applied all over the surface of the metal
substrate to make it ready for EFB coating process.

2.2. Experimental procedure and plans

After paint pre-treatments, primer application and
dimensional controls, workpieces were electrically
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Fig. 1. EFB coating system.

grounded and, then, dipped in EFB in the zone immedi-
ately above the powder dense phase (Richardson, 1971)
using a pneumatic movement system. Coating procedure
was accurately described in a previous paper (Barletta and
Tagliaferri, 2006b). However, it is important to remark
that workpieces were generally placed at a distance of
100mm away from the bed dense phase. The environ-
mental conditions were always kept under firm control to
minimize systematic error affecting the experimental
procedure. Accordingly, all the tests were performed at a
relative humidity below 40% with an average temperature
of 20°C (accuracy +0.2°C). Once the coating time was
passed, the workpiece was removed from the column and,
subsequently, located in a convective furnace Nabertherm,
model B170 30-2000 °C, to be cured at 170 °C for about
10 min. Afterward, the amount of deposited polymer onto
workpiece surface was measured using a magnetic thick-
ness gage (according to regulations ISO 2178 and ISO
2370). The coating thickness was estimated as the average
of nine measurements equally spaced along the surface of
each workpiece.

Two sets of experimental tests were defined following
the DOE approach (Tables 1 and 2). First, a full factorial
experimental plan, employing three factors (i.e. coating
time, applied voltage and flow rate) and replicated
four times for a total of 200 trials was performed. These
tests were carried out to trace the experimental trends of
coating thickness according to operational parameters as
well as to examine their simple and interacted effects
on EFB coating process. Second, a verification experi-
mental plan (full factorial on the two factors ‘coating
time’ and ‘flow rate’), was performed in order to
check process reproducibility and reliability by setting
the electric parameters (applied voltage) at the level
(70kV) found to be the best for the purposes of EFB
coating process. A total of 80 experimental tests were
carried out.

Table 1
Full factorial experimental plan

Three factors

Levels Exposure time (s) Airflow (m*/h) Applied voltage (kV)
1 7 3 50
IT 14 5 60
111 7 70
v 9 80
A% 11 90
Table 2
Verification experimental plan
Two factors
Levels Exposure time (s) Airflow (m*/h)
1 4 3
11 7 5
111 11 7
v 14 9
\Y 11

A strict statistical approach was followed in examining
and reporting experimental data. All experimental results
are reported as means with standard deviations to indicate
their variability. The significance of operational parameters
on the response coating thickness was found using
ANOVA. A first approximation regression model was
used to find the best fit for the experimental results as well
as to provide a first check on the best of the developed
neural network solutions. Finally, the experimental results
of the verification experimental plan and a related, built ad
hoc, physical model was used as the basis to assess the
reliability of GA.
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3. Neural network solutions
3.1. Neural networks models

Three different neural networks were used to identify the
most promising solution in the prediction of response, that
is, the coating thickness in EFB coating process:

® RBF neural network,
® MLP neural network,
o GFF-MLP neural network.

Two different algorithms were used to train the MLP
neural network:

e Gradient descent with momentum and adaptive learning
rate BP algorithm,
o LM algorithm.

The algorithm of BP was the only used to train both the
RBF and GFF-MLP neural networks.

The software simulator used was NeuroSolutions
version 5.0 developed by NeuroDimension Incorporated.

3.2. Radial basis function neural networks ( RBFs)

The radial basis function neural networks (RBFs) are
non-linear hybrid networks (Haykin, 1994). They are
typically constituted of a single hidden layer of processing
elements (PEs), with this layer using Gaussian transfer
functions. The centres and widths of the Gaussians are set
by unsupervised learning rules and supervised learning is
applied to the output layer. RBF networks are not affected
by the problems of local minims. Besides, they demand
shorter training time if compared with the MLPs. On the
other hand, the scant properties of generalization represent
the main drawback of RBFs.

3.3. MLPs neural networks

The MLPs are layered feed-forward neural networks
(Haykin, 1994). The architecture of the MLPs is character-
ized by non-linear PEs, with the non-linearity function
generally smoothed by logistic, sigmoid or hyperbolic
tangent functions. Besides, the PEs are fully interconnected
so that any element of the former layer feeds all the
elements of the latter layer. The MLPs are easy to use and
they can simulate any input/output map. Nevertheless, the
training time of MLPs is very long and the training
procedure requires many training data.

