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Procurement auctions may be affected by abnormally low bids, whose acceptance may have negative
consequences on the auctioneer. A method, based on the average submitted bid, is considered to detect such
anomalous bids and aid the auctioneer in the possible rejection decision. Analytical expressions or simulation
results are provided for the detection probability and for the false alarm probability. The performances
heavily depend on the number of tenderers and on the dispersion of bid values. Both performance indices
improve as the number of tenderers grows and generally degrade as the dispersion grows. The presence of
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Procurement multiple anomalous bids leads to a significant worsening of the performance, while courtesy bids raise both
Auctions the false alarm probability and the detection probability. The use of the average-bid criterion, though

officially endorsed in national legislations, is therefore recommended as a strongly precautionary criterion,
i.e. when the need to avoid anomalous bids is considered much more relevant than the costs associated to
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Statistical detection algorithms

deeper investigation of anomalous bids or to the erroneous rejection of regular bids.
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1. Introduction

Procurement of goods, services, or public works is often accom-
plished by reverse auctions, where suppliers provide their competitive
biddings to a buyer [7,8]. Each supplier indicates the minimum price at
which it is willing to undertake the work or provide the goods/services.
Through this competition auctions appear as an effective way of
reducing prices for the buyer. Since the assignment is typically
awarded to the supplier providing the lowest bid, each tenderer is
spurred to provide the lowest possible bid, taking into account the
expected level of competition and its expected rate of return (we
assume anyway that competitors are not informed of the bids of one
another, which could lead to forms of cheating as described in [27]).
However, in some circumstances the behaviour of the tenderer may
deviate from these guidelines. For example, it may be in desperate
need of obtaining a contract, though it may turn into a financial loss. Or
it may aim at ousting a potential competitor (the phenomenon of
predatory bidding [1]). In some cases it may even present a non-
competitive bid, i.e. a bid just a bit higher than the expected
competitors so to have a very small probability of winning (the
phenomenon of cover pricing), with the aim of staying in favour with
the auctioneer by showing interest in the auction (hence such bids are
also known as courtesy bids) [31]. In all these cases the tenderer
presents an anomalous bid, whose value has been set by a line of
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reasoning different from that of regular competitors. Such anomalous
bids represent a distortion in the regular execution of an auction. In
particular, abnormally low bids, leading to awarding the contract to a
supplier that could end up not providing the goods/services, are a
cause of deep concern and have come to the attention of the European
Union [13]. The negative consequences on the auctioneer's activity can
be avoided if the anomalous bids are detected and their submitters
subject to a deeper investigation, hence the need for a criterion to
identify anomalous bids and support the auctioneer in the rejection
decision. Decision support systems are an established tool to aid the
auctioneer in auction operations such as this [25].

In the statistical literature observations that stand outside the bulk of
the data (a characteristic common to both abnormally low bids and
courtesy bids) are typically designated as outliers. Many statistical tests
have been proposed for the general problem of identifying and removing
outliers. Two surveys of such methods can be found in [2] and [34], while
the most prominent one is described in the seminal paper by Grubbs
[16,35]. In addition, some tests have been devised for the specific
purpose of detecting bids due to cover pricing (i.e. abnormally high) and
have been examined e.g. in [19,30,31,33]. Instead a number of schemes,
typically different from the ones above mentioned, have been intro-
duced in the grey literature for the detection of abnormally low bids.
Examples are the national regulations in Spain [20,21], Italy [28],
Germany, and Turkey [37]. However, the introduction of these schemes
has not been accompanied by a proper evaluation of their performances,
namely of their capability to detect anomalous bids without declaring as
anomalous otherwise regular bids (which we may call a false alarm).

In this paper we provide analytical expressions and simulation
results for two performance indices of detection schemes: the
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detection probability and the false alarm probability. We focus on a
class of detection schemes for abnormally low bids (hereafter we will
use the generic term of anomalous bids), based on the use of the
average bid. A particular version of such scheme has been officially
adopted by public bodies in Spain and Italy. Its relevance lies in its
official endorsement, though it has so far escaped a proper evaluation.
Some background information on procurement auctions is provided in
Section 2, while the average-bid detection scheme itself is described in
Section 5. The reference model for the bid distribution needed to
perform our evaluation is provided in Section 3, while the performance
indices are defined in Section 4. The evaluation is finally conducted in
Sections 6 (detection probability) and 7 (false alarm probability) for the
case of a single anomalous bid. The case of multiple anomalous bids is
instead studied in Section 8. In addition, the influence of the presence
of courtesy bids (abnormally high) on the detection of abnormally low
bids is evaluated in Section 9.

