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Abstract: Following the path initiated by Merton (1973), we study the
option pricing problem in an economy with stochastic interest rates. We
model the short rate dynamic by a diffusion process whose parameters are
modulated by an underlying Markov process with jumps, as in Landen
(2000). By exploiting the change of numeraire technique we obtain, under
some assumption, a simple and easy to use call pricing formula which we
then apply to the evaluation of risky debts so enlarging the flexibility of
previous results obtained by Shimko et al. (1993). We also provide a
detailed numerical study of call prices and credit spreads for a
straightforward but interesting extension of the Vasicek dynamic included
in our model.
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1 Introduction

There is a growing interest in market models where the assets or the short-term
interest rate dynamics exhibit shifts between different regimes (Ang and Bekaert,
2002; Bansal and Zhou, 2002; Buffington and Elliott, 2002; Dai and Singleton, 2003;
Dai et al., 2005; Naik and Lee, 1997). Empirical evidence for the regime-switching
behaviour of an economy was first reported by Hamilton (1989). In recent times, a
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number of attempts have been made to explain the corresponding dynamic processes
by using hidden Markov models. This paper deals with a model for the short-term
interest rate which has already been proposed and studied in the literature by Hansen
and Poulsen (2000), Landen (2000) and Wu and Zeng (2004). However, differently
from those who concentrate their work on bond pricing, we focus our study on
option pricing. We are not the first to analyse the implications of a regime-switching
effect on the prices of options, however, to our best knowledge, this has been done up
to now only for the case of an underlying asset dynamic which directly incorporates a
regime-switching term. A closer approach is considered in Elliott et al. (2005) but
without taking into account a dynamic model for the term structure. In our work,
assets follow a diffusive behaviour while discounting factors can display sudden
jumps due to a shift of the short rate from one regime to another. To cope with this
situation, we employ the well-known technique of change of numeraire. By so doing,
we can build a forward measure and then, under quite a general hypothesis, we can
provide a rather simple formula for pricing European call options. This formula has
some nice features. Firstly, it is a self-evident and handy generalisation of Merton's
formula. Secondly, even if it cannot be fully solved in closed form, it only requires a
straightforward Monte Carlo procedure in order to estimate the values of the two
(not explicitly solvable) expectations appearing within. We also provide a first
natural application of this finding, namely to the evaluation of risky debts according
to Merton's structural approach. Our credit spreads reduce to the credit spreads of
Shimko et al. (1993) in case there are no jumps and the short rate follows a Vasiceck
dynamic.

The paper is organised as follows: in Section 2 the term-structure model is
presented. As in Landen (2000), we assume that all risk sources have already been
priced by the market by selecting some martingale measure. In Section 3 we enlarge
the set of tradeable assets to include a risky one and discuss conditions for the
existence of forward measures as a tool for pricing contingent claims written on the
risky asset. In Section 4, we give the result on the pricing of a European call and
apply it to credit risk. We also discuss with full analytical details and the help of
numerical simulations the case of a short-term interest rate which can revert only
between two different levels, namely there are just two possible regime switchings in
the economy.

2 The term-structure model

In this section, we shall introduce a model for the short-term interest rate which
incorporates a regime-switching behaviour taking the works by Hansen and Poulsen
(2000) and Landen (2000) as basic references. We start considering a financial market
model living on a stochastic basis �
;F ;F t;Q� which is assumed to carry a
one-dimensional standard Wiener process W�r� as well as a continuous-time and
discrete-space Markov chain X which we consider to be fully observable (for the
partially observable case we refer to Landen (2000)). The main assets to be considered
on the market are zero-coupon bonds with different maturities. For each maturity
T � 0 p�t;T� will denote the time t price of a bond maturing at time T. The process
fp�t;T� : 0 � t � Tg is an optional stochastic process. We assume that there exists a
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frictionless market for T-bonds for every T>0. We define the instantaneous forward
rate at T contracted at time t by f�t;T� � ÿ@ log p�t;T�=@T and the short rate as r�t� �
f�t; t�. The money market account process is defined by B�t� � exp ÿ � t0 r�s�dsÿ �

