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Some spectral properties of the transition matrix of an oriented

graph indicate the preconditioning of Euler–Richardson (ER) iter-

ative scheme as a good way to compute efficiently the vertexrank

vector associated with such graph. We choose the preconditioner

from an algebra U of matrices, thereby obtaining an ERU method,

andwe observe that ERU can outperform ER in terms of rate of con-

vergence. The proposed preconditioner can be updated at a very low

cost whenever the graph changes, as is the case when it represents

a generic set of information. The particular U utilized requires a

surplus of operations per step andmemory allocations, whichmake

ERU superior to ER for not too wide graphs. However, the observed

high improvement in convergence rate obtained by precondition-

ing and the general theory developed, are a reason for investigating

different choices of U , more efficient for huge graphs.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The pagerank problem concerns the computation of the positive left eigenvector of an irreducible

positive stochastic n× nmatrixW , i.e. the vector p such that p = WTp. The knowledge of p allows to

evaluate the importanceof each informationof a large set of informationand thus facilitates thepicking

up in the same set of particular data. The matrix W is defined in terms of a sparse matrix P which
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has a very particular structure and is the transition matrix of an oriented graph, usually describing

the web hyperlink structure. Precisely W depends on P, on a parameter α ∈ (0, 1) and on a positive

personalization vector v such that ‖v‖1 = 1 (see [1,2], for instance). The currently most competitive

methods to determine p are based on the power method, which generates a sequence pk+1 = WTpk ,

k = 0, 1, 2, . . . convergent to p. Such method, thanks to its simplicity, requires only two real vectors

to store the data and a relatively small amount of operations per step, when implemented in terms of

the sparse matrix P [1, pp. 77–78]. However, since the magnitude of all the eigenvalues of W (except

the obvious eigenvalue 1) is less than or equal to α, its convergence rate is O(αk) , and thus is slow for

the usual exploited values of α (f.i. the Google search engine sets α = 0.85).
In [3], it is proved that thepagerankvectorp is also solutionof a linear systemof typeγ (I−αP)Tp =

v, γ ∈ R, referred as the pagerank system. Starting from this alternative formulation of the problem,

some other possiblemethods to compute p have been investigated and compared to powermethod, as

in [3–6]. Such methods sometimes have a convergence rate greater than O(αk), but this reverberates
on the request of more operations each step. Other methods have been proposed, instead, regarding

the problem in its original formulation (i.e. where p is the dominant left eigenvector ofW), which are

essentially extrapolation-based variants of power method [7–9].

In the present work, starting from a quasi-stochastic row-constant sparse matrix P, we first define

a matrix W = αP + R, with R a rank-one matrix, which encloses the essential characteristics of

the matrix defining the pagerank vector, discussed above. For instance, we observe that such W still

has the spectrum contained into an α-neighborhood of the origin, with exception for the eigenvalue

1. Moreover, its left dominant eigenvector p still is solution of a sparse linear system, involving the

matrix P (see Section 2). Then, in the remaining part of the work, we study several aspects of this kind

of generalized pagerank computation problem, and we indicate, in particular, the preconditioning as a

possible way to improve the rate of convergence of power method in computing p.

Let us describe in detail the contents of Sections 3–8. Section 3 is devoted to the investigation

of the clustering spectral properties of the quasi-stochastic row-constant sparse matrix P, trying to

give a theoretical justification of the following experimental observation: there exists λα , eigenvalue
of αP, such that |λα| ≈ α and the other eigenvalues of P fall into a relatively small cluster round

the origin, whose size essentially does not depend on α (see Section 8, for details). We establish a

probabilistic relationship between eigenvalues and singular values clustering properties for P; we give

some bounds for the first and the second singular values of P and for the gap between them; we ob-

tain an upper bound for the second eigenvalue of P. In Section 4, we introduce a way to define a sort

of preconditioned power method. We observe that the complexity per step, the memory usage, and

the convergence rate of power method and Euler–Richardson method, applied to solve the pagerank

system, are the same, and thus such algorithms can be considered equivalent. In the same time, we

introduce a basic Euler–Richardson type iterative scheme, defined in terms of a matrix Q , which turns

out to be the way to precondition power method. In Sections 5 and 6, we investigate two different

choices for the preconditioner Q to be used in such scheme: the first obtained as a polynomial of P, the

second by considering a T. Chan-like approximation of P from amatrix algebra U . Such second choice

for Q gives rise, for U = circulants, to a method whose convergence rate essentially does not depend

on α and is heavily greater that O(αk). In fact, the experiments done show that only one eigenvalue of