2. Procurement auctions and anomalous bids

Auctions (actually reverse auctions) are now an established means
of accomplishing procurement activities as opposed to negotiation or
direct purchasing through catalogs [8]. In reverse auctions all
tenderers provide their bid, indicating the minimum price at which
they are willing to provide the goods or services up for auction. A
number of auction formats have been devised, differing essentially for
the way the auction is conducted and for the way the contract is
awarded [17]. Awell established format in procurement auctions is the
sealed bid tendering, where all tenders are made known at the same
time (for the purpose of this paper the terms tender and bid, and
analogously tenderer and bidder, are considered synonymous). When
the auction is based on price considerations only (e.g. because the
required characteristics of the item up for auction have been well
defined and are therefore not a discriminant among different tenders)
the contract is generally awarded to the tenderer submitting the lowest
bid. Each bidder is then induced to submit the lowest bid it can under
its financial constraints (e.g. a minimum expected rate of return for
its activities) and considering the expected competition from the other
tenderers. The natural incentive to submit the lowest possible bid
can however turn into an anomalous behaviour when the tendering
company submits too low a bid. Such anomalous bids have received a
considerable attention in the latest years, due to the distortion they
introduce in the procurement activities. A precise definition has also
been attempted by the European Union, according to which a tender is
assumed to be abnormally low if the following two conditions are met
at the same time [13]:

i. In the light of the client's preliminary estimate and of all the
tenders submitted, the tender seems to be abnormally low by not
providing a margin for a normal level of profit;

ii. The tenderer cannot explain its price on the basis of the economy
of the construction method, or the technical solution chosen, or the
exceptionally favourable conditions available to the tenderer, or
the originality of the work proposed.

Several researchers have examined the reasons for such behaviour
[1,5,10]. A list of possible reasons is reported below:

i. The bidder underestimates its cost (due to irrationality or bad
performance of its budgeting department);
ii. The bidder expects to renegotiate the contract later, e.g. when it
is too costly for the auctioneer to replace the winning company;
iii. The bidder's financial conditions are very bad, leading it to use
the awarded contract as a bridging opportunity (just surviving
and waiting for better times), since the company's possible
losses are upper bounded by the possibility of going bankrupt;
iv. The bidder may aim at ousting a competitor (a.k.a. predatory
bidding).

If the procurement procedure allows so, the bidder, after submit-
ting its bid, could recognize its mistake leading to an excessively low
bid and revise its bid accordingly. A procedure including such second
stage adjustment of bids has been proposed in [36]. Such mechanism,
lying halfway between the sealed bid auction and the multiple rounds
involved in a descending or ascending auction, doesn't seem to have
been widely adopted and is not further considered here.

Whatever the reason for the abnormally low bid the contracting
authority shall typically act in two stages, first examining the dis-
tribution of bid values (and maybe comparing them with an expected
cost basis) in order to detect the presence of anomalous bids, and
then performing a deeper investigation of the tender labelled as ano-
malous. The second stage analysis will say if that bid is reasonable,
i.e. supported by the actual operating conditioning of the tendering
company, and lead to reject it if that's not the case. Such two-stage
strategy is actually suggested by Article 55 of 2004 EU Directive [11],
according to which “the contracting authority shall, before it may
reject those tenders, request in writing details of the constituent
elements of the tender which it considers relevant.” As an alternative
to such reactive strategy, the auctioneer could have the auction pre-
ceded by a prequalification phase, where prospective bidders are
screened for the purpose of eliminating those that don't appear
sufficiently reliable to perform the work if awarded the contract. Such
prequalification may be conducted by looking e.g. at the size and
reputation of contractors, or at their previous participation at similar
contests. However, if (as it happens) the prices requested in previously
submitted bids are a screening variable, the prequalification may result
in those contractors submitting higher prices being eliminated rather
than those submitting too low bids [9]. In the following we will not
consider the presence of a prequalification phase.

3. Bid distribution models

For the purpose of defining and evaluating any statistical detection
criterion we are compelled to use a working model for the distribution
of bid values.