.
Lastly, we assume that the market is free of arbitrage, i.e. Q is a martingale measure
for the discounted bond price processes. The following system of stochastic
differential equations defines our model for the short rate dynamic under Q:

dr�t� � � g X t� �� � ÿ r t� �� �dt� � X t� �� � dW�r��t�;
dX�t� �

�
E

��z���dt; dz� �1�

where ��dt; dz� is a marked point process with finite mark space �E; E�;E � z � �i; j� :f
i 6� j; i; j 2 1; 2; . . .Nf gg and E � 2E; moreover g��� and ���� > 0 are given functions,
� > 0 is a constant and ��z� � jÿ i. The Q-compensator of ��dt; dz� is given by the
random measure ��!; dt; dz� � ��t;X�tÿ; !�; dz�dt, where

� t;X tÿ; !� �; dz� � �
X
i6�j

hij1 X tÿ;!� ��i� ���i;j��dz� �2�

��i;j��dz� being the Dirac measure. In the previous formula, the numbers hij are
positive and such that

PN
j6�i; j�1 hij � ÿhii, for i � 1; . . . ;N. In other terms, the

modulating process X�t� is a continuous time Markov chain with finite space
f1; 2; . . . ;Ng and intensity matrix H � �hij�. We remark that for ��x� � � > 0 this
model has been studied in Hansen and Poulsen (2000) and Landen (2000). Notice
that the choice g�x� � �, with � > 0, reproduces the classical Vasicek dynamic for the
short rate (Vasicek, 1977). For all T > t let

p�t;T� � F�t;T; r; x� � EQ e
ÿ
� T

t
r�s�dsjr�t� � r;X�t� � x

� �
�3�

define the underlying term-structure. It must verify the following integro-parabolic
equation

@tF� k g�x� ÿ r� �@rF� �
2�x�
2

@2rr F�
�
E

�zF��t; x; dz� � rF �4�

with terminal condition F�T;T; r; x� � 1. In Equation (4) we have used the shorthand
notation �zF�t;T; r;x� � F t;T; r; x� ��z�� � ÿ F�t;T; r; x�.

By choosing logF�t;T; r; x� of the form A�t;T; x� ÿ B�t;T�r and substituting
it directly into Equation (4), it is readily seen that we obtain a solution of the
above equation whenever there are functions A�t;T; x� and B�t;T� which solve the
integro-differential system:

@tBÿ kB� 1 � 0 �5�

@tAÿ kg�x�B� 1

2
��x�B� �2�

�
E

e�zA ÿ 1
� �

��t; x; dz� � 0 �6�

with A�T;T; x� � B�T;T� � 0. Term structures of the type F�t; r; x;T� �
eA�t;T;x�ÿB�t;T;x�r are termed semi-affine in Landen (2000). In summary, the bond
market under consideration displays a semi-affine term structure with
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B�t;T; x� � B�t;T� � 1

�
1ÿ eÿ��Tÿt�
� �

;

provided Equation (6) admits finite solutions A�t;T; x�.
It is useful to notice that every function F�x� having its support on E can always

be written as F�x� �PN
i�1 F�i�1�x�i�. Therefore, by means of the explicit expression of

the compensator, Equation (6) for A is equivalent to the following system of N
coupled equations

@tA1 ÿ �g1B� 1
2 �1B� �2�PN

j�1 h1je
Aj�t;T�ÿA1�t;T� � 0

..

.

@tAN ÿ �gNB� 1
2 �NB� �2�PN

j�1 hNje
Aj�t;T�ÿAN�t;T� � 0

8>><>>: �7�

where Ai�t;T� � A�t;T; i�, gi � g�i�, �i � ��i� and Ai�T;T� � 0 for i � 1; . . . ;N.
For N � 2 and �1 � �2 Landen provides explicit solutions for the functions A1, A2

in terms of Whittaker functions (see, for example, Abramowitz and Stegun (1972)).
The next proposition describes the stochastic differential equation (SDE) which

must be satisfied by the T-bond price p�t;T� under the short rate model dynamic in
Equation (1).

