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It is a long standing open problem to find an explicit description of the stable set polytope
of claw-free graphs. Yet more than 20 years after the discovery of a polynomial algorithm
for the maximum stable set problem for claw-free graphs, there is even no conjecture at
hand today.

Such a conjecture exists for the class of quasi-line graphs. This class of graphs is a
proper superclass of line graphs and a proper subclass of claw-free graphs for which it
is known that not all facets have 0/1 normal vectors. The Ben Rebea conjecture states
that the stable set polytope of a quasi-line graph is completely described by clique-family
inequalities. Chudnovsky and Seymour recently provided a decomposition result for claw-
free graphs and proved that the Ben Rebea conjecture holds, if the quasi-line graph is not
a fuzzy circular interval graph.

In this paper, we give a proof of the Ben Rebea conjecture by showing that it also holds
for fuzzy circular interval graphs. Our result builds upon an algorithm of Bartholdi, Orlin
and Ratliff which is concerned with integer programs defined by circular ones matrices.

1. Introduction

A graph G is claw-free if no vertex has three pairwise nonadjacent neighbors.
Line graphs are claw free and thus the weighted stable set problem for a
claw-free graph is a generalization of the weighted matching problem of
a graph. While the general stable set problem is NP-complete, it can be
solved in polynomial time on a claw-free graph [22,31] even in the weighted
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case [24,25] see also [34]. These algorithms are extensions of Edmonds’ [11,
10] matching algorithms.

The stable set polytope STAB(G) is the convex hull of the character-
istic vectors of stable sets of the graph G. The polynomial equivalence of
separation and optimization for rational polyhedra [17,28,19] provides a
polynomial time algorithm for the separation problem for STAB(G), if G
is claw-free. However, this algorithm is based on the ellipsoid method [20]
and no explicit description of a set of inequalities is known that deter-
mines STAB(G) in this case. This apparent asymmetry between the al-
gorithmic and the polyhedral status of the stable set problem in claw-free
graphs gives rise to the challenging problem of providing a “...decent lin-
ear description of STAB(G)” [18], which is still open today. In spite of re-
sults characterizing the rank-facets [13] (facets with 0/1 normal vectors) of
claw-free graphs, or giving a compact lifted formulation for the subclass
of distance claw-free graphs [29], the structure of the general facets for
claw-free graphs is still not well understood and even no conjecture is at
hand.

The matching problem [10] is a well known example of a combinatorial
optimization problem in which the optimization problem on the one hand
and the facets on the other hand are well understood. This polytope can be
described by a system of inequalities in which the coefficients on the left-
hand-side are 0/1. This property of the matching polytope does not extend
to the polytope STAB(G) associated with a claw-free graph. In fact, Giles
and Trotter [15] show that for each positive integer a, there exists a claw-
free graph G such that STAB(G) has facets with a/(a+1) normal vectors.
Furthermore they show that there exist facets whose normal vectors have up
to 3 different coefficients (indeed up to 5 as it is shown in [21]). Perhaps this
is one of the reasons why providing a description of STAB(G) is not easy,
since 0/1 normal vectors can be interpreted as subsets of the set of nodes,
whereas such an interpretation is not immediate if the normal vectors are
not 0/1.

A graph is quasi-line, if the neighborhood of any vertex partitions into
two cliques. The complement of quasi-line graphs are called near-bipartite
and an interesting polyhedral characterization of near-bipartite graphs is
given in [23]; also a linear description of their stable set polytope has been
given in [35]. The class of quasi-line graphs is a proper superclass of line
graphs and a proper subclass of the class of claw-free graphs. Interestingly
also for this class of graphs there are facets with a/(a+1) normal vectors, for
any nonnegative integer a [15], but no facet whose normal vector has more
than 2 different coefficients is known for this class.
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Clique family inequalities and the Ben Rebea conjecture

We now describe the clique-family inequalities introduced in [27]. Our main
result is a proof of the Ben Rebea conjecture, which essentially says that
this proper generalization of the odd-set inequalities [10] which describe the
matching polytope, together with the nonnegativity and clique inequalities,
describe the stable set polytope of a quasi-line graph.

Let F={Ky,...,K,} be a set of cliques, 1 <p<n be integral and r=n
mod p. Let V,_1 € V(G) be the set of vertices covered by exactly (p—1)
cliques of F and V>, CV(G) the set of vertices covered by p or more cliques
of F. The inequality

n
L DY CRUEUD S ORI R
veEVp—1 vEV>, p
is valid [27] for STAB(G) and is called the clique family inequality associated
with F and p.

Clique family inequalities are a generalization of odd-set inequalities [10]
which are part of the description of the matching polytope. This can be seen
as follows. Suppose that the graph G=(V(G), E(G)) is the line graph of the
graph H=(V(H),E(H)) and let U CV(H) be an odd subset of the nodes
of H.

The odd-set inequality defined by U is the inequality

2) > a(e) < [U1/2]

ecE(U)

which is valid for all characteristic vectors y € {0,1}7() of matchings in H.
Here, E(U)C E(H) is the subset of edges of H which have both endpoints
in U.