3.4. Generalized feed-forward neural networks (GFF-MLP)

The GFF-MLPs networks are a generalization of the
MLPs in which connections between layers can jump over
one or more layers (Principe et al., 2000). In theory, a MLP
can solve any problem that a GFF-MLP network can

solve. In practice, the GFF-MLPs often solve the problems
much more efficiently. Besides, a standard MLP requires
hundreds of times more training epochs than a GFF-MLP
network constituted of the same number of PEs.

3.5. Gradient descent with momentum and adaptive learning
rate BP algorithm

This method uses BP algorithm to calculate derivatives
of performance cost function with respect to the weight and
bias variables of the network (Haykin, 1994). Each variable
is adjusted according to the gradient descent with
momentum. For each step of the optimization, if perfor-
mance decreases the learning rate is increased. When the
BP algorithm is adopted, the operation of the neural
network can be schematized into two main phases: forward
computing and backward learning. In the forward phase,
the synaptic weights are fixed, and the response of the
network is computed by subjecting it to a prescribed set of
input data. In the backward phase, the adjustments to
synaptic weights are computed to minimize a cost function
defined as the sum of error square.

3.6. LM algorithm

The LM algorithm is a second-order learning algorithm
widely used in optimization problems (Principe et al., 2000).
It outperforms simple gradient descent and other conjugate
gradient methods in a wide variety of problems. The LM
algorithm is generally adopted for the MLP network models
as it trains significantly faster than momentum learning and
usually it can converge with a lower error. On the other
hand, the LM algorithm has great computational and
memory requirements and thus it can only be used in small
networks, even if more extensive applications can be found
in the literature (Principe et al., 2000).

3.7. Neural networks set-up

The experimental factors having significant effects on the
coating thickness, that is, coating time, voltage, and airflow
were used as input PEs in all neural networks models. The
coating thickness was the only output estimated, which,
being defined as a normalized parameter, prevents the
saturation of the chosen activation function.

A total of 50 samples coated with hybrid epoxy—polyester
were analysed. As experimental data for simulation purposes,
the averaged coating thicknesses of the four replications with
each combination of experimental factors were used. Samples
were shared according to the following percentages: 54% as
training, 20% as cross-validation, and 26% as testing.

With regard to topological structure, just one hidden
layer was chosen for all the network models. Moreover, a
Gaussian transfer function was used only for RBF network
model in both the hidden and output layers to generate the
output values. In MLP and GFF-MLP networks, a
sigmoid function was always used as a transfer function.
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As mentioned before, when BP algorithm was adopted
as learning rule, it was based on the momentum with step
size being set at 0.7 and a momentum coefficient for the
hidden layer at 0.5. The same operational parameters were
used for the output layer, except for the step size, which
was set at 0.1. Besides, the rule of descendent gradient was
adopted to calibrate the network and to identify the
optimal weight values, that is, those minimizing the overall
error between desired and calculated output. Instead, when
the learning was performed by LM algorithm, only starting
value of the parameter Lambda had to be set and a value of
0.01 was chosen. The Lambda parameter governs the step
size, and it is dynamically adjusted according to error
trends (Principe et al., 2000).

Afterward, all the chosen networks were thoroughly
trained. Finally, in order to obtain a good indicator of
generalization level achieved by the network, the network
was stopped when the MSE of the cross-validation set
began to increase, this being a signal that the network had
come to the point of becoming over-trained.

Two different criteria are used to evaluate the effective-
ness of each neural network model and its ability to make
accurate predictions: the root mean square error (RMSE)
and the correlation coefficient (7). Therefore, the best fit
between measured and estimated values, which is unlikely
to occur, would have RMSE =0 and r = 1.

3.8. Genetic algorithm (GA)

GA adopts Darwin’s theory based on the emulation of
the evolutionary process of the living organisms in which

ADAPTIVE SYSTEM

BACK-PROPAGATION

the principle of survival of the fittest rules (Goldberg,
1989). In recent years, GAs have found many applications
in engineering sector and have been extensively used as a
method of search in optimization problems (Goldberg,
1989). The main characteristic of parallel computing
capability allows the combination of GAs with neural
networks to have a higher expected probability to reach the
best solutions. GAs employ a different learning
strategy compared to neural networks. While neural
networks have a learning strategy very close to living
organisms during their life cycles, GAs employ a mechan-
ism based on the selection of best samples to increase the
probability that a whole class of organisms improves their
performance.