Proposition 2.1. Suppose r�t� and X�t� solve the SDEs in Equation (1), then p�t;T�
solves

dp�t;T�
p�tÿ;T� � � t;T; r�t�;X�tÿ�� �dtÿ � X�tÿ�� �B�t;T�dW�r��t�

�
�
E

e�zA t;T;X�tÿ�� � ÿ 1
h i

��dt; dz�
�8�

with

��t;T; r; x� � rÿ
�
E

e�zA�t;T;x� ÿ 1
h i

��t; x; dz�

Proof. The generalised version of Ito's formula applied to a sufficiently smooth
function H�t;T; r; x� gives

dH � @tH� � g�x� ÿ r� �@rH� 1

2
��x�2@2rrH

� �
dt

� ��x�@rHdW�r��t� �
�
E

�zH��dt; dz�
�9�

where �zH � �zH t;T; r; x� � � H t;T; r; x� ��z�� � ÿH t;T; r; x� �. We apply the
previous formula to the function H�t;T; r; x� � eA�t;T;x�ÿrB�t;T�. Noticing that the
semi-affine structure implies

�zH � H e�zA ÿ 1
ÿ �

and taking into account the relations

@tH � @tAÿ r@tB� �H; @rH � ÿBH; @2rrH � B2H;

we obtain
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��t;T; r; x� � �@tAÿ r@tB� ÿ � g�x� ÿ r� �B� 1

2
��x�B� �2

� rÿ
�
E

e�zA�t;T;x� ÿ 1
h i

��t; x; dz�
�10�

where we have used Equation (6). This ends the proof.

Therefore, while the short rate process has continuous paths, the prices of zero
coupon bonds can display jumps.

3 Forward measures and the pricing of contingent claims

A standard useful trick for pricing contingent claims in an economy with stochastic
interest rates consists in the use of the so called T-forward measure introduced by
Geman et al. (1995) and Jamshidian (1989) (see also Bjork, 2000). In this section we
shall be mainly interested in pricing European options on a single asset. We assume:

* the asset is traded on the market

* under the measure Q the asset price process is given by the solution of the SDE

dS�t� � S�t� r�t�dt� �dW�s��t�
h i

�11�

with � > 0.
The one-dimensional Wiener process W�s� lives on the same stochastic basis

�
;F ;F t;Q� which carries the Wiener process W�r�, moreover the two processes are
correlated with correlation coefficient � 2 ÿ1; 1� �. This allows for the representation

W�r��t� �W�1��t�
W�s��t� � �W�1��t� �

�������������
1ÿ �2

p
W�2��t�

�12�

where WQ�t� � �W�1��t�;W�2��t�� is a standard two-dimensional Wiener process.
The T-forward measure is now defined to be a probability measure QT

(absolutely continuous with respect to Q) under which the process u! ZT
t �u�,

t � u � T, defined by

ZT
t �u� �

S�u�
p�u;T� �13�

is a martingale with respect to the natural filtration G � fGt;ugu�t generated by the
processes WQ��� and ���;��, i.e.

Gt;u � Ht;u _ Kt;u _ N
where Ht;u � � WQ�s�; t � s � u

� 	
, Kt;u � � � t; s� � � A� �; s � u; A 2 Ef g and N is

the collection of Q-null sets from F .
Let ��t;T� denote the price at time t of an option with maturity T and terminal

pay-off ��S�T�� having finite expectation with respect to QT. Since p�T;T� � 1 by
the martingale property this implies

��t;T� � p�t;T�ET � ZT
t �T�

ÿ �jG0;t� � �14�
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where ET is the expectation with respect to the QT measure.
In order to show the existence of a measure QT and to identify the QT-dynamic of

the process ZT
r �t� we first compute the dynamic of ZT

r �t� under the measure Q. This
can be easily obtained by a straightforward use of the Ito formula for semi-martingales
applied to the function G�s; p� � s

p evaluated at �S�t�; p�t;T�� (see, for example,
Protter (1990)), which gives:

dZT
u �t�

ZT
u �tÿ�

� m t;T;X�tÿ�� �dt� ! t;T;X�tÿ�� � � dWQ�t�

�
�
E

eÿ�zA t;T;X�tÿ�� � ÿ 1
� �

��dt; dz�
�15�

where

m t;T; x� � � �2�x�B2�t;T� � ����x�B�t;T� �
�
E

e�zA t;T;X�tÿ�� � ÿ 1
h i

��t; x; dz�

!�t;T; x� � ��� ��x�B�t;T�; �
�������������
1ÿ �2

p� �
:

In the calculations of Equation (15) we have used the key identity

�pG � G eÿ�zA ÿ 1
ÿ �

which measures the variation of G due to a term-structure jump.
The following proposition exploits a suitable version of Girsanov's theorem for

marked point processes (see Bjork et al. (1997) and BreÂ maud (1981), Chapter VIII) to
find a driftless dynamic for ZT

u �t�.
Theorem 3.1. Suppose the following hypothesis hold:

Hypothesis 1. There is a predictable process ÿ�t� � ÿ1�t�;ÿ2�t�� � 2 2 and a
measurable (with respect to the predictable �-algebra) strictly positive function
��t; z� such that

m t;T;X�tÿ�� � � ! t;T;X�tÿ�� � � ÿ�t�
�
�
E

eÿ�Az t;T;X�tÿ�� � ÿ 1
� �

��t; z�� t;X�tÿ�; dz� � � 0
�16�

is satisfied dQdt almost everywhere (a.e.) on 
� �0;T� and�T
0

ÿ�s�k k2ds <1;
�T
0

�
E

��s; z���s;X�sÿ�; dz�ds <1;

dQ a.e.

Hypothesis 2. The process L�t� defined by

logL�t� �
�t
0

ÿ�s� � dWQ�s� ÿ 1

2

�T
0

ÿ�s�k k2ds

�
�t
0

�
E

log ��s; z���ds; dz��
�t
0

�
E

�1ÿ��s; z����s;X�sÿ�; dz�ds
�17�
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verifies the condition
EQ L�T�� � � 1: �18�

Then there exists a probability measure QT equivalent to Q on G0;T with density
dQT

dQ
� L�T� such that:

* the two-dimensional process

~W�t� �WQ�t� ÿ
�t
0

ÿ�s�ds

is a standard QT-Wiener process

* the point process � has QT-intensity given by

�T�t; x; dz� � ��t; z���t; x; dz�;
* let ��T�dt; dz� � ��dt; dz� ÿ �T�t;X�tÿ�; dz�dt be theQT-compensated jump process

then, under QT, the process ZT
u �t� solves the following SDE

dZT
u �t�

ZT
u �tÿ�

� !�t;T;X�tÿ�� � d ~W�t� �
�
E

eÿ�zA t;T;X tÿ� �� � ÿ 1
� �

��T�dt; dz� �19�

and, therefore, is a martingale.

Proof. The proof is straightforward. By Hypotheses 1 and 2 (BreÂ maud, 1981) there
exists a probability measure QT on G0;T equivalent to Q with density L�T� such that
~W�t� is a standardQT-Wiener process and the point process � hasQT intensity given by

�T�t; x; dz� � ��t; z���t; x; dz�:
Moreover, under QT we clearly have

dZT
u �t�

ZT
u �tÿ�

�
 
m�t;T;X�tÿ�� � ! t;T;X�tÿ�� � � ÿ�t�

�
�
E

ÿ
eÿ�Az t;T;X�tÿ�� � ÿ 1

�
�T t;X�tÿ�; dzÿ ��

dt� ! t;T� �d ~W�t�

�
�
E

ÿ
eÿ�Az t;T;X�tÿ�� � ÿ 1

�
� dt; dz� � ÿ �T t;X�tÿ�; dz� �dtÿ �

where we have compensated �. Finally we use Equation (16) to cancel the drift in the
last equation. This ends the proof.

Let us now discuss more closely Hypotheses 1 and 2. We see that Hypothesis 1 requires
to exhibit solutions �ÿ1�t�, ÿ2�t�� and ��t; z� of Equation (16). Furthermore, they must
verify some integrability conditions but these are always satisfied in our model, E being
a finite space. We notice that Equation (16) can be explicitly rewritten in the form

�2 X�tÿ�� �B�t;T�2 � ��� X�tÿ�� �B�t;T� � �� � � X�tÿ�� �B�t;T�ÿ1�t�� �
� �

�������������
1ÿ �2

p
ÿ2�t��

�
E

eÿ�Az t;T;X�tÿ�� �ÿ1
� �

��t; z�� t;X�tÿ�; dz� �

�
�
E

e�Az t;T;X�tÿ�� �
ÿ ÿ 1

� �
� t;X�tÿ�; dz� � � 0:

�20�
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There are plenty of solutions �ÿ;�� to this equation, each one giving rise to a QT-
forward measure. However, these QT-forward measures all assign the same value to
the option by means of Equation (14). Henceforth, we can just select one of them in
the most convenient way. A natural one is to split Equation (20) into the system:

�2 X�tÿ�� �B�t;T�2 � ��� X�tÿ�� �B�t;T� � �� � � X�tÿ�� �B�t;T�ÿ1�t�� �
� �

�������������
1ÿ �2

p
ÿ2�t� � 0�

E

eÿ�Az t;T;X�tÿ�� � ÿ 1
� �

��t; z�� t;X�tÿ�; dz� �

�
�
E

e�Az t;T;X�tÿ�� � ÿ 1
� �

� t;X�tÿ�; dz� � � 0

�21�

therefore separating the diffusive and jump parts. We begin discussing the first
equation. There are two cases: � � �1 and � 6� �1.