This inequality is a clique-family inequality for the stable-set polytope
of G, via the following construction. Each vertex v €U yields a clique K, in
the line graph G of H consisting of the edges e € E(H), which are incident
to v. The family of cliques F will consist of those cliques. Furthermore we
let p=2. Since |U] is odd the remainder r is 1. Furthermore, the vertices of
G which are in V5, are exactly the edges of H which have both endpoints
in U C V(H). The clique family inequality corresponding to F and p is
therefore the odd-set inequality

) Y e < [Ulf2).
veE(U)

Ben Rebea [30] considered the problem to study STAB(G) for quasi-line
graphs. Oriolo [27] formulated a conjecture inspired by his work.
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Conjecture (Ben Rebea conjecture [27]). The stable set polytope of
a quasi-line graph G=(V, E) may be described by the following inequalities:

(i) z(v)>0 for each veV

(i) > exz(v)<1 for each maximal clique K

(iii) inequalities (1) for each family F of maximal cliques and each integer
p with |F|>2p>4 and |F| mod p#0.

In this paper we prove that Ben Rebea Conjecture holds true. This is
done by establishing the conjecture for fuzzy circular interval graphs, a class
introduced by Chudnovsky and Seymour [6]. This settles the result, since
Chudnovsky and Seymour showed that the conjecture holds if G is quasi-
line and not a fuzzy circular interval graph. Interestingly, since all the facets
are rank for this latter class of graphs, the quasi-line graphs that “pro-
duce” non-rank facets are the fuzzy circular interval graphs. We recall that
a rank inequality is an inequality whose normal vector has only 0/1 coeffi-
cients.

We first show that we can focus our attention on circular interval
graphs [6], a subclass of fuzzy circular interval graphs. The weighted stable
set problem over a circular interval graph may be formulated as a packing
problem max{cxz | Az < b,z € Z%,}, where b =1 and A € {0,1}""*" is a
circular ones matriz, i.e., the columns of A can be permuted in such a way
that the ones in each row appear consecutively. Here the last and first entry
of a row are also considered to be consecutive. Integer programs of this sort
with general right-hand side b € Z™ have been studied by Bartholdi, Orlin
and Ratliff [3]. From this, we derive a separation algorithm which is based
on the computation of a cycle with negative length in a suitable directed
graph D, thereby extending a recent result of Gijswijt [14]. We then con-
centrate on packing problems with right-hand side b = a1, where « is an
integer. By studying the structure of the cycles of D with negative length,
we show that each facet of the convex hull of integer feasible solutions to a
packing problem of this sort has a normal vector with two consecutive co-
efficients. Instantiating this result with the case where a=1, we obtain our
main result.

Cutting planes

Before we proceed, we would like to stress some connections of this work to
cutting plane theory. An inequality cxz < |J] is a Gomory—Chuvdtal cutting
plane [16,7] of a polyhedron P CR"™, if c€ Z™ is an integral vector and cx <¢
is valid for P. The Chvdtal closure P¢ of P is the intersection of P with all
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its Gomory—Chvatal cutting planes. If P is rational, then P¢ is a rational
polyhedron [32]. The separation problem for P¢ is NP-hard [12]. A polytope
P has Chuvdtal-rank one, if its Chvatal closure is the integer hull P; of P, i.e.,
the convex hull of the integer vectors in P. Let QSTAB(G) be the fractional
stable set polytope of a graph G, i.e., the polytope defined by non-negativity
and clique inequalities, that is, respectively, —z, <0 for each vertex veV,
and ) i@, <1 for each (maximal) clique K in G. A famous example
of a polytope of Chvétal-rank one is the fractional matching polytope and
thus QSTAB(G), where G is a line graph. Giles and Trotter [15] showed that
the Chvatal rank of QSTAB(G) is at least two, if G is claw-free. Chvétal,
Cook and Hartman [8] showed that the Chvatal-rank of QSTAB(G) grows
logarithmically in the number of nodes, even if the stability number of G is
two and thus, even if G is claw-free. Oriolo [27] has shown that QSTAB(G)
has Chvatal rank at least two, if G is a quasi-line graph.

An inequality cax <0 is called a split cut [9] of P if there exists an integer
vector m € Z™ and an integer mp such that cz < § is valid for PN{x €
R | mx < mp} and for PN{x € R" | mx > my+ 1}. The split closure P*
of P is the intersection of P with all its split cuts and this is a rational
polyhedron if P itself is rational [9,2]. The separation problem for the split
closure is also NP-hard [4]. A polyhedron P C R™ has split-rank one, if
P? = Pr. Since a Gomory—Chvatal cutting plane is also a split cut one has
PsC Pe.

Both cutting plane calculi are simple procedures to derive valid inequali-
ties for the integer hull of a polyhedron. We show below that a clique family
inequality is a split cut for QSTAB(G) with n(v) =1 if v € V,_1UV5,,
7(v) =0 otherwise and my= | " |. Thus, while the fractional stable set poly-
tope of a quasi-line graph does not have Chvatal rank one, its split-rank is
indeed one.

In the remainder of this section, we present the split-cut derivation of
the clique-family inequality. Notice that the inequality

(4) (p=1) Y a@)+p Y @) <n=pln/p|+r

veEVp_1 vEV>,

is valid for QSTAB(G), since it is the result of summing up the clique
inequalities corresponding to F and possibly applying the lower bounds
—x(v) <0 on vertices v € V>, which are contained in more than p cliques.
Now consider the disjunction

(5) Y. oz <|In/p] v > w(v)=[n/p]+1.

veEV,_1UV>, veEVp1UV>y
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Assume now the left inequality of the disjunction (5). Under this assumption
we can write

(p—r=1) Y z@+@-r) Y z@)<p-r) Y  z@

veVp—1 vEV>, veVp—1UV>,
< (p—=7)n/pl,

where the first inequality follows from the lower bounds on the variables.
Assume now the right inequality of the disjunction (5). Together with (4)
we can write

(p=r=1) Y z@)+@-r) Y z(v)

vEVp-1 veV>p

=(p-1) Y 2@ +p Y zw)-r D a)

veEVp_1 UEVZP UEVp_lUVZP

<(p—r)n/pl.

