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Abstract

This paper develops a unified method to derive decay estimates for general second order integro-
differential evolution equations with semilinear source terms. Depending on the properties of convolution
kernels at infinity, we show that the energy of a mild solution decays exponentially or polynomially as
t — +o0. Our approach is based on integral inequalities and multiplier techniques.

These decay results can be applied to various partial differential equations. We discuss three examples:
a semilinear viscoelastic wave equation, a linear anisotropic elasticity model, and a Petrovsky type system.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that viscoelastic materials exhibit natural damping, which is due to the special
property of these materials to keep memory of their past history. From the mathematical point of

* Corresponding author.
E-mail addresses: alabau@univ-metz.fr (F. Alabau-Boussouira), cannarsa@axp.mat.uniroma2.it (P. Cannarsa),
sforza@dmmm.uniromal.it (D. Sforza).

0022-1236/$ — see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jfa.2007.09.012



F. Alabau-Boussouira et al. / Journal of Functional Analysis 254 (2008) 1342—1372 1343

view, these damping effects are modeled by integro-differential operators. A simple example is
the viscoelastic membrane equation

atzu(t,é)—Au(t,S)—l—/ﬂ(t—s)Au(s,S)ds:O, t>0, £E€82, (1)

u,§)=0, 120, 5§08,

in a bounded open domain 2 C RYV, see, e.g. [11,12,14,18,22,25].
A semilinear initial value problem related to Eq. (1) is considered in [8], where the balanced
damping effects of friction and viscoelasticity are studied, and in [5], where the equation

02u(t, &) — Ault,£) +/ﬁ(r —9)Auls. ) ds =[ut. O ui.6). 120, 5e@.
0

u(t,&)=0, >0, £€ds2,

is analyzed. Both papers [5] and [8] use a Lyapunov type technique for some perturbed energy,
following the method introduced by Komornik and Zuazua [17]. In particular, the modified Lya-
punov function introduced in [5] allows to weaken some of the technical assumptions of [8] for
convolution kernels.

The above considerations explain, in part, our interest in the abstract integro-differential equa-
tion

t
u”(t)—|—Au(t)—/ﬁ(t—s)Au(s)ds:VF(u(t)), t € (0, 00), 3)
0

in a Hilbert space X, where A: D(A) C X — X is an accretive self-adjoint linear opera-
tor with dense domain, and VF denotes the gradient of a Gateaux differentiable functional
F:D(A) — R.In particular, Eq. (1) fits into this framework as well as several other classical
equations of mathematical physics such as the linear elasticity system (see Section 4 for details).
Related results for the exponential asymptotic stability of solutions to linear integro-differential
equations like (3) were obtained in [3].

The main goal of this paper is to obtain decay estimates for the general equation (3) under
minimal assumptions on B: we shall assume that §:[0, c0) — [0, c0) is a locally absolutely
continuous function satisfying, for some p € (2, oc],

p(0) >0, /,B(t)dt<1, B < —kpTF.
0

We will then show that the above conditions ensure that the energy of any mild solution of (3),
with sufficiently small initial data, decays at infinity with the same (exponential or polynomial)
rate as 3, see Theorems 3.5 and 3.6. Observe that the above assumptions allow for exponen-
tial (p = 00), polynomial (2 < p < 00), as well as compactly supported convolution kernels.
Moreover, for linear problems (F = 0), no restriction on the initial data is required.
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Our result differs from the one of [5,8] for both set-up and methodology. Indeed, instead of
using a Lyapunov type technique for some perturbed energy, we rather concentrate on the original
energy, showing that this one satisfies a nonlinear integral inequality which, in turn, yields the
final decay estimate.

The advantage of our approach is clear. By the same general theorem we recover, as special
cases, the result in [5] for Eq. (2), the result in [21] (in the case of bounded space domains)
allowing for more general initial conditions and convolution kernels, and we can also obtain new
results for other partial differential operators such as Petrovsky systems.

The outline of this paper is the following. In Section 2 we fix notations and recall some
decay estimates. In Section 3 we prove our main stability results. Finally, in Section 4 we give
applications to various partial differential operators.

2. Preliminaries

Let X be a real Hilbert space with inner product (-,-) and norm || - ||.

For any T € (0, 0], Ck(0,T1; X), k =0, 1,2, stands for the space of continuous functions
from [0, T'] to X having continuous derivatives up to the order k in [0, T']. In particular, we shall
use the notation C ([0, T']; X) for CO([O, T]; X).

Further, for any 7' € (0, oo] we denote by L! (0, T; X) and L°°(0, T; X) the usual spaces of
measurable functions v: (0, 7) — X such that one has

T
ol i= [ ooy e <o,
0

|v]loo :=€ss sup ”v(t)H < 00,
0T

respectively.

In the case X = R, we make use of the abbreviations L!(0, T) and L*°(0, T) to denote the
spaces Ll(O, T;R) and L*°(0, T; R), respectively.

For any ¢ € L0, T) and any v € L0, T; X) the symbol ¥ x v stands for convolution from
O to t, that 1s

t
Yxv(t) = / vt —s)v(s)ds, te][0,T].
0
For reader’s convenience we give a proof of the following lemmas. For more general integral

inequalities see also [1,2,13,19].

Lemma 2.1. Let E be a nonnegative decreasing function defined on [0, 00). If

f E(t)dt <CE(S) VS> S, 4)
S
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for some constants Sy, C > 0, then

t
E(@t)<E( 1- Vi > 0.
(1) < E( )eXP( S0+C)

Proof. If 0 < S < Sp, by (4) we have

00 So 00
fE(t)dt:/E(t)dt+/E(t)dt
S S So
<(So—SE(S)+CE(Sy) < (So+C)E(S),
whence
fE(t)dt <So+C)E(S) VS>O0.
S

Therefore, by a well-known decay estimate (see, e.g., [16, Theorem 8.1]) the conclusion fol-
lows. O

Using the same arguments as in the proof of Lemma 2.1, one gets

Lemma 2.2. Let E be a nonnegative decreasing function defined on [0, 00). Assume there are
positive constants «, C and Sy such that