Case � � �1: the equation is solved by

ÿ1�t� � ÿ ��� X�tÿ�� � � �2 X�tÿ�� �B�t;T�
�� � � X�tÿ�� � :

Case � 6� �1: we solve the equation by choosing

ÿ1�t� � ÿ �2 X�tÿ�� �B�t;T�2
�� � � X�tÿ�� �B�t;T�

ÿ2�t� � ÿ ��������������
1ÿ �2

p � X�tÿ�� �B�t;T�:

In particular, for � � 0 we have ÿ1�t� � ÿ��X�tÿ��B�t;T� and ÿ2�t� � 0.
We now analyse the second equation. Notice that in case there are no jumps

�Az � 0 so it reduces to a trivial identity. Next we focus on the special case N � 2.
By using Equation (2), writing ��t; z� as �ij�t� for z � �i; j� i 6� j and setting

Gij�t;T� � Aj�t;T� ÿ Ai�t;T�;
we see that the equation is equivalent to the two conditions

h12�12�t� eÿG12�t;T� ÿ 1
� �

� h12 eG12�t;T� ÿ 1
� �

� 0

h21�21�t� eÿG21�t;T� ÿ 1
� �

� h21 eG21�t;T� ÿ 1
� �

� 0

whose explicit solutions are given by

�12�t� � eG12�t;T�

�21�t� � eG21�t;T�;

which are strictly positive. Permuting the indices, we pass from one to the other. For
N � 3, using Equation (2), we can again reduce the initial equation to a linear system
of N equations in the N�Nÿ 1�-unknowns �ij�t�, i; j � 1; . . . ;N with i 6� j. We have
an underdetermined linear system from which we must select out some (positive)
solutions. Since we shall be most interested in our applications to the N � 2 case we
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do not expand the analysis of this point furthermore. Finally, we notice that the
requirement Hypothesis 2 is also satisfied. Indeed the usual exponential moments
finiteness condition (see (3.9) in BreÂ maud (1981)) which implies Equation (18), it
clearly holds in our case again by the finiteness of the space E.

4 Valuation of corporate risky debts

In this section we shall give an important application to corporate risky debt
valuation of the results obtained in Section 3. We shall take Merton's structural
approach (Merton, 1974) as our guideline, see Duffie and Singleton (2003) for an
overview. Generalisations of Merton results to the case of stochastic interest have
already appeared, for example, Shimko et al. (1993) covered the case of a short rate
Vasiceck-dynamic (more recently Wong and Kwok (2003) allowed for jumps in the
asset dynamic). Merton's approach becomes especially powerful when there is the
possibility to determine, in the chosen market model, the price of a European call
option in relatively simple form. To this aim we shall denote by Xt;i�s�, s � t, the
Markov chain starting in the state i at time t, by pi�t;T� the related term-structure
and by ZT

t;i�s� the corresponding solution, under the measure QT, of the stochastic
differential equation (Equation (19)) for s � t given S�t� � S. The logarithm of ZT

t;i�s�
evaluated at time s � T has the form (see, for example, Runggaldier (2002)):

logZT
t;i�T� � logZT

t;i�t� ÿ
�T
t

��
E

eÿ�zA ÿ 1
ÿ �

�T s;Xt;i�sÿ�; dzÿ �
� 1

2
! s;T;Xt;i�sÿ�ÿ �

 

2�ds� �T

t

! s;T;Xt;i�sÿ�ÿ � � d ~W�s�

ÿ
�T
t

�
E

�zA��ds; dz�:

We shortly rewrite it as

logZT
t;i�T� � Ni�t;T� � Yi�t;T�

where

Ni�t;T� � log
S

pi�t;T�
� �

ÿ 1

2
V 2

i �t;T� �
�T
t

! s;T;Xt;i�sÿ�ÿ � � d ~W�s�

Yi�t;T� � ÿ
�T
t

�
E

eÿ�zA ÿ 1
ÿ �

�T s;Xt;i�sÿ�; dzÿ �
dsÿ

�T
t

�
E

�zA��ds; dz�;
�22�

and

Vi�t;T� �
�T
t

! s;T;Xt;i�sÿ�ÿ �

 