2. From quasi-line graphs to circular interval graphs

In this section we first review some results concerning the structure of quasi-
line graphs due to Chudnovsky and Seymour [6]. We then build upon these
results to reduce the proof of the Ben Rebea conjecture to the case where
the graph is a circular interval graph.

2.1. Circular Interval Graphs

A circular interval graph [6] G=(V, E) is defined by the following construc-
tion, see Figure 1: Take a circle C and a set of vertices V' on the circle. Take
a subset of intervals 7 of C and say that u,v €V are adjacent if v and v are
contained in one of the intervals.

Any interval used in the construction will correspond to a clique of G.
Denote the family of cliques stemming from intervals by Kz and the set of
all cliques in G by K (G). Without loss of generality, the (intervals) cliques of
Kz are such that none includes another. Moreover Kz C K(G) and each edge
of G is contained in a clique of Kz. Therefore, if we let A€ {0,1}"*" be the
clique vertex incidence matrix of 7 and V' one can formulate the (weighted)
stable set problem on a circular interval graph as a packing problem

maxz c(v)x(v), where Az <1 and z(v) € {0,1}, Yv €V,
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Figure 1. A circular interval graph

where the matrix A is a circular ones matrix (e.g. using clockwise ordering
of the vertices).

We point out that the property above may be used as a characterization
for circular interval graphs. In fact, it is easy to see that a graph G(V,E) is
a circular interval graph if and only if there exists an ordering of V and a
set ICz of cliques of G such that: (i) each edge of G is contained in a clique
of Kz; (i) the clique vertex incidence matrix of 7z and V' is a circular ones
matrix. Finally, circular interval graphs are also called proper circular arc
graphs, i.e., they are equivalent to the intersection graphs of arcs of a circle
with no containment between arcs [6].

2.2. Fuzzy Circular Interval Graphs

Chudnovsky and Seymour [6] also introduced a super-class of circular inter-
val graphs called fuzzy circular interval graphs. A graph G(V,E) is a fuzzy
circular interval if the following conditions hold.

(i) There is a map @ from V to a circle C.
(ii) There is a set of intervals Z of C, none including another, such that no
point of C is an endpoint of more than one interval so that:
(a) If two vertices u and v are adjacent, then @(u) and ®(v) belong to a
common interval.
(b) If two vertices u and v belong to a same interval, which is not an
interval with distinct endpoints @(u) and @(v), then they are adjacent.

In this case, we also say that the pair (?,7) gives a fuzzy representation
of G.

In other words, in a fuzzy circular interval graph, adjacencies are com-
pletely described by the pair (@,7), except for vertices u and v such that 7
contains an interval with endpoints @(u) and @(v). For these vertices adja-
cency is fuzzy. If [p,q| is an interval of Z such that ®~!(p) and &~1(q) are
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both non-empty, then we call the cliques (#~1(p),® (q)) a fuzzy pair. Here
@~ 1(p) denotes the clique {veV|®(v)=p}.

The left drawing of Figure 2 illustrates a section of a representation
of a fuzzy circular interval graph G. The cliques ¢~'(p) and ¢~'(r) are
fuzzy pairs, since p and 7 are the endpoints of an interval. The node sets
P Lp)ud~l(q) and &1 (q)UP I(r) are cliques. The edges with one end-
point in ®~!(p) and the other in ®~!(r) are “fuzzy”. The other interval
which starts a little left from ¢ and ends at s can be extended a little to
the right of s, since @~ !(q)U®~1(r)Ud1(s) is a clique of G. Therefore the
right drawing of Figure 2 shows another possible representation of the same
graph.

Figure 2. Two different representations of a fuzzy circular interval graph

In the following, when referring to a fuzzy circular interval graph, we
often consider a fuzzy representation (,7) and detail the fuzzy adjacencies
only when needed.

Let @ be a subset of V' and v a vertex not in (). We say that v is complete
to @ if v is adjacent to each vertex of @), while we say that v is anticomplete
to @ if v is not adjacent to any vertex of Q.

Two disjoint cliques K7 and K5 of size at least two are a homogeneous
pair of cliques [6] if each vertex v¢ K UK} is: either complete to K and Ko;
or anticomplete to K; and Ko; or complete to K; (K2) and anticomplete
to Ky (K1). Trivially, if [p,q] is an interval of Z such that #~1(p) and #~1(q)
are both of size at least two, then ®~!(p) and $~1(g) is a homogeneous pair.

We also say that a homogeneous pair of cliques (K1, Ks) is proper if every
vertex of K7 is neither complete nor anticomplete to Ko and every vertex of
K3 is neither complete nor anticomplete to K. A graph is Cy-free if it does
not have an induced subgraph isomorphic to a cordless cycle of length 4. For
X CV, we denote by G[X] the subgraph of G induced by X.

Lemma 1 ([5]). Let (K1,K3) be a homogeneous pair of cliques. If (K1, Ks)
is proper, then the subgraph G|K; U K5s| contains an induced Clj.

