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Abstract

In this work some interesting relations between results on basic optimization and algorithms for nonconvex functions (such as
BFGS and secant methods) are pointed out. In particular, some innovative tools for improving our recent secant BFGS-type and
LQN algorithms are described in detail.
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1. Introduction

In nonconvex optimization there is a strong need to find out global convergence theorems for quasi-Newton methods.
On one hand, this work stresses the relationship between the classical one-dimensional secant algorithm and the recent
n-dimensional BFGS-type secant methods [5]. On the other hand, it is shown that a discrete weak convexity assumption
plays a fundamental role in the convergence of several methods. In Section 2 we first recall how the discrete character
of some classical procedures has an original link with elementary constructions of ancient geometry, giving a historical
interpretation of regula falsi method for a given function g(x). Then, a general convergence theorem is shown for
the classical one-dimensional secant method with weaker assumptions on g(x). Section 3 deals with BFGS-type n-
dimensional methods by proving a global convergence theorem for the secant case. Section 4 shows a representation
theorem for the descent direction of any minimization method. Finally, a general theorem ensuring the convergence to
the global minimum of functions with continuous second derivatives is illustrated in Section 5.

2. Gnomon, regula falsi, secant method

In order to solve an equation g(x) = 0, where g is a continuous function, one can use the regula falsi technique.
Given two approximations x0 and x1 of x∗, g(x∗)= 0, such that g(x0)g(x1) < 0, the next approximation x2 is defined
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Fig. 1. (a) Regula falsi via gnomon; (b) square gnomon.

by the formula

x2 = g(x1)x0 − g(x0)x1

g(x1)− g(x0)
,

i.e., x2 is the intersection with the real axis of the line through (x0, g(x0)) and (x1, g(x1)). The following geometrical
arguments, which use the gnomon theorem, give an interpretation of regula falsi applied to a linear equation ax−b=0,
a �= 0, where we obviously have x2= x∗ = b/a [13]. The approximations x0 and x1 of x∗ can be thought as the lengths
of two aligned segments AG and AE (see Fig. 1(a)). The (computable) quantities ax0 and ax1 can be then thought
as the values of the line ax in x0 and x1, i.e., the lengths of the segments GT and EQ, respectively. One has to find a
segment AD=x∗ such that the length of DO is equal to b. By the Gnomon Theorem (Euclid, I, 43) the areas of the
rectangles NO and KF are equal. So,

FC + RS

T S + FQ
= RK

T S + FQ
= x∗.

But, in the same time, if g(x)= ax − b, then

FC + RS

T S + FQ
= (b − ax0)x1 + (ax1 − b)x0

(b − ax0)+ (ax1 − b)
= g(x1)x0 − g(x0)x1

g(x1)− g(x0)
.

Thus, x
regula falsi
2 ≡ (g(x1)x0 − g(x0)x1)/(g(x1)− g(x0))= x∗.

The Gnomon Theorem, together with the constructions of Euclidean geometry based on gnomon additions or sub-
tractions like in Fig. 1(b), is the very basis of algebraic, iterative methods for solving systems of nonlinear equations.
Historically, the methods due to Viète, Newton, Raphson, as well as secant algorithm and regula falsi, depend on the
elementary increasing or reducing the area of a square (Fig. 1(b)) [13]. Problems (in modern terms: equations) of
various degrees have been solved by elementary versions of Newton or secant-type methods by the gnomon scheme in
old Babylonian, Chinese and Indian mathematics, in Greek and Arabian traditions [1,8,9,12,13], in Fibonacci’s Liber
Abaci, in Italian algebraic treatises of XVI century and, finally, in modern computer theory [13].

The regula falsi method converges by assuming convexity or concavity and has, in general, a linear rate of conver-
gence. An improvement of regula falsi is the well known secant method. Let us consider the secant iterative formula
when applied for computing the zeroes x∗ of g(x):

xk+1 = g(xk)xk−1 − g(xk−1)xk

g(xk)− g(xk−1)
, g(xk) �= g(xk−1). (1)

Observe that if g(x)= f ′(x) for a differentiable function f, then (1) can be rewritten as xk+1 = xk − f ′(xk)/ak where
ak is defined by the equation

ak(xk − xk−1)= f ′(xk)− f ′(xk−1). (2)

We will see the importance of the secant equation (2) in order to extend the application of the secant method to functions
of several variables.