‘/EHﬂaﬁh<CE“mMK$ VS > So. (5)
S
Then
1
mngmmC%+Cm+ﬂva Vi >0.
at + S0+ C

3. Stability for the abstract problem
In this section, we shall be concerned with the asymptotic behaviour of solutions to the second
order integro-differential equation

t
u%0++m0y—/ﬂa—nAMﬂds:VF@UH,te«le (6)
0

in a Hilbert space X. To begin with, we assume the following conditions.
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Assumptions (H1).
1. A is a self-adjoint linear operator on X with dense domain D(A), satisfying
(Ax,x) > M|x|* V¥x e D(A), (7)

for some M > 0.
2. B:10,00) — [0, 00) is a locally absolutely continuous function such that

/ B(t)dt < 1 ®)
0
B(0)>0, pB'(t)<0 forae.t>0. 9)

3. F:D(+/A) — R is a functional such that
(a) F is Gateaux differentiable at any point x € D(VA):
(b) forany x € D(+/A) there exists a constant ¢(x) > 0 such that

IDF)(»)| <c@)lyll, forany y € D(vA), (10)

where D F(x) denotes the Gateaux derivative of F in x; consequently, D F'(x) can be
extended to the whole space X (and we will denote by V F'(x) the unique vector rep-
resenting D F(x) in the Riesz isomorphism, that is, (VF(x), y) = DF(x)(y), for any
y € X);

(c) for any R > 0 there exists a constant Cg > 0 such that

|VF(x) — VF(»)| < CrlIVAx — YAy (11)

for all x, y € D(+/A) satisfying ||~/Ax|, |v/Ay| <R.

Let ug, u; € X and consider the Cauchy problem

u”(t)—l—Au(t)—/,B(I—s)Au(s)ds=VF(u(t)), t € (0, 00),
0 (12)

u(0) = u,
u' (0) =uj.

We recall that a mild solution of (12) in [0, T], T > 0, is a function u € C ([0, T]; D(+~/A)) that
satisfies the integral equation

t t
u(t):S(t)uo—l—/S(r)uldr—i—/I*S(t—t)VF(u(t))dr, viel0,T],  (13)
0 0
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where {S(#)} is the resolvent for the linear equation
t
u” (t) + Au(t) — /,B(t —s5)Au(s)ds =0, te€(0,00),
0

see [6,7,24].

Another useful notion of generalized solution of (6) is the so-called weak solution, that is
a function u € C'([0, T1; X) N C([0, T1; D(+~/A)) such that, for any v € D(~/A), (u' (1), v) €
C'([0,T)) and

t
%(u’(t), v) + (VAu(t), vAv) — <f B(t — )V Au(s)ds, ﬂv>
0

=(VF(u(t)),v), Vrel0,T] (14)

Adapting a classical argument due to Ball [4], one can show that any mild solution of (6) is also
a weak solution, and the two notions of solution are equivalent when F' = 0.

For more regular data, one should expect more regular solutions. In particular, we will call
a strong solution of Eq. (6) any function u € C2([0,T]; X) N C([0, T]; D(A)) verifying the
equation for all 7 € [0, T'].

Local existence, uniqueness, and regularity for (12) is guaranteed by the following result.

Proposition 3.1. For any ug € D(WA) and u; € X, a number T > 0 exists so that (12) admits a
unique mild solution u on [0, T]. Moreover, u belongs to Cl([O, T]; X).

Furthermore, if ug € D(A) and uy € D(v/A), then the mild solution of (12) is a strong solu-
tion and belongs to C' ([0, TT; D(VA)).

The proof of the above theorem is a variant of a well-known linear result that can be found in
[24], see [6] for details.

3.1. Dissipation

Extending to the present abstract set-up an idea due to [22], we define the energy of a mild
solution u of (12) on a given interval [0, T'] as

1
1 1
E, (1) ;:§|}u/(r)\|2+5<1—/ﬂ(s)ds> |vVAu@)|* = F(u())
0

+%/ﬂ(r—s)H\/Zu(s)—\/Zu(t)szs, t€[0,T1. (15)
0

Then, we obtain the following preliminary properties.
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Theorem 3.2. Under Assumptions (H1), the energy of any mild solution u of (12) is a decreasing
function.

Proof. Suppose, first, that u is a strong solution of (6) on [0, T']. Differentiating formula (15),
we obtain

d 1
TEu(1) = (" (), u' () + (VAu ), VA (1)) — SB® |vAu®)|?
1 [ d
_ 5(/ls(s)ds)EHJZu(z) |?
0

+%/ﬁ/(t — )|V Au) — VAu(s) | ds
0

t
—/ﬁ(t—s)(«/Zu(s) —VAu(t), VAu' (1)) ds
0

—(VF(u@)),u' (1))
1
=(u" (1), u' () + (VAu(t), VAU (1)) — B |vVAu)|?

t
1 d
_ 5(/,3(s)ds>EH«/ZW)HZ
0

+ % / B'(t — s)”x/Zu(t) — x/Zu(s)szs — (/3 * x/Zu(t), x/Zu/(t))
0

1 d
+ (§/ﬁ(s)a’s> - |V Au(t) Hz —(VF(u@®),u' @)
0
= (u"(t), u' () + (Au(®), u' (1)) — (B * Au(t), u' (1)) — (VF (u (1)), u' (1))

t
1 1
_ Eﬂ(t)H«/Zu(t)”z—l— 5/5/(1 — )|V Au@) — VAu(s) | ds
0

t
1 1
— —Eﬁ(z‘)H«/Zu(t)”z + E]ﬁ’(t — )|V Au() - «/Zu(s)”zds (16)
0

where the last identity holds because u is a solution of (6). Since 8 > 0 and 8’ < 0, the right-hand
side above is negative. We have thus shown that the energy E, (t) of any strong solution is de-
creasing. An approximation argument suffices to extend such a conclusion to mild solutions. [
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Applying Theorem 3.2 we can prove a global existence result for problem (12) with suffi-
ciently small initial conditions.