Accordingly, in Fig. 2 the recursive strategy employed to
determine the optimal architecture of neural networks
using GA in the optimization problem of prediction of
experimental trends of coating thickness in EFB process is
reported.

3.9. GA training options and basic genetic operators set-up

The use of GA optimization requires the implementation
of some basic tasks like the chromosome representation,
the creation of the initial population, the evaluation
function, the termination criteria, the selection function
as well as the genetic operators for reproduction function,
that is, crossover and mutation.

In this work, the chosen chromosomes were step sizes,
momentum values and the number of PEs in the hidden
layer. Then, to carry out the genetic training, a random
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Fig. 2. The employment of GA in modelling of EFB coating process.
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initial population of 50 networks was generated. These
networks were trained for 10000 epochs. Networks
selection was led with the Roulette criteria in which the
chance of a chromosome getting selected is proportional to
its fitness or rank based on the minimum error achieved.
The characteristics of the best networks were combined
and mutated to create a new population of networks. One
point crossover with 0.9 as crossover probability and
uniform mutation operator with 0.01 as mutation prob-
ability was adopted as reproduction operators. The former
is a crossover operator that randomly selects a crossover
point within a chromosome and, then, interchanges the two
parent chromosomes at this point to produce two new
offspring. The latter is a mutation operator that replaces
the value of the chosen gene with a uniform random value
selected between the specified upper and lower bounds for
that gene. The termination method was set-up on
the generation number, fixed at 100 evolutions, that stops
the evolution when the maximum number of generations
was run.

4. Simulation procedure and results
4.1. The experimental results and statistical approach

The dimensional accuracy of any coating process has
become a critical issue of any manufacturer because of
increased quality demands. There are several factors that
rules coating thickness in EFB deposition system and,
hence, the development of an accurate experimentation as
well as of analytical or empirical models for reliable
prediction of coating thickness becomes a non-ignorable
issue. Figs. 3 and 4 show, respectively, the analysis of mean
(ANOM) and the interaction plot (IP) for the full factorial
experimental investigation on the response coating thick-
ness. Table 3 summarizes the results of the ANOVA on the
same response.

The ANOM clearly demonstrates that with EFB system
films less than 100 mm thick can be easily applied. Besides,
even under the threshold of 100mm, EFB system was
found able to manage the coating thickness accurately by

Table 3
Results of ANOVA table on full factorial experimental investigation
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just regulating the most appropriate levels of the experi-
mental factors coating time, applied voltage and flow rate
(Fig. 3).

Watching the panels 1 and 2 shown in the first row of
Fig. 4, a similar trend seems to characterize the coating
thickness for both the exposure times (7 and 14s) and
varying all the applied voltages and flow rate. These results
comply with the trends reported in the literature (Barletta
and Tagliaferri, 2006a; Barletta and Tagliaferri, 2006b;
Barletta et al., 2005). Of relevance, an initial rise in coating
thickness is obtained from increasing the applied voltage.
Then, after a maximum value has been achieved, a strong
decrease in thickness clearly occurs in agreement with data
reported in the literature (Barletta and Tagliaferri, 2006a;
Barletta and Tagliaferri, 2006b; Barletta et al., 2005). These
highly non-linear trends of the coating thickness according
to operational variables are ascribable to the strong back
ionization phenomena (Guskov, 2002; Barletta and Taglia-
ferri, 2006a; Barletta and Tagliaferri, 2006b; Barletta et al.,
2005), which characterize all the electrostatic deposition
techniques and make all the modelling and simulation
attempts very troubled. Besides, this trend is common to all
the investigated airflow and coating time levels, even if a
top shift of all the curves is clearly evident (panels 1 and 6
in Fig. 4), hence making all predictive procedures even
more complicated.

ANOVA has been carried out to find the effect of
experimental factors on the response coating thickness.
Since the experiments were led using a full factorial design
and four replications of experiments with each combina-
tion were carried out, the three factors interaction was also
considered. Examination of the data collected in Table 3
reveals the significance of all the simple experimental
factors ‘applied voltage’, ‘airflow’ and ‘coating time’ on
achievable coating thickness in EFB coating process.
However, slightly lower values of Fisher’s factor and of
contribution percentage P (%) were found for the
experimental factor ‘time’ (Table 3). Besides, even the
interactions among investigated experimental factors had a
lower influence on the values of response. At best, their
contribution percentage does not overcome the value of
5%. Lastly, by disregarding all the interactions, a
contribution percentage P (%) for residuals of about
15% with an overall MS,, of 85.6 confirms the low
incidence of the systematic errors on reliability of collected
data and of the whole experimental procedure. It should be
borne in mind that EFB coating process, as all the other
coating processes, typically posses a natural variability of
results due to unpredictable factors very high (Barletta and
Tagliaferri, 2006b).