P is responsible of the slow convergence rate of power method and that the circulant preconditioner

Q seems to remove such eigenvalue; since themagnitude of all the other eigenvalues of αP essentially

does not depend on α, the gain in terms of convergence rate is high also, and primarily, for α large.

In Section 7, we introduce an useful and easily implementable procedure to update in real time the

essential quantities defining Q . In fact, the graph defining the pagerank vector is generally subject to

uninterrupted changes (think, for instance, to the web hyperlink graph); thus it is very important to

be able to adapt easily the preconditioner Q to such changes. Finally, some numerical experiences are

proposed and described in Section 8, which show how great advantages can be obtained by precondi-

tioning. In spite of the fact that the novel method requires more operations and memory allocations

per step than power method, and thus outperforms suchmethod for not too large P, the theory devel-

oped in this work opens the way to future investigations looking for different choices of U and of the

preconditioner Q in U , more efficient for huge P.
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2. Preliminaries

2.1. Notation and definitions

We denote with Mn(K) the ring of n × n matrices with elements in the field K (K can be R or

C), with Un(K) ⊂ Mn(K) the group of unitary matrices and with (s)PDn(K) ⊂ Mn(K) the set of

(semi)positive definite matrices. When it is clear from the context we omit to specify the field K. With

Bρ(x) we indicate the open ball {y ∈ C | |x − y| < ρ} and with Bρ(x) its closure. Given X ∈ Mn(K)
we shall denote with Λ(X) and Σ(X) the set of all the eigenvalues and of all the singular values of

X , respectively; with λi(X) and σi(X) the ith eigenvalue and the ith singular value of X , respectively;

with ρ(X) the spectral radius of X; with X∗ the Hermitian adjoint of X (XT if X is real); with diag(x)
the diagonal matrix obtained from x, distinguishing between the case in which x is a matrix and the

case in which x is a vector: if x is a matrix then diag(x)ii = xii, if x is a vector then diag(x)ii = xi, for

i = 1, . . . , n. With πij(X) we denote the probability that (X)ij �= 0 and with dX the density of X , i.e.

the ratio between the number of non-zero elements of X and the order n. So that dX = n for a full

matrix X .

Denote with P ∈ Mn(R) a quasi-stochastic row-constant sparse matrix. That is, P = Δ−1P EP , where

(EP)ij ∈ {0, 1}, ∀i, j = 1, . . . , n, πij(EP) = dEP/n and dEP does not essentially depend on n and is

heavily smaller than n; ΔP = diag(μ), μ = EPe, e = [1, . . . , 1]T (we assume that the inverse of

ΔP is done inverting its non-zero elements, taking no care of null ones). Set Ω = {i | μi > 0}
assuming Ω �= {1, . . . , n}, and consider the map ϕΩ : R

n → R
n, ϕΩ(x)i = xi if i ∈ Ω and

ϕΩ(x)i = 0, otherwise. The cardinality |Ω| coincides with the number of non-null rows of P. Let ν(i)
and ρ(i), respectively, be the sets of indexes such that (P)ij > 0, ∀j ∈ ν(i), and (P)ji > 0, ∀j ∈ ρ(i),
i = 1, . . . , n. ClearlyΩc ⊂ ρ(i) for any i = 1, . . . , n. Observe that by the above definitions it follows

that (P)ij � 0, ∀i, j = 1, . . . , n, ρ(P) � 1, and Pe = ϕΩ(e).
Denote now with W ∈ Mn(R) a positive stochastic irreducible matrix obtained by W = αP + R,

being α ∈ (0, 1) and R ∈ Mn(R) a suitable rank-one matrix, and let v be a vector spanning range(RT )
such that vTe = 1. We refer to such matrix as the W-pagerank matrix. Note that the definition

of W is well posed since there exists at least one matrix R with the required properties, namely

the rank-one correction matrix used to define the Google-pagerank matrix ([1], for instance). Ob-

serve that by requiring W to be stochastic, i.e. the identity We = e, we implicitly require that

Re = e− αϕΩ(e).