Theorem 3.3. Let Assumptions (H1) be satisfied. Suppose, in addition, that there exists a strictly
increasing continuous function \ : [0, 00) — [0, 00) such that

|F(x)| < v (IVAx|) IV Ax|I>  ¥x € D(VA). (17)
Then a number py > 0 exists such that, for any ug € D(~/A) and uy € X satisfying

IV Aug |l + lur |l < po, (18)

problem (12) admits a unique mild solution u on [0, 0c0). Moreover, E,(t) is positive and

E,(0) < p5, (19)
1 1 r
E () > E|\u’(t)|}2+4—1<1 —/ﬁ(s)ds) |vVAu®)]|?, (20)
0
1 o0
¥ ([VAu®|) < Z(l —/ﬁ(s)ds) 1)
0

for every t > 0. Furthermore, if ug € D(A) and u; € D(VA), then u is a strong solution of (6).

Proof. Let [0, T) be the maximal domain of definition of the mild solution u of (6) and let

V= %(1 —fﬁ(s)ds).
0

Observe that E, (0) > 0 if ¥ (||[v/Augl|) < v/2, for

1 1 1 1—v
E,(0)= inuluz + 5||~/Zuo||2 — F(ug) > 5||ul||2 + Tnﬂuouz.

We claim that, if

¥ (IVAul) <

| <

1
and w<(2ET)(O))2) < %, (22)

then
1
E) > 5[ +3|VAu®|* vielo.1). (23)

Indeed, let T be the supremum of all s € [0, T) such that (23) holds true for any ¢ € [0, s].
Suppose T < T. By continuity,
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1
E,0) = 5 |o' @[+ 3| VAu@ |’ > 0.

Hence, by Theorem 3.2 we have that

x/f(H\/Zu(T)”)<w<(2Ez(r>>%>w((zEu<0)>%><g

v

Moreover, assumption (17) and the above inequality yield

E, (1) > HL/(?:)H2 + v||x/Zu(t)H2 — F(u(1))

—_— N =

, % L, , %
> Sl @ + ( - 5) Vau@|* = S Ju' @[ + 3 |VAu@ |

This contradicts the maximality of 7.

Let
v o (Vv
= /= — 0.
£0 ,/ZW (2)>

Then ¥ (||~/Augll) < v/2 for any ug € D(+~/A) and any u; € X such that ||V Auo|l + |lu1]l < po.
In addition, (19) is satisfied since

1 2 v oo
Eu(0) < S llur I + 1V Auoll* < (llurll + 1V Auoll)” < o5 = S ¥

N
| <
N~
Lo

Moreover,

((52))-

So, we have shown that, for ||[v/Auo| + |lu1]l < po, conditions (22) are satisfied, and hence (23)
holds true. Thus, the energy of u is nonnegative on [0, T'): E, is bounded and u is global.
Finally, estimate (23) yields (20), which in turn implies (21) since

Wi <v((52) ) <v((52) ) <5 vz

1%

| <

Remark 3.4. In the linear case F' = 0O restriction (18) is unnecessary: the energy of any mild
solution is nonnegative and for any ug € D(+/A) and u; € X one gets a unique global solution,
given by

t
u(t)=S(t)u0+/S(t)u1dr, Vi > 0.
0
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3.2. Main results

In this section, we will study the asymptotic behaviour at co of a mild solution of (6) providing
conditions to ensure that the energy of the solution decays at oo at exponential or polynomial rate.
Such conditions are obtained by strengthening Assumptions (H1) as follows.

Assumptions (H2).

1. There exist p € (2, oo] and k£ > 0 such that

1
B'(t) < —kB'TP(t) forae.t>0 (24)
(here we have set - = 0 for p = 0Q).
2. F(0)=0, VF(0) =0, and there is a strictly increasing continuous function v : [0, c0) —
[0, 00) such that
(VF (), x)| < v (IVAx ) IVAx[I>  ¥x € D(VA). (25)

Our main results are the following.

Theorem 3.5. Assume (H1) and (H2) with p = cc. Then, there exist positive numbers py' and C
such that, for all initial data (ug, u1) € D(WA) x X satisfying

IV Auoll + llutl < po.
the energy E,(t) of the mild solution u of (12) decays as
E,(t) <E,(0)exp(l —Ct) Vt=0.
Moreover, one can take pg = o0 if F =0.

Theorem 3.6. Assume (H1) and (H2) with p € (2, 00). Then, there exist positive numbers pg and
C such that, for all initial data (ug, u1) € D(WA) x X satisfying

IV Aug|l + llur |l < po,

the energy E,(t) of the mild solution u of (12) decays as

p
ca —I—p)) v

t>0.
t+ pC

E, (1) < Eu(0)<

Moreover, one can take py = oo if F =0.

The above theorems are an immediate consequence of Lemmas 2.1 and 2.2, respectively, and
of the following technical result.

1 po is given by Theorem 3.3.
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Theorem 3.7. Let Assumptions (H1) and (H2) be satisfied and let Sy > 0. Then, there exist
positive numbers po and C such that, for any ug € D(vA) and uy € X with ||V Aug|| + |lu1] <
00, the energy E,(t) of the mild solution u of (12) satisfies

/ 1Jr;(t)dt CE OEL(S) VS = So. (26)
S

Moreover, one can take py = oo if F = 0.
Remark 3.8.

1. As we shall see in the sequel, the above set-up can be used to treat kernels with either poly-
nomial or exponential decay. For instance, for any p € (2, 00), B(t) := (1 + t)~? satisfies
Assumptions (H2)-1 and is a typical kernel with polynomial decay, whereas B(r) := e~
a > 0, satisfies the same condition with p = oo.

2. We note that for p € (2, 0o) it follows from (24)

)< —= 0
X (1 + Z)p ] = 9
for some constant K > 0. Therefore, we have
B? e L1(0,00), forany6 >1/p. (27)

3. Observe that assumption (H2)-2 ensures that hypothesis (17) is satisfied. Indeed, for

x € D(VA)

¥ (IVAx) IV Ax |2

N =

1 1
|F(x)| </|(VF(zx),x>|dz< ||ﬂx||2/w(z||ﬂx||)zdt<
0 0

Proof of Theorem 3.7. Let ug € D(~/A) and u; € X be fixed so as to satisfy ||v/Auol| + |[u1] <
po and let u be the mild solution of (12). Then, owing to Theorem 3.3, the solution is global.
Moreover, we shall suppose, first, that u is a strong solution, which is indeed the case if
up € D(A) and u; € D(+/A). Such an extra assumption will be removed later by a standard
approximation argument.