2ds� �1=2
:

Let N��� denote the cumulative distribution of a standard normal, the following
result holds:
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Proposition 4.1. For any pair of variables ��;
� define the functions

d2;i �;
� � � log
S

�pi�t;T�
� �

ÿ 1

2

2

� �
=


d1;i �;
� � � d2;i �;
� � �
;

then the price at time t of a European call option with maturity T and strike price K is
given by

ci�t;T;S;K� � S�i ÿ Kpi�t;T��i �23�
where

�i � ET eYi�t;T�N d1;i KeÿYi�t;T�;Vi�t;T�
� �h ih i

and

�i � ET N d2;i KeYi�t;T�;Vi�t;T�
� �h ih i

:

Proof. We have

ci t;T;S;K� � � pi t;T� �ET ZT
t;i T� � ÿ K

� ��
jG0;t

� �
� pi t;T� �ET eNi t;T� ��Yi t;T� � ÿ K

� ��� �
� pi t;T� �ET ET eNi t;T� ��Yi t;T� � ÿ K

� ��
jKt;T

�� �
� pi t;T� �ET eYi t;T� �ET eNi t;T� � ÿ eÿYi t;T� �K

� ��
jKt;T

�� �
� ET eYi t;T� � pi t;T� �ET eNi t;T� � ÿ eÿYi t;T� �K

� ��
jKt;T

�� �� �
:

�24�

We notice now that, under QT,

Ni t;T� �jKt;T � N log
S

pi t;T� �
� �

ÿ 1

2
V2

i t;T� �;V2
i t;T� �

� �
:

Therefore we have

ci t;S;K;T� � � ET eYi t;T� �SN d1;i KeÿYi t;T� �;Vi t;T� �
� �� �h i

ÿ Kp
i
t;T� �ET N d2;i KeÿYi t;T� �;Vi t;T� ��

� �� �h i
� S�i ÿ Kpi t;T� ��i:

�25�

Notice that �i and �i are always finite numbers since N��� � 1 and ET eYi t;T� �ÿ �
<1.

This ends the proof.

Remark. Clearly if the market is such that Yi�t;T� � 0 a.e. then we fully recover
Merton's formula (Merton, 1974).
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Suppose now the process �S�u��u�t represents the firm's asset value and, following
Merton, assume that default can occur only when the firm cannot repay at time T the
promised principal, denoted by F. In case of default, bondholders take over the firm
and shareholders get nothing. Under such circumstances the value of a corporate
discount bond with maturity T can be evaluated by the following formula:

Di t;T� � � pi t;T� �ET S T� � ÿ S T� � ÿ F� ��jG0;t
� �

� pi t;T� �ET ZT
t;i T� �jG0;t

h i
ÿ pi t;T� �ET ZT

t;i T� � ÿ F
� ��

jG0;t
� �

� S t� � ÿ ci t;T;S t� �;F� � � S t� � ÿ S t� �ET eYi t;T� �N d1 FeÿYi t;T� �
�� ��� �

ÿ Fpi t;T� �ET N d2 FeÿYi t;T� �
� �� �h i

;

where the last equality comes from our previous result. Hence,

Di t;T� � � pi t;T� �
�
ZT

t;i t� � 1ÿ ET eYi t;T� �N d1 FeÿYi t;T� �
� �� �h� i

� FET N d2 FeÿYi t;T� �
� �� �h i�

:

Therefore credit spreads have the following expression

�i t;T� � � ÿ 1

Tÿ t
log

Di t;T� �
Fpi t;T� �
� �

�ÿ 1

Tÿt log
ZT

t;i t� �
F

1ÿET eYi t;T� �N d1 FeÿYi t;T� �
� �� �h i� �

� ET N d2 FeÿYi t;T� �
� �� �h i !

�ÿ 1

Tÿt log
1

ki t;T� � 1ÿET eYi t;T� �N d1 FeÿYi t;T� �
� �� �h i� �

�ET N d2 FeÿYi t;T� �
� �� �h i� �

;

�26�

ki t;T� � � F

ZT
t;i t� �

being the discounted debt to asset ratio or firm's leverage. We shall

now discuss the behaviour of these credit spreads for N � 2.