4.2. Mathematical formulation

Since all experimental factors were found to be influent
and the interactions among them could be disregarded
without affecting too much the overall error (low values of
the contribution percentages), only the simple factors

3

‘applied voltage’, ‘airflow’ and coating time’ were
considered in the regression model. Consequently, a
multiple regression analysis was led to find the best
mathematical model for EFB coating process with the
parameters (coating time ¢, applied voltage V and air flow
F) under consideration.

The model can be so formulated:

c=f(V,F), (1)

where ¢ is the coating thickness, f the response function,
and ¢, V and F the EFB variables. Expressed in non-linear
form Eq. (1) becomes:

c=CrvFPF. )

To simplify the determination of the constant and
parameters, the mathematical model was linearized per-
forming a logarithm transformation. Eq. (2) becomes:

Inc=InC+alnt+fInV +yInF. 3)

The constant C and parameters «, 3, y were solved by
using a multiple regression analysis with the assistance of
experimental results. Eq. (3) can be so rearranged as:

c =649 x 10_4[0'673 V1,85F0,721 ) (4)

A value of R? higher than 72% was found and the results
of analysis of residuals are shown in Fig. 5. Residuals
distribute not so far from a normal distribution. No
evident bias or peculiar patterns affect residual distribution
with respect to fitted values.

The major finding of the regression model is the non-
linear relationship between applied voltage and coating
thickness in agreement with previous experimental indica-
tions and the literature (Barletta and Tagliaferri, 2006b).
This provides an opportunity to maximize the coating
thickness by selecting the proper coating process para-
meters, that is, highest values of coating time and airflow
and intermediate value for applied voltage (as previously
seen, not higher than 70kV). In this way, both the fastest
and the best overall performance of EFB coating process
could be achieved in agreement with the data reported in
the literature (Barletta and Tagliaferri, 2006a; Barletta and
Tagliaferri, 2006b; Barletta et al., 2005), as the back
ionization phenomena would be minimized with concur-
rent advantages of both functional and aesthetic aspect of
the applied coating.

4.3. The results of the verification experimental plan and the
analytical model

The trends of coating thickness according to coating
time with flow rate for verification experimental plan is
shown in Fig. 6. The verification experimental plan was led
setting the applied voltage at 70kV. In such a way, as
indicated by experimental results reported in the previous
section, the fastest coating process and the best coating
condition can be expected. To fit the experimental data, a
mono-parametric analytical model, which relates coating
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thickness and coating time, was calculated and assessed to
be accurate for each airflow investigated:

c= KO, (5)

where c is the coating thickness, ¢ the coating time and K an
empirical constant. A physical interpretation of constant K
can be provided. K is a strict linear function of airflow. In
fact, when its value for each curve shown in Fig. 6 at
different airflows is calculated, the resulting trend is linear.
Besides, K is worth 0 if airflow is set at 0.65 m3/h, that is,
the airflow corresponding to the minimum fluidization. In
the light of this, Eq. (5) can be rearranged:

s = (Fs— Fn)(t — toY, (6)
where Fj is the current airflow value and F,, the minimum

fluidization airflow. A correlation coefficient r of approxi-
mately 0.95 and a p-value of more than 0.1 confirm the

accuracy of both the analytical model and the calibration
constant.

4.4. Neural network approach

A set of different neural network models have been
examined to find the best solutions in predicting the
experimental trends of coating thickness in EFB coating
process with respect to all the investigated operational
parameters. Fig. 7 displays the performance of the four
neural networks employed. The effect of RMSE on the
number of PEs in the hidden layer is reported. RMSE is
minimized when the number of PEs is set at 3 for both
GFF-MLP and MLP neural networks with LM algorithm.
Instead, RMSE is minimized when five PEs for RBF and
six PEs for MLP neural network with BP algorithm are
used.