To prove (26), we rewrite the left-hand side of (26) using the definition (15) of the energy.
Having fixed 0 < § < 7', we obtain

r 1
f EP (t)E,(t)dt
3

t T

T
L[ >
:E/Eu”(m( /ﬁ(s)ds)lw u(o)|*di + 5 fELf(f)\lu/(t)Hde
S

S
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T T

_/Ef(z)F(u(z))dt+%/Ef(;)fﬁ(t—s)uﬂu(s)—ﬂu(t)\|2dsdt. (28)
0

S S

We will now use multipliers techniques to bound all the right-hand side terms of (28).

Lemma 1. If ¢ : [0, 00) — [0, 00) is a function with negative derivative, then we have for any
So > 0and forany T > S > Sy

T t T
1 1
Efq&(t)(l—fﬁ(s)ds) H\/Zu(t)szt—FEfqﬁ(t)Hu’(t)szt
S 0 S

T
—/¢(t)F(u(t))dt<C¢(0)EM(S) (29)
S

for some constant C > 0.

To prove the above inequality, we need the following three lemmas.

Lemma 2. Forany T > S > 0 we have

T t T
f¢(z)<1 —f,B(s)ds) H«/Zu(t)”zdz<cf¢(t)}\u’(t)|\2dz+C¢(0)EM(S) (30)
N 0 S

for some constant C > .
Proof of Lemma 2. We split the reasoning into four steps.

2.1: Let us take the inner product of both sides of Eq. (6) with ¢ (#)u and integrate over [S, T'].
We obtain

T T
/¢(t)<u”(t) + Au(t) — B x Au(t), u(t))dt =/¢(r)<VF(u(t)), u(®))dt (1)
S S

whence, integrating by parts,

T T T
—qu(t)”u’(r)uzdz—qu’(t)(u’(r),u(r))dz+f¢(t)|\«/Zu(r)|}2dz
S S S

T
— /qb(t)(ﬁ sV Au@), VAu@®)dt + [p ' (1), u®)] g
S
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T
_ / 6OV F (). u(0))dr. (32)
S

Therefore,

T t
/¢(r)<1 —/,B(S)ds) |V Au) | dr
S 0

T T t
:/gb(t)Hu/(t)szt+/¢(r)</,3(t—s)(\/Zu(s)—x/Zu(t))ds,«/Zu(t)>dt
N N 0

T T
+/qﬁ’(t)(u/(t),u(t))dt+/¢(t)(VF(u(t)),u(t))dt— [¢(r)(u/(z),u(t))]§. (33)
S S

2.2: In order to bound the term

T t
f¢>(r) <fﬁ(r—s)(ﬂu(s) —ﬂu(r))ds,ﬂu(z)> dt
S 0
we observe that, for any ¢ > 0,
T t
f¢(r)|}ﬂu(r)|| /ﬁ(r—s)H«/Zu(s) —Au(1)| ds dt
S 0
T
< %f¢(r)|}ﬂu(¢)\|zdt
S
| T t 2
—|-£/¢(t)</,B(I—S)Hx/Zu(s)—x/Zu(t)H ds) dt. (34)
S 0

1
Recalling (27) and B/(r) < —kB' 7 (1), we get

T t

2
f¢(t)(/,B(I—S)H\/Zu(s)—«/gu(t)ﬂ ds) dt

S 0

T t t
< /qb(z)(/ ﬂl‘%m)ds) (/ﬁ”%a — )| VAuls) — VAur) szs) dt
S 0 0
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00 T t
</ﬂl_%(s)dsfw)/ﬂ”%(t—s)|\ﬂu(s)—ﬂu(t)\|2dsdt
0 S 0

1
k
0

So, thanks also to formula (16) for E/, (¢),

T t 2
fqb(t)(/ﬁ(t—s)\lﬂu(s)—\/Zu(z)H ds) dt
S 0

<2 [#r0as [s0E0ars %/ﬁl‘ﬂs)dwb(ow (s).
0 s 0

Therefore, (34) and (35) yield

<fﬁ(t—s)(«/zu(s) —«/Zu(r))ds,ﬂu(t)> di

T i
f¢(t)
S 0

T 00
1
< %/¢(r)\|ﬂu(r)}|2dt —k/ 5 (s) ds $(0) E, (S).
S 0

First, we note that from (20) it follows

1 2 2
SV A | < 1_f0°°,s(s)dsE“(‘)’

and hence, using also (7), we get

1 2_ 1 2 2
1 <— VA < Eu(®).

Applying the above inequality we have

1 1
' @, u) < 5w+ —\|u<r>H2

<o)’ +o

S5 E, (1)

fo B(s)ds)

L (D).
( M(1— [ ﬂ()d)> ()

T t
fﬁl—%(s)dsqu(t)/ﬁ’(r—s)H«/Zu(s)—«/Zu(r)nzdsdt.
S 0

1355

(35)

(36)

(37)

(38)

(39)
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Therefore,

T
f & Ol (1), u(t))dt < — / & Ol ). u ()| ds
S

T
<—(1+ / 1)E,(t)dt
( M- [5° ﬂ(S)dS)>S¢() 2

< _<1 4 2 ) / ¢ (1) diE,(S)
S

M(1— [5° B(s)ds)

2
<1+ = 0)Eu(S). 40
( M-, ﬁ(s)ds))¢() (S) (40)

Now, using assumption (25) we obtain

T
/d)(t)(VF(u(t)),u(t))dt </d)(t)lﬂ(”x/Zu(t)H)H\/Zu(t)szt.
S

Now, recalling Remark 3.8-3 we can invoke Theorem 3.3 to obtain (21). Therefore,

t
1
qu(r) (VF(u@®),u))d Z/qﬁ(t)( /ﬁ(s)ds) |VAu@)|*dr. @)
0

Next, again by (39) and since ¢ (¢) and E(¢) are decreasing, we have

oM ®), u(t))] ¢ (0)EL(S). (42)

21+ <)
M(1— [ ) ds)

2.4: Using estimates (36), (40), (41) and (42) to bound the terms in the right-hand side of (33),
we conclude that, for any € > 0,

T t
/¢(z)<1 —/,B(S)ds) |V Au@)| dr
S 0

T T
1 _1
<f¢<r>|}u/<r>\|2dt+%/w)uﬂu(r)\lzdwg BT (5)ds p(O)Eu(S)
S S

0

+3(1—|— )qb(())Eu(S)