2.2. The W-pagerank problem

Observe that if we enumerate the web pages from 1 to n, then the matrix P we have defined has

exactly the structure of a web hyperlink matrix, whose generic ij element is non-zero and equal to 1
μi

only if there exists a hyperlink (the existence of such link depends randomly on i and j) pointing from

the page i to the page j, and the page i points to μi pages. Anyway, we can assume in general that P is

related to (is the transition matrix of) an oriented graph (see Section 7, for clearness).

The W-pagerank computation problem consists in the problem of computing the left dominant

eigenvector p of W , or rather the vector s.t. WTp = p, what we call the W-pagerank vector. Note that

the knowledge of p allows to evaluate the importance of each vertex of the graph associated with P

and thus facilitates the searching of a particular vertex (data) in the set of all vertices (all data), see,

for instance [10–12]. Both huge and smaller dimension graphs have great interest in applications, but

of course the most famous are the huge ones, i.e. Google, Yahoo, MSN.

Perron–Frobenius theorem ensures the existence and uniqueness of p, and the well-known power

method (i.e. pk+1 = WTpk , k = 0, 1, 2, . . . ) is a possible easily computable iterative way to obtain p.

Moreover such method converges as O(αk) to the solution. The following is a way to prove this fact.

Theorem 2.1. |λi(W)| � α, i = 2, . . . , n and λ1(W) = ρ(W) = 1. As a consequence the power

method pk+1 = WTpk converges to p such that WTp = p with a rate of convergence O(αk).
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Proof. By the stochasticity of W we have just to prove |λi(W)| � α, for i �= 1. By its definition

it follows that R = (e − αϕΩ(e))vT where vTe = 1. Let Ωc denote the complement of Ω , then

R = (αϕΩc (e)+(1−α)e)vT . Therefore, ifH = P+ϕΩc (e)vT thenρ(H) = 1andW = αH+(1−α)evT .
Consider a set of n−1 vectorsu2, . . . .un such that {e, u2, . . . , un} are linearly independent and define

the matrix U whose columns are e, u2, . . . , un. Then there exists Q ∈ Mn−1(R) and a vector b such

that U−1HU =
(

1 bT

0 Q

)
. As a consequence 1

α
W is similar to a matrix B of the following form:

B = 1

α
U−1WU = U−1HU + 1− α

α

⎛⎜⎜⎝
1

0

:
0

⎞⎟⎟⎠(vTU) =
(

1/α b̃
T

0 Q

)
.

Thus, if φA(λ) denotes the characteristic polynomial of A ∈ Mn(C), then φH(λ) = (λ − 1)φQ (λ)

and φα−1W (λ) = (λ− α−1)φQ (λ). Therefore for any i = 2, . . . , n, λi(W) = αλi(Q) = αλi(H) and|λi(W)| = α|λi(H)| � α. �

So, by Theorem 2.1 above, the power method, when applied to compute the W-pagerank vector,

reduces the error essentially by an α factor, for each iteration. Moreover, such method can be imple-

mented in terms of the sparse matrix P, requiring a relatively small amount of operations and data to

be stored per step. In fact pk+1 = αPTpk+ γkv, being γk ∈ R such that eTRTpk = γk , and an efficient

implementation of such scheme can be done as in Google case [1, pp. 77–78]. Note that, if p(n) denotes
the number of multiplicative operations required to compute PTz, then in order to compute pk+1 from
pk one needs p(n) = O(n)multiplicative operations.

In [3], it is proved that the Google-pagerank vector is also solution of a sparse linear system. Such

result can be easily extended to the W-pagerank vector, in fact:

Theorem 2.2. Let A = A(α) = I−αP and let v ∈ R
n be a vector spanning range(RT ) such that vTe = 1.

Then det(A) �= 0 and p = WTp = x ‖x‖−11 where x solves the system ATx = v.