The best PEs values were adopted in the hidden layer to
find the best topology of the neural networks. First, the
epochs number for each neural network model was fixed to
1000, except for RBF model in which 1100 epochs, 1000 for
supervised learning and 100 for unsupervised learning,
were employed. Fig. 8 shows the RMSE trends of all the
chosen models according to the number of epochs. The
RBF topology was discarded as it exhibited performances
worse than MLP topology. In fact, data collected in Table
1 show that MLP and GFF-MLP topologies assure a
better learning as the calculated errors are significantly
lower than for RBF model. Nevertheless, the detected
RMSE for all the MLPs models being very close, a further
training with 10 000 epochs was carried out to find the best
model. The training was repeated five times to minimize the
results variability and the network weights, which mini-
mized the RMSE of the cross-validation, were chosen as
the best weights (Table 4).
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Fig. 7. Analysis of the best PEs number in the hidden layer for the different neural network models.
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Fig. 8. Analysis of the best topology for the different neural network models over 1000 epochs.

The trends of RMSE for training and cross-validation
set during the learning process with the best weights of all
the MLP models are shown in Fig. 9. All the employed
MLP models allowed achieving very low values of RMSE
(Table 5). Nevertheless, the lowest RMSE value was
achieved using the MLP model with BP algorithm. In fact,

increasing the number of epochs, such a network model
gave the best overall performance, hence reducing the error
of about 30% for training set and more than 50% for
cross-validation set. This behaviour is in agreement with
theoretical indications (Haykin, 1994; Principe et al., 2000).
In fact, MLP with LM algorithm and GFF-MLP models
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were faster to converge, but MLP with BP algorithm, even
if slower to converge, allowed achieving best results on
long training time.

4.5. Modelling of experimental data

In the light of previous results, the modelling of
experimental data for EFB coating process was performed
using the MLP model with BP algorithm as it guarantees
the best simulative performance with the lowest errors. The
capabilities of this MLP model were checked by compar-
ison with experimental data coming from full factorial
experimental plan and the built ad hoc regression model.
Fig. 10 shows the comparison between the output
calculated by the network and the desired output, that is,
the experimental one. Besides, the errors of MLP model in
fitting the experimental results are provided in Table 6 and
a comparison with the regression model was also
performed. As can be seen, the correlation coefficient r is
very close to 1 for training (0.975) and cross-validation set

Table 4
Best RMSE for the different neural network models over 1000 epochs

Networks RMSE training RMSE cross validation
RBF 0.11571 0.18494
GFF MLP 0.06991 0.09276
MLP BP 0.05730 0.10828
MLP LM 0.05809 0.08491
0.3 1 —— Training Set
S
= 0.2
n
E 0.1 1 MLP (BP) neural network
0-0 T T Ll T T T
0.3 -
s
. 0.2
(2]
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0.0 T T —
0.3 1
5 |
= 0.2
L]
%)
E 0.1 GFF MLP neural network
0.0 T

T T T T T T T T
0 2500 5000 7500 10000
Epoch number

(0.988). Instead, it assumes a slightly lower value for testing
set (0.928), even if it keeps guaranteeing a very good fitting.
Besides, very low standard errors (less than 5%) were
calculated for both training and cross-validation set.
Testing set exhibited a slightly larger standard error (close
to 8%). However, MLP model is affected by standard error
definitely lower than the regression model. In fact,
standard errors in the range of 12-16% and correlation
factors in the range of 0.80-0.83 were detected for
regression model. In addition, the error of 8% for testing
set of MLP model with BP algorithm is definitely
noteworthy. In fact, as the results of ANOVA highlight
and data reported in the scientific and technical literature
confirm (Guskov, 2002; Barletta and Tagliaferri, 2006a;
Barletta and Tagliaferri, 2006b; Barletta et al., 2005), the
variability of coating process due to systematic error and to
the unpredictable factors of the coating procedure is quite
higher. It is worth about 15% even if, as in our
experimentations, all cautions to ensure the best accuracy
of coating tests are taken. Finally, mean error larger than

Table 5
Best RMSE for the different neural network models over 10000 epochs

Networks RMSE training RMSE cross validation

0.03887
0.02682
0.03629

0.07321
0.03435
0.06707
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Fig. 9. Analysis of the best topology for the different neural network models over 10 000 epochs.
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Fig. 10. Check of MLP model with BP algorithm and with GA on experimental data and regression model for training, cross-validation and testing set.