M(1— [° B(s)ds)
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T t
1 2
+7 / o(t) (1 — / B(s) ds) |V Au@)||” dr.
S 0

Then, choosing ¢ =1 — fooo B(s)ds > 0, we achieve that

T t
/«/)(r)(l —/ﬁ(s)ds> |V Au )| dr
S 0

T / 2 1 r -1
<4f¢(t)Hu(t)H dr+4<§/ﬁ p(s)ds +3+
S 0

6
0)EL(S),
M(l_foooﬁ(s)ds))qs() (5)

and so it follows (30). This completes the proof of Lemma 2. 0O

Lemma 3. The following identity holds true forany T > S > 0:

T t
/qs(t)(fﬂ(s)ds) |/ @) dr
S 0
t
= —[¢(t)<u’(r), f Bt —5)(uls) — u<t>)ds>}
0

¢/(t)<u/(t), /ﬁ(t —5)(u(s) — u(t))ds>dt
0

T

S

_|_

UJ\’\]

+

O t~—

t
¢(t)<u/(t), /ﬁ/(z —5)(u(s) — u(t))ds>dt
0

T t t
+/¢(r)(fﬁ(s)ds—1><¢Zu(t),/ﬁ(t—s)(ﬂu(s)—ﬂu(z))ds>dz
S 0 0

T
+/¢(l‘)
S

T t
+/¢>(t)<VF(u(t)),/,8(t—s)(u(s)—u(t))ds>a’t. (43)
S 0

2
dt

t
/ﬂ(t — $)(vVAu(s) — VAu(t)) ds
0
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Proof of Lemma 3. Multiplying both sides of Eq. (6) by ¢ () f(; B(t —s)(u(s) —u(t))ds and
integrating over [S, T'] gives

T t
/¢(r)<u”(z)+Au(t) — B+ Au(t) —VF(u(t)),/ﬁ(r—s)(u(s) —u(t))ds>dt:(). (44)
S 0

Integrating by parts, we obtain

T t
f¢(t)<u”(t),/ﬁ(t —5)(u(s) —u(0)) ds>dt
S 0

T

t
= [¢(t)<u’(t),/ﬂ(t —5)(u(s) —u(t))dSﬂ
0 S

T t
—/¢/(f)<u/(f),/ﬁ(f—S)(M(S)—u(t))ds>dt
S 0

t

T t T
_/¢(t)<u/(t),/ﬁ/(t—s)(u(s)—u(t))ds>dt—|—/¢(l)(/,8(s)ds) Hb/(t)”zdt.
S 0 S 0

Moreover, we have

T t
/¢(t)<Au(t) - B *Au(t),/,B(t —5)(u(s) — u(t))ds>dt
S 0
T t
:f¢(t)<\/2u(t),f,3(t—s)(\/Zu(s)—\/Zu(t)) a’s>dt
S 0
T 1 t
—/¢(r)</ﬁ(r—s)ﬂu(s)ds,/ﬁ(t—s)(ﬂu(s)—ﬂu(r))ds>dr
S 0 0

T t t
=/¢(r)(1 —/ﬁ(s)ds)<ﬂu(t),/ﬁ(r—s)(ﬂu(s)—ﬂu(t))ds>dt
S 0 0

T
—/¢(t)
S

Therefore, plugging the above two identities into (44) we get (43). O

2
dt.

/;‘5(1 — ) (v Au(s) — VAu(t)) ds
0
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Lemma 4. For any Sy > 0, forany T > S > So and for any € > 0 we have

T T
/ d) | @) dr <e / o) |[VAu@) | dt + CHO)E,(S) (45)
S S

where C = C (S0, €) is a positive constant.

Proof of Lemma 4. We split the proof into two steps: first, we evaluate all the terms in the
right-hand side of Eq. (43), then we obtain the conclusion.

4.1: We note that

<u/(t), /,B(t —5)(u(s) — u(t))ds>
0

I, , 1 , 2
< W]+ 5<fﬂ(r—s)\|u(s) —u(@)| ds)
0
. ?
<E, )+ m(/ﬁ(t —5) [V Au(s) — VAu(@)| ds)
0

t t
<Eu(t)—i—ﬁfﬂ(s)dsfﬂ(t—s)”ﬂu(s)—\/Zu(t)szs
0 0

< (1 + ﬁ)Eu(z‘). (46)

So,

t T
1
—[¢(t)<u’(t),/ﬂ(t—S)(M(S)—u(t))dSH <2(1 +M)¢(O)EM(S)- (47)
0

S

Now, to estimate the second term in the right-hand side of Eq. (43), we use again (46) to get
T f
/ ¢/(t)<u/(t), [ B -9 - u(r))ds>dr
S 0

T
1 / 1
< —(1 + M) /¢ (OE, ) dr < (1 + M)qﬁ(O)Eu(S)- (48)
S

In addition, for any § > O we have
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T t
f ¢<t)<u/<r>, / Bt —5)(uls) — u(t))ds>dt
S 0
T T t 2
8 2 1 ,
<§/¢(I)HM @ | dt-i-%fqﬁ(t)(/\ﬁ (t —9)|[|uts) —u@| ds) dt.
S S 0

Since B'(t) < 0 and thanks to (16), we have
t 2
(/ 1B/ (t — 9)|[|us) —u@]| ds)
0
t t
—fﬂ’(s)dsf|ﬁ’(r—s)\|\u(s)—u(t)”zds
0 0
t
—ﬂ(O)/ﬁ’(t —5)|uts) —u@)|*ds

<—&fﬁ(t—s)‘|\/_u(s) VAu®)| ds

2p(0)

ST B
Therefore,

T t

/¢(t)<u/(t),/ﬁ/(t —5)(u(s) — u(0)) ds>dt

S 0
5 T

<3 / o)’ 0|2 dr + @MDE (S). (49)
S

Now, since B(t) > 0 and fooo B(s)ds < 1, (36) yields

T 1 t
/¢(t)</ﬂ(s)ds — 1)<ﬂu(t>,/ﬁ(¢—s)(ﬂu(s) —«/Zu(z))ds>dz
S 0 0

T
</¢(1)
S

<«/Zu(z),/,3(z — 5)(VAu(s) —ﬂu(:))ds> dt
0
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T 1 o0
& 2 -1
<§/¢(Z)H\/ZM(I)H dt+§/ﬁ 7 (s)ds ¢(0)E,(S). (50)
S 0

We have already bounded the fifth term in the right-hand side of (43), see (35). So, we
proceed to estimate the rightmost term in (43). To this end, we need to prove that

|VF(u®)| < C|VAu@)| vt =o0. (51)

To derive (51) we can apply Theorem 3.3 thanks to Remark 3.8-3: by (20) and (19) it follows
that, for any > 0,

”«/Zu(t)” < 1/2(t) < ]/2(0) < 2p0 .
(1—f0 B(s)ds)!/? (1—f0 B(s)ds)'/2 = (1 — [;° B(s)ds)!/?