Proof. Of course A is non-singular because ρ(P) � 1 implies |λi(A)| � |1− αρ(P)| � 1− α. Since
eTp = 1 and range(R) = Span

(
e− αϕΩ(e)), we have RTp = v(1− αϕΩ(e)Tp). Then

WTp = p⇐⇒ (A− R)Tp = 0⇐⇒ (AT − αvϕΩ(e)T )p = v.

Therefore, by the Sherman–Morrison formula, there exists γ ∈ R such that p = γ (AT )−1v = γ x and

γ = ‖x‖−11 since p is non-negative and
∑

k pk = 1. �

We refer to the system

ATx = v, A = A(α) = I − αP, vTe = 1 (1)

as theW-pagerank system.

3. On the eigen and singular values of P

In this section, we investigate the spectral properties of the matrix P defining (viaW) the pagerank

vectorp. In particular, by exploiting the particular structure of P, we state some interesting computable

upper and lower bounds for itsmaximal singular value and for its second eigenvalue. Such studies have

originated from attempts to give a theoretical justification to some experimental evidences (see also

Section 8) about a clustering behavior of the spectrum of P, depending on the value of dP , and can be

useful to evaluate the convergence of iterative methods in solving the W-problem.
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Definition 3.1. Accordingly with the notation used in [13,14] we say that Γ ⊂ C is a eigen(singular)

values general cluster for a sequence of n× n matrices {Xn}n, if the number of eigen(singular) values

of Xn that fall outside the closure Γ is o(n).

It is useful to observe that the elements on the jth column of EP , i = 1, 2, . . . , n, are n Bernoullian

independent identical distributed random variables, with mean and variance, respectively, given by

m= E[(EP)1j, . . . , (EP)nj] = dP/n,

σ 2 = Var[(EP)1j, . . . , (EP)nj] = m(1− m),

for j = 1, . . . , n. This observation yields the following:

Theorem 3.2. Let {Pn}n be a sequence of n × n matrices with the same structure of P, and assume that

the sequence {dPn}n of densities is bounded. Then {‖Pn‖1}n is bounded with probability one.

Proof. Let m, σ 2 be as above and μ
(n)
min = min{(ΔPn)ii | (ΔPn)ii �= 0, i = 1, . . . , n}. Of course, if

1

μ
(n)
min

∑
i(EPn)ij � M, ∀j = 1, . . . , n, then ‖Pn‖1 � M. Now let d be such that supn dPn � d <∞ , we

have (nσ 2)−1 > d−1, ∀n � 1. Observe moreover that the sequence {μ(n)min}n is bounded as well, i.e.

there exists μmin such that supn μ
(n)
min � μmin < ∞. Set Sn =

∑n
i=1(EPn )ij−n·m

σ
√

n
, and let P(Ω) denote

the probability measure of the setΩ . Then

P (‖Pn‖1 � M) � P

⎛⎝ n∑
i=1
(EPn)ij � Mμ

(n)
min

⎞⎠ � P

(
Sn � Mμmin − d√

d

)
.

Observe that Sn � Sn+1, thus bymonotonyP(Sn � δ) � P(limn→∞ Sn � δ) = limn→∞ P(Sn � δ).
LetGdenote a standard Gaussian random variable. The central limit theorem ensures limn→∞ P(Sn �
δ) = P(G � δ). But ∀ε > 0, ∀δ > 0 ∃Mε > 0 such that P(G � Mεδ) > ε. Therefore for any chosen

ε > 0 there exists an Mε > 0 such that

P (‖Pn‖1 � Mε) > ε, ∀n � 1 .

As a consequence ∃ M > 0 such that the series
∑+∞

k=1 P(‖Pk‖1 � M) diverges and by the second

Borel–Cantelli lemma ([15], for instance) we have P(lim supn→∞ ‖Pn‖1 � M) = 1, which finally

proves the claim. �

By using the above theorem we obtain now a clustering property for the eigenvalues of P, which

holds with probability one. However one can state a deterministic analogous result but requiring a bit

stronger assumption. See, respectively, the following Corollary 3.3 and Proposition 3.4.