Proof. For a vertex u€ K let da(u) be its degree with respect to Ko, that
is do(u)=|{ve Ka:uve E}|. Let u; be a vertex of K; with maximum degree
with respect to K. Since (K1, K2) is proper, uj has a non-neighbor z3 in Kj.
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The same applies to 25 and Kj: 29 has a neighbor us € K;. Finally, there
must exist a vertex z; € Ky that is a neighbor of u; and a non-neighbor of
ug (otherwise da(ug)>da(u1)). It follows that {uy,us, 21,20} induce a Cy.

Lemma 2. Let G be a fuzzy circular interval graph with a fuzzy represen-
tation (®,7). If no fuzzy pair contains an induced Cy, then G is a circular
interval graph.

Proof. Let (¢7(p),® '(q)) be a fuzzy pair. This pair is homogenous but
not proper by Lemma 1. Since it is not proper, there exists a vertex in
&~ 1(p) (resp. ?1(q)) that is either complete to anticomplete to &~1(q)
(resp. &7 1(p)).

Suppose that v€®~1(p) is complete to #1(q). Then we can move ®(v)
by a small amount into the interior of the interval [p,q|. This yields a new
representation (@',7) of the graph G that does not introduce new fuzzy pairs
and reduces the number of vertices which are contained in a fuzzy pair by
one.

Similarly, if v € ®~!(p) is anticomplete from ¢~1(g), we can move ®(v)
such that it is outside [p,q]. This operation yields a new mapping ¢'. In
addition to that we must add an interval I covering v and its neighbors
in [p,q|. Since v is adjacent to every vertex which is mapped to the half-
open interval [p,q) and since vU®'~!([p,q)) is a clique, this interval I can
be chosen such that both of its endpoints are not contained in @'(V'). This
new representation (®',ZU{I}) does also not introduce new fuzzy pairs —
this is because each of the ends of the new interval is mapped to a single
vertex of the graph — and reduces the number of vertices which are contained
in a fuzzy pair by one.

We can iterate this process until there are no fuzzy pairs left.

2.3. Decomposition of quasi-line graphs

Let G be a graph and L(G) be its line graph. Notice that G can be build by
considering a disjoint union of stars (associated to every vertex in G) and
then identifying some of the edges. L(G) can thus be built by considering a
disjoint union of cliques and identifying some vertices. This construction has
been generalized by Chudnovsky and Seymour [6] through the operations
glue and composition.

A vertex v is simplicial if its neighbors form a clique. A strip (G,a,b)
is a graph G together with two designated simplicial vertices a and b. Let
(G,a,b) and (G',d’, V') be two vertex-disjoint strips. The glue of (G, a,b) and
(G',d,b') is the graph resulting from the union of G\ {a,b} and G'\ {d',V'}
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together with the adjunction of all possible edges between the neighbors of
a (b) in G and the neighbors of ¢’ (V') in G.

Let Gy be a disjoint union of cliques with an even vertex set V(Gy) =
{a1,b1,...,a,,b,}. Let (G},al,b}) be n strips that are vertex-disjoint, also
from Gg. For i=1,...,n, let G; be the graph obtained by gluing (G;_1,a;,b;)
with (G}, al,bl). G, is called the composition of the strips (G%,al,b}), with
the collection of disjoint cliques Gy.

We observed that a line graph can be built by considering a disjoint
union of cliques and identifying some vertices. Gluing a strip that is an
induced two-edge path, with a strip (S,a,b) results in the identification of a
and b. Therefore any line graph G can be expressed as the composition of
strips that are induced two-edge paths with Gy made of |V(G)| cliques. If
we now replace induced two-edge paths strips by fuzzy linear interval strips
(a superclass), we get a large class of quasi-line graphs. Chudnovsky and

Seymour proved in fact the following structural result.

Theorem 3 (Chudnovsky and Seymour [6]). A connected quasi-line
graph G is either a fuzzy circular interval graph, or it is the composition of
fuzzy linear interval strips with a collection of disjoint cliques.

Chudnovsky and Seymour were also able to give a complete characteriza-
tion of the stable set polytope of quasi-line graphs that are not fuzzy circular
interval graphs. Let F={Kj,Ka,...,Ko,11} be an odd set of cliques of G.
Let T CV be the set of vertices which are covered by at least two cliques
of F. Then the inequality » .,z (v)<n is a valid inequality for STAB(G)
and inequalities of this type are called Edmonds inequalities.

Theorem 4 (Chudnovsky and Seymour [6]). If G is the composition
of fuzzy linear interval strips with a collection of disjoint cliques, then all
non trivial facets of STAB(G) are Edmonds inequalities.

2.4. The reduction to circular interval graphs

Observe that Edmonds inequalities are special clique family inequalities as-
sociated with F and p=2. Therefore, we may give a positive answer to the
Ben Rebea Conjecture if we prove that it holds for fuzzy circular interval
graphs. We now show that it will be enough to prove the conjecture for
circular interval graphs.

Lemma 5. Let F' be a facet of STAB(G), where G is a fuzzy circular
interval graph. Then F is also a facet of STAB(G'), where G’ is a circular
interval graph and is obtained from G by removing some edges.
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Proof. Suppose that F' is induced by the valid inequality ax <3, where a
is a vector indexed by V(G). An edge e is F-critical, if ax <[5 is not valid
for STAB(G\e). If e is not F-critical, then F' is also a facet of STAB(G\e).

Let (®,1) be a fuzzy representation of G. For every fuzzy pair (K1, K3),
we remove all the edges connecting a vertex in K7 to a vertex in Ko that
are non-F-critical. We end up with a fuzzy circular interval graph G’ which
has the same fuzzy representation (@,1) as G.