Therefore, assumption (H1)-3(c), the fact that VF(0) = O and the above inequality
yield (51).
Now, by (51), (34) and (35) we conclude that, for every ¢ > 0,

T t
f¢(t)<VF(u(t)),/ﬂ(t—s)(u(s)—u(t))ds>dt
S 0

T t
< \/%!qb(t)”«/Zu(t)”O/ﬁ(t—s)H«/Zu(s)—«/Zu(t)” ds dt

T
g C? _1
< 5/¢<f>\|ﬂu<t>\|2dt + M/ﬂl 7 (5)ds  (0)Eu(S). (52)
S 0

4.2: Combining formulas (47)—(50), (35) and (52) with (43), we obtain

T t 5 / ,
/¢(t)(/ﬁ(s)ds— 5) |u' )| a
S 0

T
1
< equ(r) |V Au) | dr + @qs(ow (S) + 3( + m)¢(O)EM<S)
S

o0

+%( +2 +—>/ 13 (5)ds p (0)E, (S). (53)

0
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Since B is continuous and 8(0) > 0, for any Sp > 0 we have

0
/5(s)ds>fﬁ(s)ds>o, VS > So.
0 0

Now, if we choose § > 0 so small that

0
d < /,B(S)ds,

then, by (53), forany 7 > § > Sp we have
So T
1 / 2
5 [ Blds o (0)||u’(0)||" dt
0 S

T
8/¢(I)H\/Zu(t)‘|2dt+ @qﬁ(O)E (S)—|—3(1+ ﬁ)(ﬁ(O)Eu(S)
S

+;< +z+—)/ 5 (s)ds GOV Eu(S).
0

Thus (45) follows. 0O

Proof of Lemma 1. Plugging estimate (45) into (30), we obtain

T t T
/¢(t)(1 —/,B(s)ds) \|ﬂu(¢)\{2dt<ecf¢(t){|ﬂu(r)\|2dt+C¢>(0)Eu(5),
N 0 S

whence, for ¢ > 0 small enough,

T t
/ () <1 - / ﬁ(s)ds> [VAu@)|>dt < CHO)E,(S), (54)
S 0
or
f o) )2 dt < CHOEL(S) (55)

for some constant C > 0. Now, recalling Remark 3.8-3 and using (21), (54), we have
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/¢(t)F u(t))d f¢<r>w (IVAu@ )| VAu@|* dr

< if«b(r)(l - fﬁmdS) [VAuw| dr <o E(S). 56
S 0

So, combining (54)—(56) we obtain (29). O

Proof of Theorem 3.7 (continued). Case p = oo: taking ¢ (¢) =1 in (29), we obtain

T t T T

%/(1-[5@)@) H\/Zu(t)szt+%/Hu’(t)”zdt—/F(u(t))dtgCEu(S). (57)

S 0 S S

So, by (28) it remains to bound the last term of the energy. To this end, we use condition
B'(t) < —kB(t) as follows:

T t
%ff,sa_@”ﬂu(s)—ﬂumuzdsdr
S
1 T t
< ﬁ'/fﬁ/(t—s)”x/Zu(s)—x/Zu(t)szsdt
S
T
< — %/E (t)dt < IEM(S). (58)
S

The proof is completed combining (57) and (58) with (28) and taking the limit as 7 — oo.
Case p € (2, 00): we need some auxiliary lemmas to bound the last term of the energy.
Lemma 5. Define, for any m > 1,

Om (1) ::/ﬂl—%(r—s)}|ﬂu(s)—«/Zu(t)nzds, t>0. (59)

Then, we have forany T > S >0

T t
/Ef(t)/ﬂ(t—s)”ﬂu(s)—x/Zu(t)szsdt
S 0
T
ﬁ ( 1+m ) p+m
CE;™ (S) /Eu ") (t)dt (60)
S

for some constant C > Q.
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Proof of Lemma 5. First, applying Holder’s inequality with conjugate exponents given by pxm

and 21 we get

t
/ﬁ(t —5)|[VAu(s) — VAu@) | ds
0
t
= f B3 (1 — )| Au(s) = Au()| 757 875 (1 — )| Au(s) — ~/Au()| 77 ds

oL
“’”(x)(/ﬁ 5 (0 — 5) |V Auls) — VAu(0) | ds) :

Therefore,

T

/E (r)/ﬂ(t—s)ufu(s) VAu@)| ds di

S

T t P

p+m
fE Dol (r)(/ﬁ”%(t—s)nﬂu(s)—«/Zu(r)nzds) dt.
S 0

Applying again Holder’s inequality with conjugate exponents given by =—— , we have

T t
/Eu%(t)/ﬁ(t—s)|\ﬂu(s)—ﬂu(t)\|2dsdt
S 0
o o b e
< (/E;+7(t)<pm(t)dt) (ffﬁ”%(t—s)ﬂﬂu(s)—«/Zu(t)l}zdsdt>
S S 0

(61)

1
Using condition B'(r) < —k,BH? (1), we obtain

T

t
/Ef(t)fﬁ(r—s)uﬂu(s)—ﬂu(:)\|2dsdz
0

S
T

<— /E " () pm (1) dt —//ﬁ/(t—s)H«/Au(s)—«/Au(t)” dsdt
k p+m
S S 0
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T

e m PTW’ z P“‘Lm
<<%>< / “ﬂr)wm(r)dr) <— / E;u)dt)

S S

T

p _m
2\ 7w ppm I _p
< (z) ( / Ef”(rwm(t)dr) EI™(S).