Corollary 3.3. Let {Pn}n be as in Theorem 3.2. If Γ = {x ∈ R | 0 � x � R} is a singular values general

cluster for Pn, then BR(0) is an eigenvalues general cluster for Pn almost surely.

Proof. Note that ‖Pn‖2 �
√‖Pn‖1‖Pn‖∞ = √‖Pn‖1, and by Theorem 3.2 there exists M > 0 such

that log(‖Pn‖2) � 1
2
log(‖Pn‖1) � M with probability one. Use Theorem 3.3 in [14] to derive the

thesis. �

Proposition 3.4. Let {Pn}n be as in Theorem 3.2. Let Γ = {x ∈ R | 0 � x � R} a singular values general
cluster for Pn and let γ (n) be the number of singular values of Pn in (R,+∞). If exists c � 0 such that

γ (n) � cn
log n

then BR(0) is a general cluster for the eigenvalues of Pn.
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Proof. By Theorem 3.3 in [14] it is enough to show that log(‖Pn‖2) = O
(

n
γ (n)

)
. But this is true since

‖Pn‖2 � √n‖Pn‖∞ = √n, and therefore, by the hypothesis on γ (n), log(‖Pn‖2) � 1
2
log n �

c
2

n
γ (n)

. �

Corollary 3.3 and Proposition 3.4 affirm that if the singular values of P cluster in a neighborhood

of the origin, then also the eigenvalues of P do the same. This is not surprising since very often the

existence of a singular values cluster implies the existence of an eigenvalues one. However it is not

always true, as observed in [14], where a counter-example is given. Moreover one can observe that a

proper singular value cluster round zero always implies a proper eigenvalues cluster round zero. This

fact has been proved for the first time in [16] and subsequently in [17].

As a consequence of the above results, it is useful to investigate the distribution (location) of the

singular values of P, or, equivalently, of the spectrum of the matrices PPT and PTP, both in sPDn(R). In
fact, we now obtain upper and lower bounds for the maximal singular value σ1(P), and a lower bound

for the gap σ1(P)− σ2(P).
It is not difficult to prove the identities

(PPT )ji = (PPT )ij = |ν(i)∩ν(j)|μiμj

(PTP)ji = (PTP)ij = ∑
k∈ρ(i)∩ρ(j) 1

μ2
k

, ∀i, j = 1, . . . , n,

and of course (PPT )ij = 0, whenever μi = 0 or μj = 0. Note that σ1(P)
2 = ρ(PPT ) and λi(PPT ) =

λi(P
TP) = σi(P)

2, ∀i. By the definition of P, PPT has at least a null row, that is mini λi(PP
T ) =

mini σi(P)
2 = 0. From now on assume the singular and eigen values of P ordered so that σi(P) �

σi+1(P) and |λi(P)| � |λi+1(P)|, i = 1, . . . , n− 1. Observe that

‖PPT‖∞= maxi
∑

j |(PPT )ij| = maxi
∑

j
1

μiμj
|ν(i) ∩ ν(j)|

= maxi
1
μi

∑
j:ν(j)�=∅ 1

μj
|ν(i) ∩ ν(j)|

� maxi
1
μi

∑
j:ν(j)�=∅ 1

μj
μj

= |{j:ν(j)�=∅}|
mini:ν(i)�=∅ μi

,

but also

‖PTP‖∞= maxi
∑

j |(PTP)ij| = maxi
∑

j

∑
k∈ρ(i)∩ρ(j) 1

μ2
k

� maxi
1

mink:ν(k)�=∅ μ2
k

∑
j:ρ(j)�=∅ |ρ(i) ∩ ρ(j)|

� |{j : ρ(j) �= ∅}| maxk |ρ(k)|
mink:ν(k)�=∅ μ2

k

.

The latter upper bounds for the infinity norms of PPT and PTP, togetherwith the remark that σ1(P)
2 =

ρ(PPT ) = ρ(PTP) � min{‖PPT‖∞, ‖PTP‖∞}, let us state the proposition here below:

Proposition 3.5. The following upper bounds hold for the greatest singular value of P

σ1(P)
2 � |{j : ν(j) �= ∅}|

mini:ν(i)�=∅ μi

� |{j : ρ(j) �= ∅}|maxk |ρ(k)|
mini:ν(i)�=∅ μ2

i

.