In the following Theorem 1 we give a general convergence result for the secant 1-d method with no assumptions on
the derivatives of the function g(x) in x∗. An essential key in the proof of Theorem 1 is the following representation of
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the error xk+1−x∗, in terms of the first and second order divided differences of g. Note that this representation extends
to the nondifferentiable case the well known expression for the error involving g′ and g′′.

xk+1 − x∗ = (xk − x∗)− g(xk)

g[xk−1, xk] = (xk − x∗)− g[xk, x∗]
g[xk−1, xk] (xk − x∗)

= (xk − x∗)(xk−1 − x∗)
g[xk−1, xk, x∗]

g[xk−1, xk] .

Theorem 1 (Secant 1-d convergence). Assume g(x) ∈ C0(a, b): g(a)g(b) < 0, x∗: g(x∗)=0. Let g[�0, . . . , �j ] denote
Newton’s divided differences of order j. Let � be the positive root of the equation �2 = �+ 1, i.e., � � 1.618 . . . .

If ∃k∗ such that the settings

I x∗,� = {x : |x − x∗|��} where �=max{|xk∗ − x∗|, |xk∗+1 − x∗|},
M1 = supx,y∈Ix∗,� x,y �=x∗ |g[x, y, x∗]|<+∞,
m1 = infx,y∈Ix∗,� |g[x, y]|> 0,
dk = |xk − x∗|M1/m1

imply dk∗ < 1, dk∗+1 < d
�
k∗ ,

then the secant 1-d sequence (1) is s.t. |xk − x∗|< |xk∗ − x∗|, ∀k�k∗, and

lim
k→∞ xk = x∗.

Moreover, the order p of convergence is at least �.

Proof. Let us prove by a parallel inductive procedure that ∀i�0 s.t. xk∗+i �= x∗

dk∗+i �d
�i

k∗ , xk∗+i ∈ I x∗,�.

For i = 0, 1 thesis is verified. By hypothesis we have dk∗�d
�0

k∗ , dk∗+1 �d
�
k∗ and xk∗ ∈ I x∗,�, xk∗+1 ∈ I x∗,�. Assume

the thesis is true for i and prove it for i + 1. By definition and the inductive assumption

dk∗+i+1 = M1

m1
|xk∗+i+1 − x∗| = M1

m1
|xk∗+i − x∗||xk∗+i−1 − x∗| |g[xk∗+i−1, xk∗+i , x∗]|

|g[xk∗+i−1, xk∗+i]|

� M1

m1
|xk∗+i − x∗| M1

m1
|xk∗+i−1 − x∗| = dk∗+idk∗+i−1 < d

�i

k∗d
�i−1

k∗ = d
�i−1�2

k∗ = d
�i+1

k∗

being �2 = �+ 1. Then

|xk∗+i+1 − x∗| = dk∗+i+1
m1

M1
< d

�i+1

k∗
m1

M1
< dk∗

m1

M1
= |xk∗ − x∗|< �.

Thus, xk∗+i+1 ∈ I x∗,�, {xk} ∈ I x∗,�, ∀k�k∗, and

lim
k→∞ |xk − x∗| = lim

i→∞ |xk∗+i − x∗| = m1

M1
lim

i→∞ dk∗+i �
m1

M1
lim

i→∞ d
�i

k∗ = 0.

Let us prove now that the convergence order of the method is at least �. By the assumptions we have ∀k > k∗ (if xk �= x∗)

|xk+1 − x∗|� |xk − x∗||xk−1 − x∗| M1

m1
,

which proves that the order of convergence is superlinear ⇒ p > 1. Assume p = � + �, � real unknown, and set
yk = |xk+1 − x∗|/|xk − x∗|p. Then limk→∞ yk = l, 0 < l <+∞, and

yk � |xk − x∗|1−p|xk−1 − x∗| M1

m1
= y

1−p
k−1 |xk−1 − x∗|p(1−p)+1 M1

m1
.
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Since y
1−p
k−1 → l1−p, k→∞, it must be p(1− p)+ 1�0, i.e. (�+ �)(1− �− �)+ 1�0. From this inequality, being

�2 = �+ 1, one deduces that ��1− 2� or ��0. But ��1− 2�⇒ p�1− � < 0, which is absurd. Thus, ��0. �

Remarks. Convergence is guaranteed without convexity or concavity assumptions on g(x) and under no asymptotic
conditions on dk . The inequalities

dk∗ < 1, dk∗+1 < d
�
k∗ (3)

must be verified in fact in two consecutive iterations only. Secant method is therefore quite different from Newton’s
method, which requires the local convexity/concavity of the function g(x). From an operational point of view, (3) is
automatically satisfied in the majority of cases after a suitable initial number of iterations.