S

The proof is thus complete. O

Lemma 6. Suppose that, for some m > 1, the function ¢, defined in (59) is bounded. Then, for
any So > 0 there is a positive constant C such that

o0

1+m m m
/Eu P () dt <C(EJ (0) + lomll&) Eu(S) VS > So. (62)
S

Proof of Lemma 6. Let us rewrite the left-hand side of (62) using the definition of the energy in
(15).Forall T > S > Sy, we have

T T t T

/E;+%(t)dt:%/El?(t)<l —/,B(S)ds) \|ﬂu(¢)\|2dr+%fEu%(z)Hu/(r)szt
S S 0 S
T m
—fEf(r)F(u(r))dz
S
T . t
—|-%/Ef(t)/ﬂ(t—s)”«/Zu(s)—\/Zu(t)szsdt.
S 0

m

Now, apply Lemma 1 with ¢ (¢) = E,/ (¢) to obtain

T t T
%fEf(t)(l —fﬁ(s)ds) Hﬂu(r)”zdt—i—%/E,f(t)”u’(t)”zdt
S 0 S
z m m
- f EJ () F (u(r))dt < CE[ (0)E,(S). (63)
S

Moreover, since ¢,, is bounded, by (60) and Young’s inequality we have that, for any ¢ > 0,

T

fE (t)/ﬁ(t—s)H«/_u(s) VAu@)| ds dr

S
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r 1+2 # m _p
c / EST@wdt) leml 2T EFT(S)
S

1+
se | Ey T @) dt +C@)]|@mllco Eu(S), (64)
N

for some constant C(g) > 0. Combining (63) and (64), we conclude that

T T

1+2 1+2 m m
/ p(t)dt<8/Eu () dt + C@)(EL 0) + gl &) Eu(S).

S S

Thus, for ¢ > 0 small enough,

T

14m m m
/ Ev 7 (t)dt < C(EL 0) + o1 2) Ea(S).

S

Taking the limit as 7 — oo, we get (62). O

Proof of Theorem 3.7 (continued). Case p € (2, 00): first, we claim that ¢, (defined in (59)) is
bounded. Indeed, thanks to Remark 3.8-2, we know that ,81/ 2 ¢ Ll(O, o0) since p > 2. Hence,
recalling (20),

02(1)] <C/,81/2(t—s)(E (s)+ Eu())d 2C/,31/2(s)dsE 0), Vit=>0.

Thus, ||¢2|lec < CE,(0) as claimed.
Next, thanks to Lemma 6 we have

r 1+2 2
/ P@ydt <CEF(O)E,(S) VS=>S). (65)
S

Hence, applying Lemma 2.2 to E,, witha =2/p, we get

So+C)2+ p)
2t + p(So + C)

E,(t) < Eu(O)< )7 vt > 0. (66)

Recalling (20) and the fact that p > 2, by (66) we obtain

t o0

lo1(1)| < C</Eu(s)ds —i—tEu(t)) < C(/ Ey(s)ds —l—sup(tEu(t))) < CEL(0), Vt=0,

=0
0 0 -
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whence [|¢1]lco < CE,(0). So, applying Lemma 6 with m = 1, we obtain the conclusion of the
theorem:

o0

144 1
/Eu Pt)dt <CEJ (0)E,(S) VS = So. O
S

4. Applications

We shall now give applications of our stability result to concrete models for various partial
differential operators. In this section, £2 will denote a bounded open domain in RN, N >3, with
sufficiently smooth boundary 0£2. The degree of smoothness of 92 will depend on the specific
example under consideration. Points in 2 will be denoted by the Greek letter £. Moreover, the
lower dimensional cases N = 1, 2 can be treated by the same method in an even easier way.

In the following examples, as for the convolution kernel 8, we shall assume that 8 : [0, co) —
[0, 00) is a locally absolutely continuous function satisfying (8), (9) and (24) as in Section 3.

Our first example concerns the semilinear wave equation with memory that was analyzed
in [5]. As we shall see, our abstract theorem subsumes the result of [5].

Example 4.1. Let us consider the semilinear problem

t
02u(t, €) — Au(t, &) +/ﬁ(r — $)Auls, &) ds = [u(t, )] u(t,£), 120, £eQ,
0

| u(t.6)=0. >0 £con, (67)

u(0,8) =uo(§), §&eL2,
o u(0,8) =u1(§), §ef2.

Here, u(t,£) is real-valued, and we have denoted by d;,u the time derivative of u and by Au
the Laplacian of u with respect to space variable &. Also, y > 0 satisfies a suitable restriction
to be specified later. We can rewrite (67) as an abstract problem of the type (12). Indeed, let
X = L%(£2) be endowed with the usual inner product and norm

X 1/2
x| :=(/|x(s>\ ds) . xeL*(Q).
2

We consider the operator A : D(A) C X — X defined by

D(A) = H*(2) N H (2),
Ax(E)=—Ax(E), xeD(A), €€ ae.

It is well known that A verifies Assumptions (H1)-1. Moreover, the fractional power +/A of A is
well defined and D(+v/A) = HO1 (£2). Next, consider the functional

1
Fo)i=— [ls@ e, xe @)
2
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which, if 0 < y <4/(N — 2), is well defined in view of Sobolev’s embedding theorem. Observe
that F is Gateaux differentiable at any x € H(} (£2) and the Gateaux derivative of F' is given by

DF(X)(y)=f}X(5)|VX(E)y($)dS, y € Hy(22).
2

Assume now the more restrictive condition

2
N-2

0<y< (68)

Then, 2(y + 1) <2* =2N /(N — 2). So, again by Sobolev’s theorem,

12
IDF()()| <f\x(s>|y“|y(s>\ds< (/h@{zw“ds) Iyl
22

2
CIVxI"Tyll, v e Hy ().

Therefore, F satisfies Assumptions (H1)-3(a) and (b). Consequently, for any x € H(} (£2), the
linear operator D F'(x) has a unique extension to L?(2) represented (up to Riesz isomorphism)

by
VF(x)E) = [x@)|"x&), xeH)(2), & €2 ae. (69)
Let us check that Assumption (H1)-3(c) holds. Since
llal”a —1b]"b| < (v + D(lal + b)) |a —b| Va,beR,

we have

f||x<s)\yx<5) — y@®)|" y(®)|* dt
2

<o+ 1>2/ (@] + [y& D @) - y@©)|* de
2

_L

<+ 1>2( [ (x©l+ !y(é)))”“%) ( JECE y@)!“”“ds)
2 2

Y
<C(/(|Vx<5){2+|Vy<5)\2)ds) /\Vx(s>—Vy<s>|2ds.
2 2

This yields (11). Finally, we observe that Assumption (H2)-2 is also satisfied with ¥/ (s) = Cs?,
where