A simple model for distribution of costs rather than bid values is
provided by Calveras [5], right in the context of abnormally low bids.
In that model all the bidders have the same cost structure, so that the
cost Cp of the project under auction is made of two components: a
deterministic one, which represents the knowledge common to all the
tenderers, plus a random component

Cp=cC+s. 1)

The random component s is modelled by a Bernoulli distribution: it
takes the value - kg with probability 1-p and the value kg otherwise. In
order to result in positive bids the condition c¢> kg must of course hold.
The overall cost is therefore again Bernoullian, with expected value

E[Cp] = (1-p)(c=kg) + p(c + ks) = ¢ + p(ks + kc)~kc. (2)

Though the proposed distribution is asymmetric, a symmetric
version, where kg=Kkg, has also been proposed by the same authors in
[4].

Starting from this cost model, a model can be derived for the bids
by multiplying the cost by an expected rate of return, leading again to
a Bernoulli model.

In a recent paper, in the context of an auction directed to a mass
market rather than a procurement auction, the following larger set of
probability models has been considered [23]:

- Uniform;
Triangular;
Gaussian;
Exponential;
- Pareto.
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In this set the first three represent the case of bids clustered around
a central value (dictated by the common cost structure). The ex-
ponential and Pareto distribution are instead representative of situa-
tions where significant differences exist among the bids, with lower
bids being more likely than large ones (though quite large bids are
possible). Though the range of models considered in the literature also
extends to the Lognormal [3] and to the Weibull [24], the normal model
appears to be the most appropriate, being supported by empirical data
concerning the construction sector through the use of proper statistical
tests [19,26,31]. In this paper we restrict to the case of the Gaussian
model, which, in addition to being supported by statistical fitting to
empirical data, reflects a common cost structure, with differences
among the bids related either to errors in the cost estimation and
quotation or to small competitive advantages. In the following we
consider two scenarios, named Scenario A and B. In Scenario A all
the bids are regular (i.e. not anomalous). The N bids can therefore be
considered as Ni.i.d. (independent and identically distributed) random
variables X1,X5,...,Xy following a common Gaussian distribution with
expected value p and standard deviation o, so that the common
distribution function is

Fx, (x) = Fx, (x) = ... = Fx,(x) ®3)
X—p X—1L
=P(u+20<x) =P(Z<"=) = G().
indicating by Z a standard Gaussian variable and by G(-) the associated
standard Gaussian cumulative distribution function.

In Scenario B instead just N-1 bids are regular, being represented
by random variables X,X5,...,Xy-1 following the same Gaussian prob-
ability distribution as in Scenario A. Beside these regular bids there is
one anomalous bid, represented by the random variable Xy, which
follows again a Gaussian distribution with identical standard devia-
tion o as the regular bids but with a (rebated) mean value, lowered by
the rebating factor 3:

EiXy] =t 0<p<l, @
Fu () = P + 2o = G(* ). 5)

Fro the sake of completeness we note that though we have
restricted to the i.i.d. case, as the vast majority of the literature, this
need not be the case. For example in the seminal paper by Friedman a
different probability distribution is envisaged for each competitor
[14], though the resulting complexity of the problem leads the same
author to go back to the concept of an average bidder and therefore to
a single bid distribution.

4. Performance indices for detection methods

We need a criterion, embodied in a number of indices, to evaluate
how good the detection method is in identifying the presence of
anomalous bids.

For this purpose we can define the two states of nature (mutually
exclusive) that can occur in the realization of a procurement auction:
the state Hy where all the bids are regular and the state H; where an
anomalous bid (in the sense of abnormally low) is present. At first we
do not consider the case where multiple anomalous bids may be
present, since, given the typically low number of participants, this
should be a very rare event. In the language of Section 3 the state of
nature Hp corresponds to Scenario A, while the state H; corresponds
to Scenario B.

The detection method focuses on the lowest bid and suggests one
of two decisions: either considering it a regular bid and accepting it
(decision Dg) or marking it as anomalous (decision D), which in turn
calls for its deep analysis and may lead to its rejection.