3. The n-dimensional case: BFGS-type methods

We are now interested in the minimization of a function f of n variables:

find x∗ such that f (x∗)= min
x∈Rn

f (x). (4)

Recall that a quasi-Newton minimization method solving (4) is said to be secant if it exploits a search direction of type
dk =−A−1

k gk , where gk is the gradient g = ∇f evaluated in xk , and Ak solves the secant equation:

Ak(xk − xk−1)= gk − gk−1. (5)

Observe that (5) is an obvious generalization of (2). However, here n > 1, thus Ak is not uniquely determined. In the
following we consider the BFGS-type algorithms, introduced in [5] and including the classical BFGS method as well
as the new LQN methods. The BFGS-type minimizing sequence {xk}+∞k=0 can be defined either by a secant (S) or by
a nonsecant (NS) iterative scheme, as follows:

x0 ∈ Rn, B̃0 = I, d0 =−g0. For k = 0, 1, . . .⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 = xk + �kdk,

Bk+1 = �(B̃k, sk, yk), sk = xk+1 − xk, yk = gk+1 − gk,

define B̃k+1 positive definite (pd)

set Ak+1 =
{

Bk+1 (pd since sT
k yk > 0) S,

B̃k+1, NS,

dk+1 =−A−1
k+1gk+1 ← descent direction,

where �k > 0 is chosen such that f (xk+1) < f (xk) and sT
k yk > 0, and � is the classical BFGS Hessian updating formula

�(B, s, y)= B + 1

yTs
yyT − 1

sTBs
BssTB. (6)

Let us recall two main BFGS-type properties:

• BFGS-types are well defined descent algorithms: In fact,f ∈ C1, bounded below and gT
k dk < 0⇒ theArmijo–Goldstein

(or Wolfe) set

AG= {� ∈ R+ : f (xk + �dk)− f (xk)��c1dT
k gk and

(g(xk + �dk)− gk)
T�dk �(1− c2)(−gT

k dk)},
0 < c1 < c2 < 1, is not empty. Thus �k ∈ AG ⇒ f (xk+1) < f (xk) and sT

k yk > 0, which, in turn, implies that
�(B̃k, sk, yk) is positive definite.



C. Di Fiore et al. / Journal of Computational and Applied Mathematics 210 (2007) 167–174 171

100 200 300 400
seconds

0.1

2

4

6

8

er
ro

r 
fu

nc
tio

n

0.1

2

4

6

8

er
ro

r 
fu

nc
tio

n

L-B 90
L-B 30
L-B 13
HQN

10 20 30 40 50
seconds

LkQN

HQN

Fig. 2. LQN (HQN, LkQN) compared with limited memory BFGS (L-B).

• S BFGS-types are secant algorithms for any choice of B̃k: i.e., for S BFGS-type, the matrix Ak+1 = �(B̃k, sk, yk)

used in the definition of the new direction dk+1 solves the secant equation (5) with k, k + 1 replacing k − 1, k,
respectively. Note that this is usually a necessary condition for superlinear convergence of quasi-Newton methods.
Moreover, observe that the secant equation also implies sT

k yk = sT
k Ak+1sk , i.e., for any secant algorithm with Ak+1

positive definite (pd), the condition sT
k yk > 0 must be verified.

BFGS-type methods have been introduced to solve efficiently minimization problems with a big number n of un-
knowns. In particular, if f is the error function of a neural network, then n can be extremely large (see [2]). So, for
these problems, classical BFGS methods [4,10], where B̃k = Bk , requiring O(n2) flops per step and O(n2) memory
allocations, cannot be efficiently implemented. A simple choice of B̃k with B̃k �= Bk which yields a reduction of
complexity to O(n) is B̃k = 	kI , 	k > 0. In the generalized Battiti–Shanno algorithms considered in [6] new choices
of 	k competitive with the best known are proposed.