Case N � 2. The presence of only two different levels is a special but already interesting
framework. In particular, the bond pricing problem has been studied in detail in the
papers by Hansen and Poulsen (2000) and Landen (2000) in case h12 � h21 � h and
��1� � ��2� � �. We shall assume these last conditions and discuss the corresponding
option pricing problem. The solution essentially consists of a three-step procedure:

* Firstly the semi-affine structure must be explicitly solved (or numerically
computed) under the martingale measure Q.

* Secondly, once the functions Ai�t;T� and B�t;T� are available, the Markov chain
~X driven by the time-dependent intensity matrix

hTij s� �
� �

i; j�1;2
� ÿh�12 s� � h�12 s� �

h�21 s� � ÿh�21 s� �
� �

; �27�

t � s � T, needs to be taken into account for the evaluation of the weights
eYi t;T� � appearing in the pricing formula (Equation (23)), where the expectation is
performed with respect to the measure QT.
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* Finally, the prices are computed using Monte Carlo averages of very simple
functionals according to Equation (23), where for i � 1; 2

Vi t;T� � � V t;T� � �
�

Tÿ t� � �2 � �
2

k2
� 2���

k

� �
� eÿk Tÿt� � ÿ 1
� � 2�2

k3
� 2���

k2

� �
:

ÿ �2

2k3
eÿ2k Tÿt� � ÿ 1
� ��1=2

:

In order to explain these steps in more detail it is convenient to fix some notations.
The numbers g1 and g2 will represent the two possible levels of mean reversion for the
short rate process. We take g1 and g2 positive with � � g1 ÿ g2 � 0 being the size of
their gap, i.e. g1 is the `high' level. For i 2 1; 2f g we set

Gij t;T� � � Aj t;T� � ÿ Ai t;T� �;
�Aj�t;T� � A�t;T; j�, j � 1, 2 as in Section 2). Clearly �A t;T; i; z� � � Giî t;T� �; î being
the complementary state of i. The process Yi�t;T� can be explicitly written as:

Yi�t;T� � ÿ
XNT

n�1
1 ~Xt;i �nÿ� ��2 ÿ 1 ~Xt;i �nÿ� ��1
� �

G21 �n;T� �

ÿ
�T
t

hT21 s� �1 ~Xt;i sÿ� ��2 eÿG21 s;T� �ÿ1
� �

�hT12 s� �1 ~Xt;i sÿ� ��1 eÿG12 s;T� �ÿ1
� �� �

ds

�28�

where NT is the total number of times the chain changes its state in (0, T] and the
random times t < �1 < �2 . . . < �NT

� T are the jumping (regime-switching) times.
We recall that for N � 2 the system of Equation (7) reduces to

@

@t
A1 t;T� � ÿ �g1B t;T� � � 1

2
�B t;T� �� �2�h eÿG21 t;T� � ÿ 1

� �
� 0

@

@t
A2 t;T� � ÿ �g2B t;T� � � 1

2
�B t;T� �� �2�h eG21 t;T� � ÿ 1

� �
� 0

8>><>>: �29�

with A1�T;T� � A2�T;T� � 0 and B�t;T� � �1ÿ exp�ÿ��Tÿ t���=�. In particular, it
follows that the function G21�t;T� verifies the following nonlinear ordinary
differential equation (ODE):

@

@t
G21 t;T� � � k�B t;T� � � 2h sinh G21 t;T� �� �
G21 T;T� � � 0

8<: �30�

Remark. For � � 0, i.e. g1 � g2 � �, the choice G21 t;T� � � 0 clearly solves the
equation and, as a consequence, Yi�t;T� � 0 with probability 1. Moreover,
p t;T� � � pV� t;T� �, i.e. p�t;T� coincides with the Vasicek affine term structure
having � as mean reversion level. Henceforth the price of a call option is given by

c t;T;K� � � cVM t;T;K� �
where

cVM t;T;K� � � S t� �N dV1 K� �ÿ �ÿ KpV� t;T� �N dV2 K� �ÿ � �31�
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and

dV2 K� � � log
S t� �

KpV� t;T� �
� �

ÿ 1

2
V2 t;T� �

� �
=V t;T� �

dV1 K� � � dV2 K� � � V t;T� �:
We recall that explicit solutions of Equation (29) are available in terms of Whittaker
functions (Landen, 2000). By using such a representation, it can be easily seen that