The combination of the two states of nature with two possible
decision outcomes gives rise to four possible situations, of which two
are correct and two are in error. The detection method is correct if the
bids are all regular and none is marked as anomalous (state Hy and
decision Dy) or, on the other hand, if an anomalous bid is present and
is detected (state H; and decision D). Instead the detection method
leads to wrong conclusions if the anomalous bid is not detected (state
H and decision Dy) or if a regular bid is rejected (state Hy and decision
Dy).

We consider then two classical performance indices, associated to
two of the previously described four situations and describing
respectively a correct decision and an error condition:

- Detection Probability Pq4=P[D¢|H;], i.e. the probability of detecting
the anomalous bid when present;

- False Alarm Probability Pg=P[Dq|Ho], i.e. the probability of de-
claring a bid anomalous when all the bids are instead regular.

It is to be noted that the detection probability is evaluated under
the hypothesis that an anomalous bid is actually present (Scenario B)
and is the probability of detecting that anomalous bid. The false alarm
probability has been evaluated under Scenario A as the probability of
the event that a regular bid is smaller than the detection threshold.
The probability values pertaining to the two remaining situations (i.e.
the probability of missing an anomalous bid or of correctly declaring
all the bids regular) can be easily recovered from the two cases just
defined as their complement to 1. A method shall perform the better
the larger its P4 and the lower its Py,.

Secondary requirements are that the detection method perfor-
mance does not depend on the size of the auction (represented by the
number of participants) and on the parameters of the bid distribution
model (e.g. the variance of the bid distribution). In particular, in the
absence of the latter requirement the detection method performance
would not be predictable in advance of the auction realization.
Instead, if the performance depends on the auction size, the problem
can be partially circumvented by adjusting the discrimination pa-
rameter as a function of the number of participants.

5. The average-bid detection method

A detection method for anomalous bids can be devised based on
the sampling average of all the bids that have been submitted in the
auction. Namely we set a threshold T equal to some fraction « of the
sampling average X and compare each bid with this threshold. The ith
bid X; is declared anomalous (and therefore subject to further
examination) if X;<T=0oX. The rationale is that in a regular context
(i.e. free of anomalous bids) the average bid represents a rough
indication of the common value attributed to the procurement item by
the participants: a large deviation from the average bid may be due to
reasons other than the common evaluation of the item's value. The
only parameter to be chosen in the definition of the detection method
is the threshold coefficient « in the range (0-1): the larger it is the
larger the probability of detecting a potential anomalous bid, but the
method gets also more prone to false alarms.

A special interest in evaluating this average-bid criterion is due to
its practical relevance, being officially endorsed by at least two insti-
tutional bodies, in Spain and Italy.

In fact, the Spanish regulation considers as anomalous those bids
lower than the average bid by at least 10% (i.e. ®=0.9), when there
are at least three participants [20,21]. In the case of two participants
the criterion is formulated in an alternative way: a bid is anomalous
if it is lower than the other by at least 25%. It is readily seen that
this formulation can be expressed as an average-bid criterion with
a different value for the thresholding coefficient. In fact, if we con-
sider the bid X; (the same can be obtained if we consider the other
bid X;) the condition for being considered anomalous is X;<0.75X>.
By adding 0.75X; to both terms we get the alternative formulation
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Fig. 1. Detection probability under an 80% rebating factor (=0.9).

X150.75(X1+X3)/1.75, i.e. X;<3X, which is the average-bid criterion
with e = 3 = 0.429.

Similarly, the Italian agency for public procurement CONSIP has set
a criterion based on the maximum starting bid, which is the value
assumed as a starting reference so that all tenderers can express their
bids as rebates with respect to this reference value [12]. According to
this criterion a bid is considered anomalous if it deviates more than
20% from the average rebate. Again, this criterion can be expressed
and analysed on the basis of the average bid. If we indicate the
discriminating rebating factor by 1y, the rebate associated to the generic
ith bid as R;, and the average rebate as R, the anomaly condition is
Ri=(1+7)R. Since the rebate can be expressed through the associated
bid and the starting reference value B by

I ><

R; = B-X;,
RIZB_ 1 (6)

5

>

the anomaly condition can be expressed through the bids rather than
the rebate

B=Xi>(1+7)(B-X)=Xi<(1+ )X -vyB=X +yB<(1+ V)X, @)

meaning that we can employ the same evaluation tools as for the
average-bid criterion by setting a=1++y and considering for the bid
distribution a normal distribution N(u+7yB, o®), i.e. replacing in all
formulas p by p+yg.