A reduction of complexity to O(n log n), O(n) can be obtained by the more significant LQN and adaptive LQN

methods [5,2,6,7], where B̃k is chosen equal to the best fit to Bk in a matrix algebra L, i.e., B̃k =LBk
with

‖LBk
− Bk‖F = min

X∈L
‖X − Bk‖F, ‖ · ‖F = Frobenius norm.

If L = {UDU∗ : D = diagonal} where U is an n × n unitary matrix, then the complexity of LQN is given by
the cost of the transform Uz [5]. In particular, it is O(n log n) if U= Fourier, Hartley [5,2] and O(n) if U= product
of two Householder operators [7]. In adaptive LQN the algebra L is changed during the optimization procedure.
In Fig. 2, we see that S LQN , L=Hartley algebra (HQN), and adaptive S LQN (LkQN) outperform the limited
memory BFGS method (L-B) [10] in the learning process of a neural network associated to the ionosphere data set [2,7]
(n= 1408). We point out that L-B is a well known adaptation of classical BFGS to large scale problems [10], whose
complexity per step is O(mn) with m= the number of vector pairs (sj , yj ) utilized for the Hessian approximation (in
Fig. 2 m= 13, 30, 90).

NS BFGS-type methods have not such a good experimental behaviour, and in fact the secant equation (5) is not
verified when Ak+1 = B̃k+1. However, we remark that

• NS BFGS-type methods are globally convergent provided that det Bk � det B̃k , trBk � trB̃k , and

‖g(xk + �kdk)− gk‖2
(g(xk + �kdk)− gk)

T(�kdk)
= ‖yk‖2

sT
k yk

�M (8)

(see [5]). Note that the above conditions on B̃k allow to extend Powell’s proof for BFGS [11] to BFGS-type and are
satisfied for B̃k =LBk

. We also underline that assumption (8), on the current guesses xk and xk+1, is automatically
satisfied if f (x) is a convex function [11]. So, (8) can be seen as a sort of (discrete) weak convexity assumption.
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In order to obtain global convergence of secant BFGS-type methods, we may first apply to our case two known
results:

Lemma 1 (Nocedal and Wright [10]). Let f ∈ C1 be bounded below. Apply an S BFGS-type method with �k ∈ AG.
Assume, for each k,

‖gk+1 − gk‖�M‖xk+1 − xk‖. (9)

Then
∑

k (cos ̂−gk, dk)
2‖gk‖2 <+∞.

Corollary 1 (Nocedal and Wright [10]). If g is Lipschitz and cos ̂−gki
, dki

�c > 0, then gki
→ 0.

Observe that (8) implies the (discrete) Lipschitz condition (9). Thus we also have the following:

Theorem 2. (8) & cos ̂−gki
, dki

�c > 0⇒ gki
→ 0.

In other words, a weak convexity assumption together with a lower boundness of cos ̂−gki
, dki

guarantees a global
convergence behaviour of S BFGS-type methods.

4. A characterization of descent directions

Given any (secant or not secant) minimization iterative scheme

xk+1 = xk + �kdk, �k > 0, (10)

the search direction dk is required (at least for most iterations k) to be a descent direction in the current guess xk:

dT
k gk < 0. (11)

In [10] it is claimed that dk is often defined from gk =∇f (xk) itself and by a symmetric nonsingular matrix Ak via the
equation

Akdk =−gk . (12)

Now, in Theorem 3, we observe that

• any descent direction dk always solves Eq. (12) for some pd Ak .

We also show that if the angle between −gk and dk is uniformly less than 90◦, then the matrices Ak can be chosen
with bounded condition number.

Intuitively, a direction dk satisfying (11) implies a fast local convergence, provided that the family of Ak solving (12)
can approximate the Hessian of f. When xk is not in the neighbourhood of x∗, the latter requirement on Ak is no longer
necessary; the aim is, in fact, to obtain after a suitable small number of steps an approximation xk : f is convex in the set
{x : f (x)�f (xk)}. Again, intuitively, a direction dk satisfying (11) implies such a global convergence provided that
the family of Ak solving (12) has some properties analogous to the ones of �k ∈ AG. We underline that if �k ∈ AG,
the sequence {xk} has already a global convergence property.

Theorem 3. If dk is a descent direction in xk for a function f, i.e., dT
k gk < 0, then dk = −A−1

k gk for some positive

definite matrix Ak . Moreover, if cos ̂−gk, dk �c > 0, then Ak can be chosen such that cond (Ak)�Mc.