Proof. There follows the proof of the right inequality. Without loss of generality, assume that

{j : ν(j) �= ∅} = {1, 2, . . . , x}, x := |{j : ν(j) �= ∅}|,
{j : ρ(j) �= ∅} = {1, 2, . . . , y}, y := |{j : ρ(j) �= ∅}|.
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Fig. 1. Q for μmin generic, y = μminx, μmin
x
2
, μmin

x
3
, . . . , μmin

x
i
, μmin

x
i+1 .

Thus, the x×y upper left submatrix of P, whichwe callQ , has no null row and no null column,whereas

the entries of the remaining part of P are all zeros:

P =
⎛⎝ Q 0

0 0

⎞⎠ .
Thiswayweonlyneed toprove that (mink:ν(k)�=∅ |ν(k)|)x � (maxk |ρ(k)|)y. Setμmin=mink:μk>0 μk .

We consider the two different cases y � μminx and y < μminx. It is useful to observe that, by the

hypotheses, the non-zero entries of the matrix Q for y = μminx, μmin
x
2
, μmin

x
3
, . . ., μmin

x
i
, μmin

x
i+1

must be (modulopermutations) in thepositions shown in Fig. 1. y � μminx: In this casemaxk |ρ(k)| �
1 (see Fig. 1, y = μminx). Thus μminx � 1 · y � (maxk |ρ(k)|)y.

y < μminx: If y < μminx, then maxk |ρ(k)| � 2 (see Fig. 1, y = μminx, μmin
x
2
). If μmin

x
2

� y

too, then μminx � 2y � (maxk |ρ(k)|)y. If y < μmin
x
2
, then maxk |ρ(k)| � 3 (see Fig. 1, y =

μmin
x
2
, μmin

x
3
). If μmin

x
3

� y too, then μminx � 3y � (maxk |ρ(k)|)y. In general, let i ∈ {1, 2, . . .}.
If y < μmin

x
i
, then maxk |ρ(k)| � i + 1 (see Fig. 1, y = μmin

x
i
, μmin

x
i+1 ). If μmin

x
i+1 � y too, then

μminx � (i+ 1)y � (maxk |ρ(k)|)y. �

Observe that the particular structure of P let us also obtain lower bounds for σ1(P). These are

obtained from the identities

σ1(P)
2 = ρ(PPT ) = ρ(PTP) = max‖x‖2=1

‖Px‖22 = max‖x‖2=1
‖PTx‖22,

by choosing suitable vectors x. For example, the choices x = ei and x = 1√
2
(ei + ej) (where ei is the

ith canonical vector) yield the easily computable bounds in the proposition below.More generally, any

choice x = 1√
k
(ei1 + · · ·+ eik), gives significant lower bounds for σ1(P), but the greater is k the more

difficult is their evaluations.

Proposition 3.6. The following lower bounds hold for the greatest singular value of P
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σ1(P)
2 � max

⎧⎨⎩ max
i:ρ(i)�=∅

∑
k∈ρ(i)

1

μ2
k

,
1

mini:ν(i)�=∅ μi

⎫⎬⎭
σ1(P)

2 � 1

2
max

⎧⎪⎨⎪⎩ max
i �=j

ν(i)�=∅,ν(j)�=∅

[
1

μi

+ 1

μj

+ 2|ν(i) ∩ ν(j)|
μiμj

]
,

max
i �=j

ρ(i)�=∅,ρ(j)�=∅

⎡⎣ ∑
k∈(ρ(i)∪ρ(j))\(ρ(i)∩ρ(j))

1

μ2
k

+ ∑
k∈ρ(i)∩ρ(j)

4

μ2
k

⎤⎦
⎫⎪⎬⎪⎭

The upper and lower bounds obtained for σ1(P) could be used in order to estimate the gap between

the first and the second singular values of P, i.e. to observe the existence of the cluster of Σ(P) that
experiments show (see also Section 8). For instance, one can use a formula in [18], which applied to P

reads

σ1(P)− σ2(P) � 1

2

(
σ1(P)− 1

mini μi

)
ε(P, u)2

where u is the right (but also the left) maximal eigenvector of PPT and

ε(P, u) = min
S⊂N,|S|� n

2

∑
j∈N\S

uj

μj

⎛⎝∑
i∈S 1

μi
|ν(i) ∩ ν(j)|ui∑

i∈S
(
σ1(P)− 1

μi

)
u2i

⎞⎠ .
We conclude this section with the following theorem in which we give an upper bound for the

second largest eigenvalue λ2(S) of a generic stochastic row-constant matrix S.