6. Detection probability

We consider first the possibility of correctly detecting the presence of
an anomalous bid when there is one. Indicating by {x,..., xn} the set of
submitted bids (i.e. a realization of the random variables Xj,...,Xy), a bid in
that set is declared anomalous if it is smaller than the threshold ox.

Without loss of generality, for the purpose of evaluating the
detection probability, we can suppose that the bids {Xj,....Xy-1} are
regular and the last one Xy is anomalous, i.e.

X17---:XN—1~N(:U7O-2)7 (8)

XN - N(ﬁ,ua 02) . (9)

The anomalous bid is detected if it is smaller than the threshold, so
that the detection probability is

Py =P XN <T]. (10)
If we express the detection threshold in the following way by

isolating the contribution of the anomalous bid

_ /N1
T=oX=— Xi+Xn ), (11)
N\i5

the detection probability can be in turn expressed by comparing the
values of two independent quantities: the anomalous bid and the sum
of the regular bids. In symbols:

alN

-1 Py
Py = P|:XN < N i§1Xi + NXN:| (12)

Plxy- - ¥x<0
i Ere]

Taking into account the assumptions (8) and (9), and considering
that a weighted sum of normal random variables is again a normal
random variable, then the detection probability can be expressed as

G{E (aE —5) <a2 N1 1)
o\ N-«a (N-a)?

The resulting detection probability can be easily parametrized as a
function of the coefficient of variation of the regular bids, i.e. the ratio
ofu. The detection probability will be larger the larger the argument of
the standard normal probability distribution in Eq. (13), i.e. if >3 and
if the coefficient of variation is small. Here we report the detection
curve for one value of the threshold coefficient a«=0.9 (i.e. the value
adopted in the Spanish regulation), two different values for the
rebating factor 3=0.8, 0.9, and some values for the number of bids in
the typical range [3-20]. In these curves, shown respectively in Fig. 1
and in Fig. 2, we see that:

(13)

- the detection probability heavily depends on both the number of
participants and the dispersion of their bids;

- the impact of bid dispersion gets stronger as the number of
participants decreases;

- the range of values of the detection probability heavily depends on
the rebating factor (it is always lower than 0.5 when (3=0.9, but
larger than 0.5 when 3=0.8);

- the sign of the slope of the curve depends on the rebating factor
(again changing when passing from 3=0.8 to 3=0.9).

As to the latter two points we can derive analytically the conditions
under which the detection probability is a growing function of the
coefficient of variation m=ojp. In fact, in the argument of Eq. (13) the
factor multiplying m turns negative if the following condition holds

N-1
N-a”

B>« (14)

In this case the cumulative distribution function gets below 0.5 and
becomes a decreasing function of the coefficient of variation. For the
values at hand there is not a dominant factor between the threshold-
ing coefficient o and the number of tenderers N. In fact, for «=0.9 the
discriminating value of the rebating factor varies from 0.857 (when
there are 3 participants) to 0.895 (when there are 20 participants),

0.5F
0.45F
2 [
] 04f
3 [
o [
s [
= 0.35¢
k=l b
i3] [
2 03f No. of bids
a8 | —0—3
[ -—0—5
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0_2'|...,|....|.,1.1..,,1....|
0.05 0.1 0.15 0.2 0.25 0.3

Coefficient of variation

Fig. 2. Detection probability under a 90% rebating factor (a=0.9).
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while if ®=0.8 the window is slightly larger and shifts to the interval
0.7273+0.7917.

7. False alarm probability

In order to evaluate the false alarm probability we consider
Scenario A, where all the bids are regular. In this section we will
provide first the derivation of the exact expression for Pg,. However,
given the computational burden associated to it, we will provide an
estimation of the false alarm probability by Monte Carlo simulation
and an approximated analytical expression turning into quite a good
approximation of the true value.

Denoting by X1, the random variable representing the minimum
bid, i.e. the lowest order statistic, the false alarm probability can be
expressed as

Pra = P[Xn) <aX]. (15)

We now operate some transformations on this expression in order
to use a few results provided in [22]. We make now the simplifying
assumption (to be removed later) that the N bids are represented by i.i.
d. random variables Z;, Zs,..., Zy with a standard Gaussian distribution.
We can then rewrite the expression providing Pg, in the following way:

Py, = P[Z<aZ] (16)

By introducing the auxiliary variables W;=-Z; i=1, 2,..., N, for
which we have

Wiy =2, (17)
Wy = Z(1)
W=-

the false alarm probability can be expressed in terms of the deviation
of the maximum bid from the average one

Pfa = P[Z(])_Z(Ol _1)7}
= P[— W(N) +W- ((X —])W}
= P[W(N)—W>(a _1)W}
=1- P[W(N)—W<(a —1)W} .

