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A traffic matrix D1 dominates a traffic matrix D2 if any capacity reservation supporting D1 supports D2 as well.
We prove that D1 dominates D2 if and only if D1, considered as a capacity reservation, supports D2. We show
several generalizations of this result.
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1. Introduction. A common class of network design problems asks for the installation of capacity
(bandwidth) in a directed or undirected network G(V,E) as to support a given set of pairwise traffic
demands - a traffic matrix - with some additional constraints (integrality, unsplittable flows, resilience
etc.).

A crucial assumption in this model is that of knowing the traffic demands in advance. Unfortunately,
measuring and predicting traffic demands are difficult problems. Moreover, in several applications, com-
munication patterns change over time, and therefore we are not given a single static traffic matrix, but
instead a set D of non-simultaneous traffic matrices. Several papers have therefore recently addressed
the issues of robustness in network optimization (e.g. Bertsimas and Sim [4]) and, in particular, several
authors considered robust network design models (see Chekuri et al. [5], Duffield et al. [6], Fingerhut
et al. [9], Gupta et al. [10], Italiano et al. [12], Oswald et al. [15]), that is, network design models
allowing some degree of flexibility in formulating traffic patterns. Mainly, they deal with the case where
D is implicitly given, often by a set of constraints defining a traffic polytope.

We emphasize that, when dealing with more traffic matrices, the routing might be dynamic, that is,
it varies as the traffic matrix changes, or static, that is, we keep the same routing template even if the
traffic matrix changes. Static routing, which has also has been referred to as oblivious (see Applegate
and Cohen [1] and Azar et al. [2]) or stable (see Ben Ameur and Kerivin [3]), might be convenient since
in many network applications “migrating” from a routing to another one is costly (see Ben Ameur and
Kerivin [3]). Interestingly, going for a static routing makes sometimes network design problems easier
(see Chekuri et al. [5]).

In this paper, we are interested in the case where D is explicitly given and, in particular, in the
“simple” case where D = {D1, D2}. For h = 1, 2, dh(ij) specifies, for each ordered pair of nodes i, j ∈ V ,
the value of the expected demand from i to j. We consider the following question: when is it possible to
discard D2 so that D reduces to D1 ? The answer to this question is related to a property of domination
between D1 and D2 . We say that a traffic matrix D1 dominates a traffic matrix D2 if any capacity
reservation U : E → R+ supporting D1 supports D2 as well. As we show later, this property may be
easily expressed in terms of containment between two suitable polyhedra.

Our main result is a good characterization for domination: D1 dominates D2 if and only if D1,
considered as a capacity reservation, supports D2 (Theorem 2.1). To the best of our knowledge this
surprisingly simple result has not been observed before. The theorem extends to the cases where demands
are to be routed by either unsplittable or integral flows.

We also consider the case where the routing has to be static. This requires some stronger definitions
of domination. In a first one, that we call strong domination, if a capacity reservation U supports D1,
then there must exist a common routing template for serving both D1 and D2. In a second one, that
we call total domination, if a capacity reservation U supports D1, then every routing template serving
D1 must serve D2 as well. Again, these properties may be easily expressed in terms of containment
between suitable polyhedra. Both properties have simple good characterizations; in particular D1 totally
dominates D2 if and only if d1(ij) ≥ d2(ij) for any demand d(ij) (Theorem 2.5).

We close by discussing the extension of domination to the case where |D| = 3.
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1.1 Preliminaries. Even if our results directly extend to the directed case, for sake of simplicity,
throughout the paper we suppose that we are given an undirected network G(V,E). G is simple and,
without loss of generality, complete, i.e. E = {ij : i, j ∈ V, i 6= j}. We let |V | = n.

A traffic matrix D is a n × n symmetric, non-negative, real matrix, where d(ij) is the amount of
demand that has to be routed between node i and j; we assume d(ii) = 0 for any i. Given its symmetry,
we will often regard D as a vector in RK

+ , where K = {ij : i, j ∈ V } is the set of demands.

A capacity reservation U ∈ RE
+ specifies the amount of capacity u(e) we install over each arc e ∈ E.

It will be often convenient to extend U on K by setting u(ii) = 0 for any i.