We claim that no fuzzy pair of G’ contains a Cy and thus by Lemma 2,
G’ is a circular interval graph. Moreover since we remove only non F-critical
edges, F is still a facet of STAB(G').

Suppose the contrary that there exists a fuzzy pair (K7, K>) of G’ that
contains a Cy. Say V(Cy) = {uy,ug,vi,v2} with uy,us € Ky, vi,vy € Ko,
ujvy, ugvy € E(Cy). The edge ujvy is F-critical. Hence there exists a set S
containing u; and vy such that S violates axz </ and S is stable in G'\ujv;.
Since K7 and K5 form an homogeneous pair, u; and us are adjacent to the
same vertices in G\ Ky. This implies that (S\u1)U{us} is a stable set and
therefore satisfies the inequality. Therefore a(ug) <a(ui) (else (u1,v1) is not
F-critical). Applying the same argument to ugve leads to a(ui) < a(uz).
Which is a contradiction.

Remark. We would like to point out here that the following statement can
be proved in a similar way as the proof of Lemma 5: Let F be a facet of
STAB(G) where G is a general graph. There exists G’, obtained from G by
removing some edges, such that F' is also a facet of STAB(G’) and G’ does
not contain any pair of cliques which is proper and homogeneous.

Lemma 5 shows that each facet of a fuzzy circular interval graph is a
facet of a circular interval graph which is obtained via the deletion of some
edges. A clique family inequality of the thereby obtained circular interval
graph is a clique family inequality of the original fuzzy circular interval
graph. Therefore, we now only have to establish the Ben Rebea conjecture
for the class of circular interval graphs. Recall that the stable set polytope
of a circular interval graph is the integer hull of a polyhedron of the form
{xeR"| Az <1, >0}, where Ac{0,1}""*" is a circular ones matrix.

3. Slicing and separation

In this section we show that the separation problem for STAB(G) reduces
to a min-cost circulation problem if G is a circular interval graph. For this,
we present a membership algorithm of Gijswijt [14] and develop it further
to retrieve a separating hyperplane.
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Let P be a polytope P ={z € R"| Az <b,z >0}, where A € {0,1}"*"
is a circular ones matrix and b € Z™ an integral vector. We consider the
separation problem for the integer hull P; of P:

Given x* € R", determine, whether * € P; and, if not, determine an
inequality ¢z <§ which is valid for P; and satisfies cx™ > §.

Following Bartholdi, Orlin and Ratliff [3], we consider the unimodular trans-
formation =Ty, where T' is the unimodular matrix
1
-1 1
11
(6) T = -1

1
—-11

The problem then reads, separate y* =T~ 'z* from the integer hull Q; of
the polytope @ defined by the system

(4)re=0)

In the following we denote the inequality system (7) by By < d. Let us
rewrite the matrix B as B=(N|v), i.e., v is the n-th column of B. Observe
that, by construction, v is also the last column of :41.

Each row of the matrix N has at most one entry which is +1 and at
most one entry which is —1. All other entries are 0. The matrix N is thus
totally unimodular. Thus, whenever y(n) is set to an integer [ € Z, the
possible values for the variables y(1),...,y(n—1) define an integral polytope
Qp=QN{yeR"|y(n)=pF}. We call this polytope Q3 the slice of ) defined
by S.

Since T is unimodular, the corresponding slice of the original polyhedron
Pn{z e R" | > ", z(i) = B} is an integral polyhedron. From this it is
already easy to see that the split-rank of P is one. However, we present
a combinatorial separation procedure for the integer hull P; of P which
computes a split cut via the computation of a negative cycle.

If y*(n) is integral, then y* lies in Q; if and only if y* € Qy»(,,). Therefore
we assume in the following that y*(n) is not integral and let 5 be an integer
such that 8 < y*(n) < f+1 and let 1 > p > 0 be the real number with
y*(n) = B+ 1— p. Furthermore, let @ and Qg be the left slice Qg and
right slice (Qg41 respectively. A proof of the next lemma follows from basic
convexity.
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Lemma 6. The point y* lies in Q; if and only if there exist yr, € @, and
Yyr € QR such that

v =pyr+ (1 —pyr.

In the following we denote by y € R"~! the vector of the first n—1 com-
ponents of y € R™. From the above discussion one has y* € @ if and only if
the following linear constraints have a feasible solution.

yrL +yr =y*
(8) Nyr < pdp,
Nyp < (1 — p)dg,

where d, =d— v and dg=d— (8+1)v.

Using Farkas’ Lemma [33], it follows that the system (8) is feasible, if
and only if Z?:_ll A@)y* (i) + pfrdr + (1—p) frdr is nonnegative, whenever
A, fr and fgr satisfy

A+ fLN =0
(9) A+ fRN =0
vafRZO-

Now A+ fr N =0 and \+frN =0 is equivalent to A=—fr N and fyN=frN.
Thus (8) defines a feasible system, if and only if the optimum value of the
following linear program is nonnegative:

min — fL N y* + pfrdr + (1 — p) frdr

(10)
fLN:fRNa fLafRZO-

Let w be the negative sum of the columns of N. Then (10) is the problem
of finding a minimum cost circulation, see, e.g. [34] in the directed graph
D= (U, A) defined by the edge-node incidence matrix

(11) M= (—]gv —ww)

with edge weights pu(—N y* +dr), (1 — p)(—N y* + dR).