G12 t;T� � � ln
�t t;T� �
h� t;T� �

where

� t;T� � � e
 exp kt� �� �w 2C2e
kt

ÿ �
and w is defined by means of the Whittaker functions Mk;m and Wk;m (see, for
example, Abramowitz and Stegun (1972)) as

w u� � � D1Ml;m u� � �D2Wl;m u� �
with l � ÿC1; m �

�������������������������������������������������
1=4ÿ C1 � C2

1 � h=k� �2
q

and


 s� � � kÿ �� � log s� �
2k

ÿ s�

2kekT
� kÿ �� �T

2
� �

2k
:

The exact values of the constants C1, C2 and D1, D2 can be found in Landen (2000).
However, we remark that, even if such a representation is available, its practical
implementation is questionable and we have to resort to numerical methods for solving
Equation (30) in order to get significant bond price curves, as in Landen (2000) also.

We now report on a set of numerical simulations performed within this model
showing the behaviour of call prices (Equation (23)) and credit spreads (Equation (26))
for a selected set of parameters. In order to evaluate the expectations involved in our
formulae, we must resort toMonte Carlo simulations of the processes Yi�t;T�, i � 1; 2.

Once the function G21�s;T�, t � s � T is available for computation, e.g. by
numerically solving Equation (30), independent samples of the variable Yi�t;T� are
easily obtained by simulating independent paths of the two-state continuous time
non-homogeneous Markov chain ~X�s�, t � s � T and then evaluating the
corresponding sample Y

m� �
i t;T� � through Equation (28), where a numerical

integration method is needed. Since the matrix elements (Equation (27)) are
bounded over the interval �t;T� the previous simulation step can be efficiently realised
by means of the thinning algorithm (see Glasserman and Merener (2004) for a recent
application of this technique in financial mathematics). The expectations in Equation
(23) can be, then, approximated by

ET eYi t;T� �N d1 KeÿYi t;T� �
� �� �h i

� 1

M

XM
m�1

eY
m� �
i

t;T� �N d1 KeÿY
m� �
i

t;T� �
� �� �

and

ET N d2 KeÿYi t;T� �
� �� �h i

� 1

M

XM
m�1
N d2 KeÿY

m� �
i

t;T� �
� �� �

for a sufficiently large M.
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Without loss of generalisation, in our experiments we set t � 0. In Figure 1, the
results of some numerical simulations showing the impact of the model parameters T,
�, h and � on the call prices are reported. The gap was incremented by fixing the lower
level g2 and varying the higher level as g1 � g2 � �. The other (fixed) parameters were
chosen as: for the short rate dynamic, � � 1 and ��r� � 0:02 and for the price process,
��s� � 0:2. In our experiment, M � 20; 000 samples were sufficient to approximate
the expectations within a 95% confidence interval of length about 10ÿ3. The results
obtained with the two-state regime switching model are compared with those obtained
by using the Merton model. In all plots the `*' and dotted `*' curves are the call prices
in our regime switching model with X�0� � g1 and X�0� � g2, respectively. The `o'
and dotted `o' curves are the corresponding Merton prices. For this last model we
used the Vasicek short rate term structure with mean level parameter X�0� and,
again, � � 1, ��r� � 0:02 and ��s� � 0:2. The initial short rate value r�0� was chosen as
r�0� � �g1 � g2�=2 for all plots unless the one where � is varying ± in that case it was
fixed as r�0� � 0:07. In all these experiments we set S�0� � 100 and K � 100.

Figure 1 Call prices as a function of the model parameters T; �; h and �. For each plot the
fixed parameters were chosen as � � 1, ��r� � 0:02, g2 � 0:05, g1 � 0:1, h � 1,
r�0� � �g1 � g2�=2, T � 5, S�0� � 100, K � 100, ��s� � 0:2, � � 0:5 (for colours
see online version)

(a) (b)

(c) (d)
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Finally, in Figure 2 the credit spreads (Equation (26)) are plotted as a function of
some model parameters (the promised principal F, the correlation coefficient �, the
gap � and the intensity h), together with the corresponding values obtained under the
Merton model.

Figure 2 Credit spreads as a function of the parameters F; �; h and �. For each plot the fixed
parameters were chosen as � � 1, ��r� � 0:02, g2 � 0:05, g1 � 0:1, h � 1, S0 � 100,
F � 90, ��s� � 0:2, � � 0:5 (for colours see online version)
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