A routing F ∈ RK×E
+ specifies, for each demand ij ∈ K and arc e ∈ E , the fraction fij(e) of a unit

flow between i and j that is routed through e: if d(ij) demand needs to be routed, then it is routed by
simply scaling up the unit flow by d(ij).

A capacity reservation U and a routing F support a traffic matrix D if D may be routed over G
equipped with capacity U via F , that is, for each e ∈ E,

∑
ij∈K fij(e)d(ij) ≤ u(e). We simply say that

U supports D if there exists a routing F such that U and F support D. A nice characterization of this
latter property is a well-known result from the literature (Iri [11], Onaga and Kakusho [14]).

The metric polytope, a normalization of the metric cone, is defined as follows:

Pµ = {µ ∈ RK
+ : µ(ij) + µ(jk) ≥ µ(ik) ∀ i, j, k ∈ V ;∑

ij∈K

µ(ij) = 1; µ(ii) = 0 ∀ i ∈ V }

Theorem 1.1 Iri [11], Onaga and Kakusho [14] A capacity matrix U supports a traffic matrix D if and
only

∑
ij∈K

µ(ij)u(ij) ≥
∑

ij∈K

µ(ij)d(ij) for any µ ∈ Pµ.

We denote by D(U,F ) the set of traffic matrices that are supported by a capacity reservation U and
a routing F . That is, D(U,F ) = {D ∈ RK

+ :
∑

ij∈K fij(e)d(ij) ≤ u(e), e ∈ E}. We simply denote
by D(U) the set of traffic matrices that are supported by a capacity reservation U . By Theorem 1.1,
D(U) = {D ∈ RK

+ :
∑

ij∈K µ(ij)d(ij) ≤
∑

ij∈K µ(ij)u(ij), µ ∈ Pµ}. It is easy to see that D(U) is a
down-monotone polytope.

Analogously, UF(D) is the set of capacity reservations and routings supporting a traffic matrix D.
That is, UF(D) = {(U,F ) ∈ RE

+ × RK×E
+ : F is a routing and

∑
ij∈K fij(e)d(ij) ≤ u(e), e ∈ E} (the

constraint forcing F to define a routing are standard flow constraints). U(D) is the set of capacity
reservations supporting D and by Theorem 1.1, U(D) = {U :

∑
ij∈K µ(ij)d(ij) ≤

∑
ij∈K µ(ij)u(ij),

µ ∈ Pµ}. Moreover, U(D) is a projection of UF(D) and is an up-monotone polyhedron.

2. Domination. Let D1 and D2 be two traffic matrices. We say that D1 dominates D2 if U(D1) ⊆
U(D2). In other words, D1 dominates D2 if any capacity reservation supporting D1 supports also D2.
Trivially, D1 dominates D2 if d1(ij) ≥ d2(ij) for any demand ij ∈ K, but this condition is only sufficient.

Theorem 2.1 D1 dominates D2 if and only if D1, regarded as a capacity reservation, supports D2.

Proof. Necessity. Trivially, D1, regarded as a capacity reservation, supports the traffic matrix D1.
Hence D1 must support D2 too. Sufficiency. Suppose D1, regarded as a capacity reservation, supports
the traffic matrix D2. By Theorem 1.1:

∑
ij∈K

µ(ij)d1(ij) ≥
∑

ij∈K

µ(ij)d2(ij) for any µ ∈ Pµ (1)

Let U be any capacity reservation supporting D1. Again, by Theorem 1.1:
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∑
ij∈K

µ(ij)u(ij) ≥
∑

ij∈K

µ(ij)d1(ij) for any µ ∈ Pµ (2)

and therefore, combining (1) and (2):

∑
ij∈K

µ(ij)u(ij) ≥
∑

ij∈K

µ(ij)d2(ij) for any µ ∈ Pµ (3)

that is, U supports D2 too. �

The previous theorem implies that recognizing if a traffic matrix D1 dominates a traffic matrix D2 is
easy, since it is equivalent to solve a fractional multi-commodity problem. We also recall that recognizing if
a polyhedron contains another polyhedron is easy when both polyhedra are given by systems of inequalities
(see Eaves and Freund [7]), but, in our case, the size of the systems describing U(D1) and U(D2) is not
polynomially bounded in the size of the input.