Thus y* ¢ Qr if and only if there exists a negative cycle in D = (U, A).
The membership problem for ()7 thus reduces to the problem of detecting a
negative cycle in D, see [14].

A separating split cut for y* is an inequality which is valid for QQ; and
Qr but not valid for y*. The inequality fr Ny < frdy, is valid for @ and
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the inequality frNy < frdpr is valid for Qr. The corresponding disjunctive
inequality (see, e.g., [26]) is the inequality

fLNy + c(n)y(n) <4,
where c¢(n) = frdrp — frdr and 6 = (B+1)frdr, — BfrdR.

The polytopes @1, and Qg are defined by the systems

(n) =0 P
(13) Ny+vzm)§d M Ny oy <

(12)

respectively.

Let f1,0 be the number ¢(n)—frv. Then the inequality (12) can be derived
from the system defining @, with the weights (fr0, fr), i.e., the inequality
can be obtained as fr,0-y(n)+fr-(Ny+vy(n)) < fro-6+ frd. Notice that, if
y* can be separated from @), then f7, o must be positive. This is because y*
violates (12) and satisfies the constraints (13) on the left, where the equality
y(n) =/ in the first line is replaced with y(n)> 3. Let fro be the number
¢(n)— frv. Then the inequality (12) can be derived from the system defining
Qr with the weights (fro, fr). Notice that, if y* can be separated from Q7,
then fro must be negative.

A negative cycle in a graph with m edges and n nodes can be found in
time O(mn), see, e.g. [1]. Translated back to the original space and to the
polyhedron P this gives the following theorem.

Theorem 7. The separation problem for P; can be solved in time O(mn).
Moreover, if z* € P and x* ¢ Pr one can compute in O(mn) a split cut
cx < § which is valid for P; and separates x* from P; together with a
negative integer fg o, a positive integer fr, o and a vector fr,, fr, which is the
incidence vector of a simple negative cycle of the directed graph D= (U, A)
with edge-node incidence matrix and weights as in (11), such that cz<¢ is
derived from the systems

1z <pf —lz<—(B+1)
(14) Az <b and Ax <b
—x <0 —x <0,

with the weights fr,0, fr, and |frol, fr respectively.

The above theorem gives an explicit derivation of the separating hyper-
plane as a split cut of P. We have the following corollary.

Corollary 8. The integer hull Py is the split closure of P.
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4. The facets of P; for the case b=«-1

In this section we study the facets of Pr, where P={z€R"| Az <b, x >0},
where A is a circular ones matrix and b is an integer vector of the form
al, a € N. For this, we actually inspect how the facets of the transformed
polytope @ described in Section 3 are derived from the systems (13) and
apply this derivation to the original system. It will turn out that the facet
normal-vectors of Pr have only two integer coefficients, which are in addition
consecutive. Since the stable set polytope of a circular interval graph is
defined by such a system with « =1, we can later instantiate the results
of this section to this special case. We can assume that the rows of A are
inclusion-wise maximal, that is, for each row 7, there does not exists another
row j#14 such that a;, >ap, for each h=1,...,n.

Let F be a facet of Qr and let y* be in the relative interior of F'. This
facet F' is generated by the unique inequality (12), which corresponds to a
simple cycle of (10) of weight 0. Furthermore assume that F' is not induced
by an inequality y(n) <~y with y€Z. Since F is a facet of the convex hull of
integer points of two consecutive slices, we can assume that y*(n)=5+1/2
and thus that ©=1/2in (10). This allows us to rewrite the objective function
of problem (10) as follows:

(15) min(s* + ;v)fL + (s* - ;)fR,

where s* is the slack vector

(16) o — <a01) By = (a01> B <:4[) 2 > 0.

The point z* in (16) is * =Ty*. Notice that =* satisfies the system Az <a1.

Furthermore, we are interested in the facets of J; which are not repre-
sented by the system By <d. If F' is such a facet, then one can translate
y* away from @, without changing y*(n) = 4+ 1/2, such that y* ¢ Q;
and By* < d with the property that the facet we are considering is the
unique inequality (12), where fr, fr is a simple negative cycle in the graph
D=(U,A).

In the following we denote U ={1,...,n}, where node i corresponds to the
i-th column of the matrix M in (11). Notice that A partitions in two classes
of arcs Ay, and Agr. The arcs Ag are simply the reverse of the arcs Ay. Ap,
consists of two sets of arcs 87, and T, where 8y, is the set of arcs associated
with inequalities Ax < a1l and T; are the arcs stemming from the lower
bounds x > 0. Likewise Agr can be partitioned into Sg and Tg. In other
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NN

Figure 3. The incidence vector of a row of A consists of the nodes{i,i+1,...,i+p}
which are consecutive on the cycle in clockwise order. Its corresponding arc in Sy, is the
arc (i+p,i—1). The arc (I—1,1) in Ty, corresponds to the lower bound z(l) > 0.

words, if we look at the arc-node incidence matrix M in (11), the rows of
M appear in the order 8;,7r,8g,Tg.

In particular, let a denote a row vector of A. Since A is a circular ones
matrix one has axz <a=>}_,x(i+h) <« for some suitable i and p, where
computation is modulo n, so x, =xq, nt1 =21, etc. It is straightforward to
see that ax <« generates the arcs (i+p,i—1)€ 8y, and (i—1,i+p) €Sk of A,
see Figure 3. The weights of the two arcs coincide, if n ¢ {i,i+1,...,i+p}
and is exactly the slack a—) 7 _,2*(i+h) in this case. Otherwise, the weight
of the arc (i+p,i—1) is a—) 5 _ 2*(i4+h)+1/2 and the weight of the arc
(i—1i+p)is a—> b _ja*(i+h)—1/2.