(18)

At this point we can use results in [22] which provided the
following formula

AN_]GN—I (Nv), (19)

P[Wn)-W<v] = v

where the G-functions defined by Godwin [15] are employed:

Go(¥)

Gr(y) :fg exp {‘m

Il
—_

) (20)
}GH(t)dt r=2,3,.. N-1.

Taking into account that Wy~ Wis independent of W (the proof is
reported in Appendix A), the false alarm probability is then

Pfa =1-P [W(N) —W<(a—])W} (21)

—1- L]\Hfj:GN—l [N(a-1)wlfg (w)dw.

(/)

Removing the standard assumption the false alarm probability can
be expressed as

Pfa = P[X(1)< OLX} (22)
~ Plu+ 0z <+ 0Z)]
=Pz Z<@-1)(E+2)].

Performing the same steps as above we can write the equivalent of
Eq. (18) for the general case:
Pry = 1-P [ Wiy W(a-1) (W—g)] . (23)
Now, after defining the random variate

U= (a1)(W- g) (24)

which follows a Gaussian distribution with

n
E[U] = (1-a) .,

(l_g)z (25)
Var[U] = N

the false alarm probability for the non standard case is

] G N 20

(van

The difficulties in the use of Eq. (26) lie in the recursive com-
putation of the G-functions, which can get very long-winded as the
number of tenderers grows.

Pp=1-

4
o
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Fig. 4. False alarm probability by numerical approximation (a=0.9).
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For this reason we first turn to Monte Carlo simulation. We generate
100,000 auction instances, i.e. 100,000 sets of bids, extract the low-
est among them for each instance, compare it with the detection
threshold, and obtain the estimate of the false alarm probability as
the proportion of times that the threshold is exceeded on the low side.
The number of simulation runs (100,000) guarantees that the relative
standard error (i.e. the coefficient of variation of the estimate) is
smaller than 0.022 for all the cases examined. In Fig. 3 we report the
results for a threshold coefficient a=0.9.

As can be seen, the false alarm probability heavily depends on
the dispersion of the bid values and is quite large, being even larger than
the detection probability if the rebating factor is larger than 90%.

Another estimate of the false alarm probability can be obtained by
replacing the sampling average in the general expression (15) by the
average of the minimum and maximum bid (mid-range):

Py=P {X(l)< aw}

a
=P [X<1><HX<N>} ; (27)
which we can express by employing the order statistics pertaining to a
set of i.i.d. standard Gaussian variables

ho-l

(%
5+ ﬁZ(N) . (28)

o
P, :P[,u + UZ(1>< ﬁ ([J + UZ(N))] = P|:Z(])<2U_2_a

Since the correlation between the minimum and the maximum bid
is the weakest one among the correlations between any two order
statistics, we proceed to compute this approximation of the false
alarm probability as if Zi;y and Z, were independent:

Pfa f gN) ]dS (29)
where gny(-) and Ggy(-) are respectively the probability density

function of the maximum bid and the probability distribution function
of the minimum bid, and h(s) is now the function

h(s) = 28 4 =g (30)
By recalling the well known expressions [6]

g (5) = NIG(S)¥g(6),
Gy (s) = 1-[1-Glu(s))". G1)

the final approximation for the false alarm probability is

Pfa,f NIG(s)Y () { 1-(1-G(h(s)))" }s, (32)

which can be computed numerically. The results, for the same cases of
Fig. 3, are plotted in Fig. 4.

The differences with the simulation data are quite limited
(typically lower than 5% as the coefficient of variation exceeds 0.1),
so that the resulting approximation can be retained as a useful one.