2.1 Unsplittable flows. A routing F is unsplittable if it routes each demand d(ij) on a single path
from i to j. Mare precisely, a routing F is unsplittable if, for each demand ij ∈ K and each arc e ∈ E,
fij(e) ∈ {0, 1}.

We say that U supports D with unsplittable flows if there exists an unsplittable routing F such that
U and F support D. If D1 and D2 are two traffic matrices, we say that D1 dominates D2 with respect
to unsplittable flows if any capacity U supporting D1 with unsplittable flows also supports D2 with
unsplittable flows.

Theorem 2.2 D1 dominates D2 with respect to unsplittable flows if and only if D1, regarded as a capacity
reservation, supports D2 with unsplittable flows.

Proof. Necessity. Trivially, D1, regarded as a capacity reservation, supports the traffic matrix D1

with unsplittable flows. Hence D1 must support D2 with unsplittable flows too.

Sufficiency. Suppose D1, regarded as a capacity reservation, supports the traffic matrix D2 with
unsplittable flows. Then there exists an unsplittable routing F such that

∑
rs∈K frs(ij)d2(ij) ≤ d1(ij),

for each arc ij ∈ E. Also let U be any capacity supporting D1 with unsplittable flows; then there exists
an unsplittable routing Q such that

∑
ij∈K qij(g)d1(ij) ≤ u(g), for each arc g ∈ E.

We must show that there exists an unsplittable routing W such that U and W support D2. We define
W as follows:

wrs(g) =
∑

ij∈K

qij(g)frs(ij) for each demand rs ∈ K and each arc g

It is easy to see that W defines an unsplittable routing. Moreover, for any g ∈ E:

∑
rs∈K

d2(rs)wrs(g) =
∑

rs∈K

d2(rs)
∑

ij∈K

qij(g)frs(ij) =

=
∑

ij∈K

qij(g)
∑

rs∈K

frs(ij)d2(rs) ≤
∑

ij∈K

qij(g)d1(ij) ≤ u(g)

�

We point out that, since recognizing if a capacity reservation U supports a traffic matrix D with
unsplittable flows (see Kleinberg [13]) is NP-complete, the previous theorem does not give a good char-
acterization. On the contrary, it shows that recognizing when a traffic matrix D1 dominates a traffic
matrix D2 with respect to unsplittable flows is NP-complete.
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2.2 Integral flows. We say that a capacity reservation U supports a (integral) traffic demand D
with integral flows if there exists a routing F such that U and F support D and fij(e)d(ij) is integral
for each demand ij ∈ K and each arc e ∈ E.

If D1 and D2 are two traffic matrices, we say that D1 dominates D2 with respect to integral flows if
any capacity reservation U supporting D1 with integral flows also supports D2 with integral flows. The
proof of the following theorem is similar to that of Theorem 2.2, so we omit it.

Theorem 2.3 D1 dominates D2 with respect to integral flows if and only if D1, regarded as a capacity
reservation, supports D2 with integral flows.

Again, since recognizing if a capacity matrix U supports a traffic matrix D with integral flows is NP-
complete then such is the complexity of checking if a traffic matrix D1 dominates a traffic matrix D2

with respect to integral flows.

2.3 Strong domination. We have emphasized in Section 1 that, when dealing with more traffic
matrices, the routing might be either dynamic, i.e. it varies as the traffic matrix changes, or static, i.e.
we always keep the same routing. Our first definition of domination does not take into account routing,
allowing therefore for a dynamic one. We now discuss stronger properties of domination that allows to
deal with static routing.

Let D1 and D2 be two traffic matrices. We say that D1 strongly dominates D2 if U(D1) ⊆ (UF(D1)∩
UF(D2))|U , where |U denotes the projection over the U -space. In other words, for any capacity reservation
U supporting D1, there exists a same routing F such that U and F support both D1 and D2. Trivially,
if D1 strongly dominates D2, then D1 dominates D2.