On the other hand, a lower bound —z; <0 generates the two arcs (i—1,7) €
Tr, and (i,i—1) € Tgr. The weight of both arcs is equal to z*(7), if i #n. If
i=mn, the arc (n—1,n) € T, has weight *(n) —1/2 and (n,n—1) € T has
weight z*(n)+1/2.

Since the slacks are non-negative, the arcs whose cost is equal to the
corresponding slack minus ; are the only candidates to have a negative
cost. We call those light arcs. Consequently we call those arcs whose cost
is equal to the slack plus % heavy. Observe that the light arcs belong to

SRU{<TL— l,n)}.
Lemma 9. Let C be a simple negative cycle in D, then the following holds:

(a) C contains strictly more light arcs than heavy ones.

(b) An arc of € in 81, (1) cannot be immediately followed or preceded by
an arc in 8p (Tg).

(¢) The cycle € contains at least one arc of 8 or contains no arc of 8;, U8Rg.
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Proof. (a) follows from the fact that the slacks are nonnegative. (b) follows
from our assumption that the rows of the matrix A are maximal and that
C is simple.

To prove (c) suppose that the contrary holds. It follows that (n—1,n) is
in @, because it is the only light arc not in Sg. We must reach n—1 on the
cycle without using heavy arcs.

Each arc in 87, with starting node n is heavy. Thus (n—1,n) is followed
by (n,1) € Tr. Suppose that (n—1,n) is followed by a sequence of arcs in
T1, leading to i and let (i,7) ¢ T, be the arc which follows this sequence. It
follows from (b) that (i,j) ¢ Tr and thus that (i,7) € 8y. Since (4,7) cannot
be heavy, we have 1 < j <4 < n. This is a contradiction to the fact that
C is simple, since we have a sub-cycle contained in €, defined by (7,7) and

(J,7+1),...,(i—1,i).

Lemma 10. If there exists a simple cycle C of D with negative cost, then
there exists a simple cycle €' of D with negative cost that does not contain
any arc from 8y,.

Proof. Suppose that € contains an arc from the set 8;. We know from
Lemma 9 that the cycle C contains at least one arc of . Lemma 9 implies
that C has an arc in 8, followed by arcs in T;, or Tr but not both, followed
by an arc in 8. We first consider the case that the intermediate arcs are all
in (.TL.

A B C A B C

Figure 4. (a) depicts an arc (k,i—1) €8, followed by arcs in Tz, and the arc
(j—1,1) € Sgr. (b) depicts the situation where the intermediate arcs are in Tg.

This situation is depicted in Figure 4, (a). The arc in 8y, is (k,i—1). This
is followed by the arcs (i—1,17),...,(j—2,7—1) in Tz, and the arc (j—1,1) in Sg.
Let this be the path P;. We now show that we can replace this path with
the path Po=(k,k+1),...,(I—1,1) consisting of arcs in Tr,. We proceed as
follows. First we show that the weight of this path is at most the weight of the
original path, where we ignore the addition of £1/2 to the arc-weights. Let
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light(P) and heavy(P) be the number of light and heavy edges in a path P,
respectively. We then show that light(Py)—heavy(Py) =light(P;)—heavy(P;),
from which we can conclude the claim in this case.

Consider the set of indices A = {i,...,7—1}, B = {j,...,k} and C =
{k+1,....1} and the numbers A=3" _ z*(n), B=3)_ zz*(p) and C =
>_ucc®”(p). Ignoring the eventual addition of £1/2 to the edge weights, we
have that the weight of Py is C and that of P; is a—(A+B)+A+a—(B+C)
and suppose that this is less than C. Then B+ C' >« which is not possible,
since x* satisfies the constraints Ax < al. Thus, if none of the edges in Py
and Py is heavy or light, the weight of P5 is at most the weight of P;.

Suppose now that n € 4. Then P contains exactly one heavy edge (k,i—1)
and one light edge (n—1,n). The path Py contains no heavy or light edge.
Suppose that n € B, then P; contains exactly one heavy edge (k,i—1) and
one light edge (j —1,1). P2 does not contain a heavy or light edge. If n€C,
then Py contains exactly one light edge (j—1,1) and no heavy edge. Py also
contains exactly one light edge (n—1,n). This concludes the claim for the
case that an arc of 8, is followed by arcs of J7, and an arc of Sg.

The case where the intermediate arcs belong to Tg is depicted in Fig-
ure 4, (b). The assertion follows by a similar argument.

Combining Theorem 7 with the above lemma we obtain the following
theorem.

Theorem 11. Let P ={x € R" | Ax < al,z >0} be a polyhedron, where
Ae{0,1}™*™ is a circular ones matrix and a €N a positive integer. A facet
of Py is of the form

(17) a Zm(v) +(a—1) Zm(v) <ap,

veT v¢T
where T C{1,...,n} and a,f€N.

Proof. Theorem 7 implies that a facet which is not induced by Az <al, x>
0 or 1z <~ is a nonnegative integer combination of the system on the left
in (14) with nonnegative weights fr o, fr. Lemma 10 implies that f; can
be chosen such that the only nonzero (41) entries of f7 are corresponding
to lower bounds —z(v) <0. The theorem thus follows with a = fy and T
set to those variables, whose lower bound inequality does not appear in the
derivation.
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5. The solution of the Ben Rebea Conjecture

Let G be a circular interval graph and let Kz be the family of cliques
stemming from the intervals in the definition of G (see Section 2). Then
P ={x e R"| Az <1,z > 0} where the 0/1 matrix A, corresponding to
the cliques Kz, has the circular ones property. Theorem 11 implies that any
facet of STAB(G) is of the form

(18) ay a@)+(a-1)) z(v) <a-p,

veT vgT

where T'C{1,...,n} and a,3€N.