Table 6
Correlation factor and standard error: MLP model with BP algorithm and
regression model

Table 7
Correlation factor and standard error:
regression model

MLP model with GA and

Correlation Training set CV set Testing set Error Training set CV set Testing set

MLP with BP 0.97493752 0.987766163 0.928084951 MLP with BP 0.046052688 0.045884538 0.085630417
GA 0.990311622 0.989131454 0.938654488 GA 0.028744341 0.04326332 0.079304292
Regression 0.824944364 0.83608228 0.806537038 Regression 0.11699819 0.161421509 0.151235368

8% are quite common in all the applications of neural
network models in predicting data concerning machining
operations (Jain and Jain, 2000; Gopal and Rao, 2003),
fault detection of mechanical components (Letter to the
Editor, 2004) and in several laser processing of metal
components (Jenga et al., 2000; Koa et al., 1999; Cheng
and Lin, 2000), hence confirming the reliability of the
developed MLP model with BP algorithm and its
suitability for the analysis of EFB coating process.

Fig. 10 displays also the fitting between the results of the
MLP model with GA and the experimental data. A
comparison with the regression model is also reported.

The optimization results of the MLP model with BP
algorithm match very well with the results achieved using
GA. However, a further improvement of fitting can be
underlined as a result of the application of GA. In
particular, the correlation coefficient r moves from 0.928
for testing set using the MLP model with BP algorithm to
0.939 for testing set using the GA (Table 7). A certain
improvement regards also the standard errors. In fact,
standard errors of both the training (2.9%) and cross-
validation (4.3%) set were always found to be quite lower
for GA. Moreover, an improvement of more than 0.6%
was found for standard error of testing set using GA.
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Fig. 11. Performance of the MLP model with GA in predicting a
verification set of experimental data and comparison with the analytical
model.

4.6. Optimization using GAs

In the light of previous results, the MLP model with GA
was used to predict the results of the verification
experimental plan. The neural network model was also
tested for 4s as coating time, that is, outside of the range,
which was calibrated for. A comparison with the analytical
model was also performed. As Fig. 11 shows, an
appreciable fitting between calculated and desired output
was found, with no significant deviations or anomalies
arising. The output provided by the neural network model
with GA is well inside the error bar representing the
variability of results of the experimental tests. However, if
used between the prescribed ranges, that is, for coating
time in the range of 7-14s, the standard error of MLP
model with GA is worth about 3.9% with an outstanding
correlation factor of 0.986. As comparison, the analytical
model produces an error around 2.4% in fitting the
experimental data with a correlation factor of 0.995. If
MLP network with GA is also used to predict data outside
the range, which was designed for, the error grows up to
6.5% with a correlation factor of 0.963. Even if this value
can be considered rather high, it is a quite good value
because of the scant capacity of neural network to
extrapolate results outside the prescribed ranges (Principe
et al., 2000). Besides, such a value of mean error is well
below the natural variability of EFB coating process that,
as seen, is worth around 15%. On the other hand, the
performance improvement ascribable to the employment of
GA is characterized by a quite higher computational time.

All these findings confirm how good and reliable the
MLP model with GA is in predicting the experimental
trends of coating thickness according to all the operational
parameters of EFB coating process.

5. Conclusions

In this paper, the effectiveness of using different neural
network solutions for modelling and prediction of coating
thickness trends in EFB coating process is comparatively
evaluated. MLP model with BP algorithm was found to be
the best neural network solution. For such neural network
model, simulation results display a very good agreement
with available experimental data for a wide range of
operational parameters of EFB coating process.

The employment of GA improves the capability of the
developed neural network to predict the experimental
results. A further improvement of the fitting between the
simulation and the experimental data was found. Besides,
the optimization results of the neural network with and
without GA match very well, thus confirming the reliability
of the neural network approach.

A check of neural network solution with GA was also
performed on a defined ad hoc verification experimental
plan. The comparison stated that fair results could be even
achieved in predicting experimental data outside the range,
which the neural network was designed for, indicating also
a certain capability of the neural network model with GA
to extrapolate. Finally, a comparison with a regression
model built on data of verification plan stated, once more,
the reliability of neural network with GA to match the
experimental data and as valid and universal alternative to
analytical models.

Finally, the developed neural network system with GA is
a wide-spectrum instrument and can be easily extended to
other coating processes to improve the overall efficiency
and to simplify the operative choices. In fact, the discussed
system 1is fairly general and its optimization does not
involve process models or constraints, but only purely
experimental observations. Therefore, this neural network
solution assisted by GA forms the basis for the develop-
ment of a fast prediction model to estimate the effective-
ness of the EFB coating process accurately, hence
becoming a support tool for the purposes of process
automation and control.
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