8. Performance in the presence of multiple anomalous bids

We have so far considered the presence of a single anomalous bid in
a procurement lot, multiple anomalous bids being rather rare.
However, in some cases they could actually occur. Detection devices
for multiple outliers have appeared in the past in the literature, see e.g.
[29] and [34]. We now consider that case in the context of the average-
bid criterion. The expected effect on its performance is twofold: on one
hand, detecting multiple anomalous bids is certainly more difficult
than detecting a single one; on the other hand, the more the anoma-
lous bids the more the detection threshold is pushed downwards.

In order to perform a quantitative evaluation we redefine Scenario B
as follows:

Scenario B-bis Among the N bids N-N, are regular and N, are
anomalous.

Without loss of generality, regular bids are identified by the lower-
valued indices. Hence, for the values of the N bids we may write

Xi~N(u;0?) i=1,...,N-N,

Xi~N(Bw;0?) i=N-N;+1,..,N (33)

Accordingly, we now define the probability of detecting all the
anomalous bids

Py =P minXi <T]|, (34)
N-N,+1<i=<N
where the threshold is

T=yX X (35)

™M=

@
N;

Since the false alarm probability is evaluated under the hypothesis
that all the bids are regular (Scenario A as defined in Section 3), this
metric is unaffected by the presence of multiple anomalous bids. In
what follows we therefore confine ourselves to evaluate the detection
probability, resorting to simulation. For each of the cases reported
here, we have used 10° simulation instances. We report the values
obtained for the following case:

- Number of bids N=20

— Number of anomalous bids N,=2, 3
Threshold coefficient a=0.9

- Rebating factor 3=0.8, 0.9
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Fig. 6. Detection probability under a 90% rebating factor (a=0.9) for multiple anomalous bids.
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Fig. 7. Detection probability under a 90% rebating factor in the presence of courtesy bids.

In Figs. 5 and 6 the detection curves pertaining respectively to
B=0.8 and 3=0.9 are shown. For a better comparison, we also report
the curve pertaining to a single anomalous bid case.

As expected the detection performance worsens and Py dramati-
cally decays when a second anomalous bid is added. We observe the
same effect of the coefficient of variation and the rebating factor:
when the rebating operated by anomalous bids is very small (e.g.
B=0.9 or even closer to 1), the detection probability grows slightly
as the bids get more dispersed, staying however in the region well
below 0.5 due to the low value of the threshold coefficient cv. Although
not shown here, similar curves are obtained for a lower number of
bidders. Three anomalous bids out of 20 are already enough to get the
detection probability of limited use.

9. Impact of courtesy bids

In some cases regular bids are also accompanied by courtesy (a.k.a.
as cover or complimentary) bids, i.e. bids which are submitted in order
to stay in favour with the auctioneer by appearing to be interested in
obtaining the contract. As explained in [31] such bids are not intended
to be competitive and are typically produced by adding some percent
on the top of a regular bid. Since they are produced to appear “similar”
to regular bids, they should be nearly undetectable by the auctioneer.
In [31] a detection criterion for them is proposed. Here we are inter-
ested in the effect they have on the average-bid method to detect
anomalous bids. Since courtesy bids are typically larger than regular
bids, the net effect of their presence in a procurement lot is to raise the
detection threshold, hence raising at the same time both the false
alarm probability and the detection probability. An additional nega-
tive consequence of the presence of courtesy bids (which we shall not
further examine here) is the distortion they introduce in bidding
models used to predict the probability of winning the auction [32].
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Fig. 8. Detection probability under an 80% rebating factor in the presence of courtesy bids.

In this section we perform a quantitative evaluation of the impact
of courtesy bids on the two performance indices so far considered. For
this purpose we introduce two modified scenarios:

Scenario A-ter Among the N bids, N-N. are regular and N. are
courtesy ones.

Scenario B-ter Among the N bids, N-N.-1 are regular, N. are
courtesy ones, and there is a single anomalous bid.

As to the distribution of courtesy bids, following [31] we assume
that they have the same probability distribution as the regular one (i.e.
normal) but with a shifted mean value. Again, without loss of
generality, we can mark the regular bids by the lower-valued indices.
We have then for the values of the N bids in Scenario A-ter

Xi~N(u;0%) i=1,..,N-Nc

Xi~N(yw;0%) i=N-Nc+1,...N, (36)

where 7y is the shifting factor. Instead, in Scenario B-ter we have

Xi~N(u;0%) i=1,..,N-Nc-1
Xi~N(yw;02) i=N-N,...,N-1 (37)
Xn~N(Bu; 0?)