Suppose now that D1 dominates D2. Therefore, from Theorem 2.1, there exists a routing F such that
D1 and F support D2. For h = 1, 2, let I(Dh) = {ij ∈ K : dh(ij) > 0}. We will prove that, if F is
such that each demand ij ∈ I(D1) ∩ I(D2) is directly routed on the link e ≡ ij, i.e. fij(ij) = 1 for any
ij ∈ I(D1) ∩ I(D2), then D1 strongly dominates D2. In fact, we will prove that the existence of such a
routing is also necessary for D1 to strongly dominate D2.

It is therefore convenient to define:

D
1

: d
1
(ij) =

{
d1(ij)− d2(ij) if ij ∈ I(D1) ∩ I(D2)
d1(ij) else

D
2

: d
2
(ij) =

{
0 if ij ∈ I(D1) ∩ I(D2)
d2(ij) else

Theorem 2.4 D1 strongly dominates D2 if and only if both the following statements hold:

(i) d1(ij) ≥ d2(ij) for any ij ∈ I(D1) ∩ I(D2);

(ii) D
1
, regarded as a capacity reservation, supports D

2
.

Proof. Necessity. As usual, D1, regarded as a capacity reservation, supports the traffic matrix D1.
Since D1 strongly dominates D2, it follows that there must exist a routing F such that D1, regarded as
a capacity reservation, and F support both D1 and D2.

Observe that the only routing F such that D1 and F support D1 is such that each demand ij ∈ I(D1)
is directly routed on the link e ≡ ij, i.e., for each ij ∈ I(D1):

F ij : f ij(e) =
{ 1 if e ≡ ij

0 else

Since I(D1) ∩ I(D2) ⊆ I(D1) and D1 and F must support D2, it follows that each demand ij ∈
I(D1) ∩ I(D2) is directly routed on the link e ≡ ij and therefore d1(ij) ≥ d2(ij). Moreover, the spare
capacity D

1
must support D

2
.
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Sufficiency. Let U ∈ U(D1) and let G be a routing such that U and G support D1. By hypothesis
there exists a routing F such that D

1
and F support D

2
.

In order, to prove our statement we have to show that there exists a routing W such that U and W
support both D1 and D2. We define W as follows:

W : wij(e) =


gij(e) if ij ∈ I(D1) and e ∈ E∑

uv∈K fij(uv)guv(e) if ij ∈ I(D2) \ I(D1) and e ∈ E
1 if ij 6∈ I(D1) ∪ I(D2) and e ≡ ij
0 if ij 6∈ I(D1) ∪ I(D2) and e 6≡ ij

It is easy to see that W defines a routing. Since wij = gij for any ij ∈ I(D1), it follows that U and
W support D1. Moreover, for any e ∈ E:∑

ij∈K

d2(ij)wij(e) =
∑

ij∈I(D1)∩I(D2)

d2(ij)wij(e) +
∑

ij∈I(D2)\I(D1)

d
2
(ij)wij(e) =

=
∑

ij∈I(D1)∩I(D2)

d2(ij)gij(e) +
∑

ij∈I(D2)\I(D1)

d
2
(ij)

∑
uv∈K

fij(uv)guv(e) =

=
∑

ij∈I(D1)∩I(D2)

d2(ij)gij(e) +
∑

uv∈K

guv(e)
∑

ij∈I(D2)\I(D1)

d
2
(ij)fij(uv) ≤

≤
∑

ij∈I(D1)∩I(D2)

d2(ij)gij(e) +
∑

uv∈K

d
1
(uv)guv(e) =

=
∑

ij∈I(D1)∩I(D2)

(d1(ij)− d
1
(ij))gij(e) +

∑
ij∈I(D1)∩I(D2)

d
1
(ij)gij(e) +

∑
ij 6∈I(D1)∩I(D2)

d
1
(ij)gij(e) =

=
∑

ij∈I(D1)∩I(D2)

d1(ij)gij(e) +
∑

ij 6∈I(D1)∩I(D2)

d1(ij)gij(e) ≤ u(e)

and, therefore, U and W support D2 too. �

Again, recognizing if a traffic matrix D1 strongly dominates a traffic matrix D2 is easy, since it is
equivalent to solve a fractional multi-commodity problem.