(VF(x),x)=/\x(s)}”zdsgc(/|w(g)|2ds>2/\Vx(s)\zds, x e HL ().
2 2 2
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Therefore, by Theorem 3.3 we conclude that, if the initial conditions ugy € HO1 (£2) and
uj € Lz(.Q) are sufficiently small, that is,

f(|wo|2+|u1|2)ds <p

2

for some p > 0, then problem (67) admits a unique mild solution # on [0, o0). Moreover, as
recalled at the beginning of Section 3, u is a weak solution of the equation in (67), that is,

u € C'([0,00); L*(£2)) N C([0, 00); Hy (£2))
and, for all v € H, (£2) such that  — [, d;u(t, &)v(§) d& is of class C', we have

t
d
Efaru(t,é)v(é)dé+fVu(t,E)-Vv($)d$—/défﬂ(t—S)Vu(S,E)-Vv(E)dS
2 0

2 2

:/}u(r,gwu(r,g)v@)dg, vt > 0.

2

Defining the energy of u by

1 2 1 t 2
E.(t) ::Ef\atu(t,g)\ d§+§<1—f,3(s)ds)/}Vu(t,$)| d&
2 0 2

1
_ m/ i, &) de
2

t
+%fﬁ(z—s)(f\vu(s,s)—vu(r,s)fdg) ds,
0 2

we can invoke Theorems 3.5 and 3.6 to obtain the following decay estimates (that depend on the
value of p in assumption (24)): there is a constant C > 0 such that, for all > 0,

E,(0)exp(1 — Ct) if p=o0,
Eu() < EM(O)(—C;Si;é’))p if p e (2,00). (70)

Next, we shall study the asymptotic stability problem for the linear elasticity system with
memory. Such a problem was studied in [20] for exponential decay, and in [21] for polynomial
decay. As we show below, applying our abstract theorem we recover the decay results of both
papers—for more general initial conditions and less regular convolution kernels. It has to be
noted, however, that the kernel considered in [21] has a more general structure than the one of
our model.
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Example 4.2. Let us consider the linear anisotropic elasticity model

N
O2ui(r, &) — Z dj(aiju(&)ex (u(t, §)))
jok,I=1
! N
4 —I—f,B(t—s) > dj(aiju@en(u(s. §))ds =0, >0, e, i=1,....N,

o Jikd=1
u(t,£)=0, t>0, & o,

u(0,§) =vo(§), §e€$2,

atu(o’é)zvl(é)’ SEQ (71)

Here, u(t,&) = (u1(¢,§), ..., un(t,§)) and
1
ex(u(,8)) = 5(3ku1(t,5) + Qui (1, £)),
where we denote by diu; the spatial derivaiive of u; respect to the variable &.
The elasticity tensor (a;jk;), with a; i : 2 — Rand a;jx € LZ(.Q), is symmetric and coercive,

that is

ajjx1(§) = ajix(§) = ayij(§), forany & € 2, (72)

and there exists a constant & > 0 such that, for any symmetric matrix ( fz;), we have

N N
Z aiju ) fu fij > o Z fli, for any & € £2. (73)
i,j.k,I=1 i,j=1

We can rewrite (71) as an abstract problem of the type (12). Indeed, let X = L?(£2;RN) be
endowed with the usual inner product and norm

) 1/2
[Eq :=<f|x(é)\ ds) , xelL*(2;RY),
2

and let A: D(A) C X — X be the operator defined by

D(A) = H*(2; RY) n Hy ($2; RY),
N

ADiE) =— > 3i(au@en(x(®)). xeD(A), e ae.

jok,I=1

It is well known that A verifies Assumptions (H1)-1 and D(VA) = HO1 (£2; RN) (see, e.g., [15]).
Therefore, by Theorem 3.3 and Remark 3.4 we conclude that, for all initial conditions

(vo, V1) € HOI(Q; RN) X Lz(SZ; RN),
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problem (71) admits a unique mild solution u on [0, c0). Moreover, as explained in the above
example, u is a weak solution of the elasticity system in the sense of (14). Defining energy by

1 2
Eu(1) :=§f\8zu(t,é)| d§
/aijkz(f;‘)ekz(u(t,S))eij(u(t,é))dé‘

/az]kz(%‘)ekz u(s, &) —u(t,§))

i, j.ki1=1g
Xe,-j(u(s,é)—u(t,é'))dé)ds

we can invoke Theorems 3.5 and 3.6 to deduce that E,(¢) decays as in (70) for some constant
C>0.

Our last example consists of a Petrovsky system related to a plate model with nonlocal dissi-
pation (see also [23] and [9]).

Example 4.3. Let us consider the Petrovsky type system

afu(t,g)+A2u(z,g)—/ﬁ(z—s)A2u(s,s)ds=o, >0, £ €82,

0
| ut. &) = d,u(t.£)=0, >0, & c 0L, (74)

u(0,8) =uo(§), §&eL2,
o u(0,8) =u1(§), &€

Here, we denote by d,u the normal derivative of u.

We can rewrite (74) as an abstract problem of the type (12). Indeed, let X = L?(£2) be en-
dowed with the usual inner product and norm. We consider the operator A : D(A) C X — X
defined by

D(A) = H*(£2) N H{(£2),
Ax(§) = A’x(§), xeD(A), £€Rae.
It is well known that A verifies Assumptions (H1)-1 and D(\/Z) = Hg(.Q) (see, e.g., [10,

pp- 28-29]). Then, from Theorems 3.5 and 3.6 it follows that, for all ug € HOZ(.Q) and u| €
L%(2), E, (1) decays as in (70) for some constant C > O.
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Remark 4.4. The method described in Example 4.3 can be used to study the Petrovsky system
in (74) with the boundary condition

u(t,§)=A~Au(t,§)=0, >0, §€9d.
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