We now show that a facet F', which is not induced by an inequality of
Az <1,z >0 is induced by a clique family inequality associated with some
set of cliques F C Ky and some integer p. Recall from Theorem 7 that any
facet of this kind can be derived from the system

—lz < —(f+1)
(19) Az <1
—x <0,

with weights |frol, fr, where fro is a negative integer while fr is a 0-1
vector. A root of I is a stable set, whose characteristic vector belongs to F.
In particular, we have that the multiplier fr(v) associated with a lower
bound —z(v) <0 must be 0 if v belongs to a root of size G+ 1. If v does not
belong to a root of size § or to a root of size §+1, then the facet is induced
by x(v)>0. Thus if v¢ T, then v belongs to a root of size 5+ 1.

Let F={KeK;| fr(K)#0} and p=a+|fro|. The multiplier | fr | must
satisfy

fnol + {K € Floe K} =a—1, VgT;

—|frol + {K € Flve K} =a, YveT, visin aroot of size 5+ 1;

—|frol + {K € Flve K}| >a, YveT, visnot in a root of size 5+ 1;
—[frol(B+1) + |F| = ap.

Observe that |F|=(a+|frol)B+|fro| and therefore r=|F| mod p=|frol.
Moreover, any vertex not in 71" belongs to exactly p —1 cliques from F,
while each vertex in T belongs to at least p cliques from F. Therefore,
inequality (18) is the clique family inequality associated with F and p. In
particular since a>1 and |fro| > 1, it follows that p>2. We may therefore
state the following theorem.
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Theorem 12. Let G be a circular interval graph. Then any facet
of STAB(G), which is not induced by an inequality of the system Ax <1,
x>0, is a clique family inequality associated with some F and p such that
|F| mod p#0.

If we combine this result with Lemma 5, Theorem 4 and we recall that
Edmonds inequalities are also clique family 1nequahtles associated with |F|
odd and p=2, we obtain the following.

Theorem 13. Let G be a quasi-line graph. Any non-trivial facet of
STAB(G) is a clique family inequality associated with some F and p such
that |F| mod p#0.

The Ben Rebea conjecture is now almost settled. Inspecting it again,
we observe that apart from the statement that the stable set polytope is
described by nonnegativity, clique and clique family inequalities it contains
also conditions on F and p. We may assume that the cliques in the family F
are maximal [27]. What remains is the condition |F|>2p>4. This is settled
in the following, where we also show that clique family inequalities are facet
inducing only if V>, #0.

Lemma 14. A clique family inequality associated with F and p is facet
inducing only if Vs, #0.

Proof. If V>, =0, then the clique family inequality associated with F and
p reads:

(20) p-r-1 ¥ s <p-n|"].

veEVp_1 p

NB: r#0 since otherwise, the inequality reads (p—1)> ey, , #(v) <7
and is dominated by the sum of the clique inequalities in F, a contradic-
tion.

The vertices of V>, _1 are covered by p—1 cliques of F. Thus the inequality
v, x(v)< Lpflj is valid for STAB(G). We will prove that this inequality
dominates (20). It is trivial if p —r—1=0. Otherwise, we simply have to
prove that LpﬁlJ <, L |. This is true if and only if (p—7—1) LpﬁlJ <
(p—T)LZJ i.e., if and only if n—r —TLP”IJ <n—r-— erJ where ' =n
mod (p—1). Now clearly L "= L |. 1 Lpflj L”J, it is clear that ' >r
since L J # 0 and the result follows. If LPLJ L J + 1, the result holds

r’

ifr'>00rr—0and LpflJ LJ—i—l If :Oandt = LpJ+1
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inequality (20) and va_l z(v) < LPLJ coincide but since ' =0, the later
inequality is again dominated by the sum of the clique inequalities in F, a
contradiction.

Lemma 15. Let G be a quasi-line graph and (F,p) a pair such that

@) G-r-1) Y s to-r Y x(v)g@—r)[’ﬂj

veEVp_1 veV>, p

is a facet of STAB(G). If |F| < 2p, then the inequality (21) is a clique
inequality.

Proof. We know from the previous lemma that V>, # (. Since L'?J =1, if
Vp—1=0 or p—r=1, then the inequality (21) is a clique inequality, and we
are done. Therefore we may assume that V,,_; #0 and p—r > 1. Since the
inequality is facet inducing, then p—r=2 and it reads:

(22) o a)+2 ) z(v) <2.

’UGVp—l UGVZp

Trivially, the inequality is also facet-inducing for the induced subgraph
G' = G[Vp—1UV>p]. A full description of the stable set polytope of graphs
with stability number less than three, as G’, is given in [21]. There it is
shown that an inequality > . z(v)+2) px(v) <2, with A and B both
non-empty, is facet inducing only if B is a clique, A and B are complete
and there is an odd antihole in G[A]. But no vertex of a quasi-line graph
is complete to an odd antihole (from the definition of quasi-line graphs), so
there is a contradiction.

We may therefore state our main result:

Theorem 16. Ben Rebea’s conjecture is true.
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