Corollary 2.1 If D1 dominates D2 and I(D1) ∩ I(D2) = ∅, then D1 strongly dominates D2.

2.4 Total domination. We say that D1 totally dominates D2 if UF(D1) ⊆ UF(D2), i.e. any pair
(U,F ) supporting D1 also supports D2. Trivially, if D1 totally dominates D2, then D1 strongly dominates
D2.

Theorem 2.5 D1 totally dominates D2 if and only if d1(ij) ≥ d2(ij) for any ij ∈ K.

Proof. Necessity. Let F be the routing:

F : fij(e) =
{

1 e ≡ ij
0 e 6≡ ij.

D1, regarded as a capacity reservation, and F support the traffic matrix D1. Therefore, they must
support D2 too. Then, for any hk ∈ K, h 6= k:
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d1(hk) ≥
∑

ij∈K

d2(ij)fij(hk) = d2(hk)

Sufficiency. If U and F support D1 and d1(ij) ≥ d2(ij) for any ij ∈ K, then they support D2 too. In
fact, for each e ∈ E:

u(e) ≥
∑

ij∈K

d1(ij)fij(e) ≥
∑

ij∈K

d2(ij)fij(e)

�

3. Domination between three traffic matrices. It is natural to extend domination to more
traffic matrices, e.g. three. Namely, D1 and D2 dominate D3 if U(D1) ∩ U(D2) ⊆ U(D3), that is, any
capacity supporting both D1 and D2 supports D3 too. Unfortunately, we have not been able to generalize
Theorem 2.1 to this case, and we do not know whether recognizing this kind of domination is easy. We
leave this question open, but discuss some necessary or sufficient conditions in the following.

Sufficient Conditions. It follows from Theorem 1.1 that D1 and D2 dominate D3 if:

max(
∑

ij∈K

µ(ij)d1(ij),
∑

ij∈K

µ(ij)d2(ij)) ≥
∑

ij∈K

µ(ij)d3
ij ,∀µ ∈ Pµ (4)

but, as we are going to show, there are cases where this condition is not necessary. The following corollary
is proved in Eisenbrand et al. [8]:

Corollary 3.1 Eisenbrand et al. [8] Let G = (V,E) be an undirected graph with edge capacity func-
tion u : E → R+ and s1, s2, r1, r2 ∈ V . In the following, all demand values are equal to 1. If there exists
a feasible 2-commodity flow for terminal pairs {s1, r1}, {s2, r2} and for terminal pairs {s1, r2}, {s2, r1},
then there also exists a feasible 2-commodity flow for terminal pairs {s1, s2}, {r1, r2}.

Now suppose that V = {s1, s2, r1, r2}. Let D1, D2, D3 be such that the only non-zero demands
are: d1(s1r1) = d1(s2r2) = d2(s1r2) = d2(s2r1) = d3(s1s2) = d3(r1r2) = 1. It follows from Corollary
3.1 that D1 and D2 dominate D3. On the other hand, Inequality (4) is not satisfied when we consider
µ(s1r1) = µ(s2r2) = µ(s1r2) = µ(s2r1) = 1/8 and µ(s1s2) = µ(r1r2) = 1/4.

Necessary Conditions. D1 and D2 dominate D3 only if:

∑
ij∈K

µ(ij) max(d1(ij), d2(ij)) ≥
∑

ij∈K

µ(ij)d3
ij ,∀µ ∈ Pµ (5)

In fact, consider D : d(ij) = max(d1(ij), d2(ij)). D dominates both D1 and D2 by Theorem 2.5.
Therefore, if D1 and D2 dominate D3, then D dominates D3 too. Inequality (5) then follows from
Theorem 2.1.

Unfortunately, the condition is not sufficient: consider. Suppose that V = {a, b, c}. Let D1, D2, D3

be such that the only non-zero demands are: d1(ab) = 2, d1(bc) = 2, d2(ac) = 4, d3(ab) = 2; d3(bc) = 2;
d3(ac) = 3. Then Inequality (5) is satisfied but U : u(ab) = 2, u(bc) = 2, u(ac) = 2 does support D1 and
D2 but not D3.
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