Proof. The first assertion is proved by choosing

Ak = �(	kI, dk,−gk), 	k > 0, (13)
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where � is defined in (6). For the second assertion choose the same Ak with 	k =‖gk‖/‖dk‖. In fact, the characteristic
polynomial of �(	kI, dk,−gk) is c(z)= (z − 	k)

n−2((z − 	k)
2 − c1(z − 	k)+ c2). Thus, the computation of c1 and

c2 yields the n eigenvalues of �(	kI, dk,−gk), i.e., 	k with multiplicity n− 2 and

z∓ = 	k + 1
2 [pk − 	k ∓

√
(pk − 	k)

2 − 4	k(qk − pk)],
where pk = ‖gk‖2/dT

k (−gk), qk = dT
k (−gk)/‖dk‖2. Moreover, we have z−�	k �z+, being qk − pk �0. So, the

condition number of Ak is cond(Ak)= ((pk + 	k)
2/(2	kqk))(1+

√
1− 4	kqk/(pk + 	k)

2)− 1. Thus, cond (Ak)�M

iff (pk + 	k)
2/(	kqk)�M̂ and hence when the following three inequalities hold:

1

cos ̂−gk, dk

�M1, 	k

‖dk‖
‖gk‖

1

cos ̂−gk, dk

�M2,
1

	k

‖gk‖
‖dk‖

1

cos ̂−gk, dk

�M3.

If cos ̂−gk, dk �c > 0, the latter inequalities are satisfied for 	k = ‖gk‖/‖dk‖. �

It is well known that if Ak is pd with condition number bounded by M, then cos ̂−gk,−A−1
k gk �1/M > 0 [10]. So,

we have the following:

Corollary 2. A sequence dk is such that cos ̂−gk, dk �c > 0 iff dk = −A−1
k gk for some sequence Ak of pd matrices

satisfying the inequality

‖Ak‖‖A−1
k ‖�M . (14)

The previous corollary suggests that a suitable choice of Ak , step by step, could give to the sequence {xk} a local
and/or global convergence property.

5. A global optimization theorem

Theorem 2 and Corollary 2 can have significant applications in global optimization. In particular, (14) allows to
derive an important result, which is an operational extension of a theorem proved in [6] (see Theorem 2). We point out
that condition (15) in the next Theorem 4 is trivially satisfied if f is convex, but is particularly meaningful for a general
class of nonconvex functions (see [6, Definition 1]).

Theorem 4. Given f ∈ C2, let fmin indicate the value of its global minimum. Assume that for the quasi-Newton
sequence d0 =−g0, xk+1 = xk + �kdk , dk+1 =−A−1

k+1gk+1 we have

∀�a ∈ R+, ∃�s ∈ R+ : ‖gk‖> �s apart from k : f (xk)− fmin < �a . (15)

Moreover, let conditions (8) and (14) be satisfied.
Then, ∀�a ∈ R+, ∃k∗∗ : ∀k > k∗∗:

f (xk)− fmin < �a .

Proof. By applying Corollary 2 and Theorem 2, we have that (8) & (14)⇒ gki
→ 0. But, by (15) this implies the

desired result. �

Operational applications: Consider problems in which the function f (x) has a finite number of local minima and the
value of its global minimum fmin can be estimated in advance. The latter hypotheses are often satisfied if f (x) is the
error function of a neural network and are in general assumed in the literature in many algorithms of probabilistic type
(such as Simulated Annealing or Multistart) or as necessary conditions for the convergence of deterministic methods
(f.i. TRUST [3]). Since the value fmin is known, in every local search one can perform a finite number of iterations
until the computed stationary point can be “recognized” as a local minimum or a global one so that the conditions (14)
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and (15) are locally satisfied for suitable M and �s , respectively. We underline that the estimation of the upper bound M
in (14) is not required in every local search and is not strictly related to the values gki

, dki
computed by the algorithm,

differently from the assumption (theoretically equivalent!) cos ̂−gki
, dki

�1/M > 0. Moreover, since the matrices Ak

can be chosen arbitrarily, several “tunneling” criteria [3] may be utilized in order to escape from a local minimum. The
choice of the most suitable structures for Ak is the object of our future research.
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