The performance indices are accordingly defined as
Pgy = P[Xn<T]

P =P {mir_l x,-<T] (38)
1

and evaluated in Scenarios A-ter and B-ter, respectively. The detection
threshold used in both cases is

(63
T:Ni

M=

Xi (39)
1

We evaluate first the detection probability. Using the same
approach as in Section 6, the following expression is obtained

[ a [N-Ne-1 N-1
Pa=P|Xv< Xi+ Y Xj+Xy
i=1 Jj=N-Nc

oo @ N—%—IX Nil X
=P < — -4 .
N™ N« & j=N=N¢ J (40)

F 12
. g(aN—Nc—l-s-ch_ﬁ) <1+a2 N-1 ) }

N-a (N-a)*

In Figs. 7 and 8, the impact of courtesy bids is shown in the fol-
lowing cases:

- Number of bids N=20
- Number of courtesy bids N.=1, 5

-

E No. of courtesy bids

o o
©
e

o o o
@ N
e

0.4F

e <
Do w
s

False alarm probability (courtesy bids)

1 1 1 1 1 1
02 03 04 05 06 07 08 09 1
False alarm probability (no courtesy bids)

o
o
T

Fig. 9. False alarm probability in the presence of courtesy bids (10 bids).
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Fig. 10. False alarm probability in the presence of courtesy bids (20 bids).

- Threshold coefficient ®=0.9
- Rebating factor 3=0.8, 0.9
- Shifting factor y=1.2

As far as the latter parameter is concerned, we use here a quite
large value on purpose. Although in [31] shifting factors of a few
percent points are envisaged, and large values such as those used here
would be probably detected (e.g. by the use of the method presented
in the same [31]), here we want to examine the “worst case” of
courtesy bids. If they were very close to the regular ones, they would
have a negligible effect on the detection of anomalous bids. Figs. 7 and
8 show a direct comparison between the probability values obtained
in the presence of courtesy bids and those obtained when all the bids
are regular (Scenario A, with N=20). In the absence of any effect the
values should be unaltered (e.g. in Fig. 8 we should have a straight line
bisecting the diagram).

The effect of such courtesy bids would be noticeable, especially for
lower rebating cases (i.e. 3 nearer to 1).

To evaluate the false alarm probability we proceed by simulation,
again with 10° instances and the following parameters:

Number of bids N=10, 20

- Number of courtesy bids N.=1, 2
Threshold coefficient ®=0.9
Shifting factor y=1.2

The resulting curves are reported in Figs. 9 and 10. The
performance metric is plotted again in the presence of courtesy bids
vs. the case where all bids are regular. The increase of the false alarm
probability is particular relevant for small values of the probability
(and for small values of the number of bidders). Courtesy bids have
controversial effects on the performance of the average-bid criterion:
they raise the probability of detecting anomalous bids but also
increase the occurrence of false alarms.

10. Conclusions

An average bid based method has been presented for the detection
of abnormally low bids in procurement auctions. Two performance
indices have been selected for its evaluation: the detection probability
and the false alarm probability, whose dependence on the number of
tenderers, the dispersion of bids, and the rebating factor of the
anomalous bid has been investigated. A large number of participants
has always a positive effect on the performance of the method.
Instead, a larger dispersion of bids contributes to lower the detection
probability as long as it is larger than 0.5. It is generally to be noted
that the method may be affected by a large proportion of false alarms.
However, if multiple anomalous bids are present (even just three) the

performance worsens significantly. On the other hand, the presence of
courtesy bids increases both the detection probability and the false
alarm probability. Since a large number of false alarms results in a cost
associated to the further investigation work and may give rise to
unjustified rejection of low but regular bids (which increases the price
for the auctioneer), the method is recommended when the need to
avoid anomalous bids is much more relevant than the costs associated
to false alarms.

Appendix A. Proof of independence between sampling average
and extreme deviation from sampling average

The independence between W and Wy),-W is a consequence of
Basu's theorem. In fact, observe first that the distribution of Wy,~-W =
(W)~E[W])-(W-E[W]) is independent of the parameter E[W], i.e.
Wny-W is ancillary for u. Since W is a sufficient and complete
statistics for E[W] (see p. 43 of [18]), from Basu's theorem (see p. 42 of
[18]) it follows that W)~ W and W are independent.
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