Theorem 3.7. Let S = Δ
−1
S ES = diag(s−11 , · · · , s−1n )ES be a row-constant stochastic n × n matrix.

Enumerate the eigenvalues of S so that 1 = ρ(S) = λ1(S) � |λ2(S)| � . . . � |λn(S)|. Let N ={1, . . . , n} and, as for the quasi-stochastic case, define ν(i) = {j ∈ N | (ES)ij = 1}, ∀i ∈ N, so that

|ν(i)| = si. Set m = arg(mini∈N si), M = arg(maxi∈N si) and ηS = |ν(m)∩ν(M)|2smsM
. If ηS � 1 − δ/2 for

0 < δ < 1 then

|λ2(S)| � δ < ρ(S) = 1.

In other words the eigenvalues of S (except for the spectral radius) cluster into a δ-neighborhood of the

origin.

Proof. In [19] was proved the following non-optimal bound for λ2(S), as discussed in [20],

|λ2(S)| � min
j∈N max

i∈N
∑
k∈N

∑
r∈N
|(S)ik(S)jr − (S)ir(S)jk|.

Therefore, if εij = (ES)ij , we have

|λ2(S)|� minj maxi
∑

k

∑
r

1
sisj
|εikεjr − εirεjk|

= minj maxi
1
sisj

[
|ν(i) ∩ ν(j)|∑k |εik − εjk|

+
(
|ν(i)| − |ν(i) ∩ ν(j)|

)∑
k εjk +

(
|ν(j)| − |ν(i) ∩ ν(j)|

)∑
k εik

]
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= minj maxi
1
sisj

[
|ν(i) ∩ ν(j)|(si + sj − 2|ν(i) ∩ ν(j)|)

+sisj − |ν(i) ∩ ν(j)|sj + sisj − |ν(i) ∩ ν(j)|sj
]

= minj maxi
1
sisj
(2sisj − 2|ν(i) ∩ ν(j)|2)

= 2− 2maxj mini
|ν(i)∩ν(j)|2

sisj
. (2)

Let k ∈ N and set fk : N→ N, si �→ fk(si) = |ν(i)∩ ν(k)|. The expression obtained in (2) can then be

rewritten as

k ∈ N,
fk(si)

2

sisk
=: ψk(si), |λ2(S)| � 2− 2max

k∈N min
i∈N ψk(si).

Now consider the natural extension of fk on R, denote it still with fk . Observe that in [0, n] one has

0 � fk(x) � x, fk(0) = 0 and y � x⇒ fk(y) � fk(x). This implies that fk ismonotone non-decreasing,

hence differentiable a.e., precisely x > 0⇒ 0 < d
dx
fk(x) � 1 a.e.. Extend alsoψk on R; clearly it also

is differentiable a.e., moreover it can be easily observed that x � fk(x) implies d
dx
ψk(x) � 0 and thus

alsoψk is monotone non-decreasing. As a consequence

max
j∈N min

i∈N ψj(si) = max
j∈N ψj(sm) = max

j∈N
|ν(m) ∩ ν(j)|2

smsj
.

Finally, an analogous discussion yields maxj∈N mini∈N ψj(si) = ηS , therefore by (2) we have the

thesis. �

Observe that the formula obtained is of interest only if sm/sM >
1
2
, sinceηS � sm/sM . Thuswith the

Theorem abovewe give a slack computable bound for the eigenvalue cluster of a generic row-constant

stochastic n × n matrix S, containing all the eigenvalues λi(S) with the only exception for λ1(S) = 1

(the largest one). Of course such formula should be adapted to estimate a bound for Λ(P), removing

the hypothesis of stochasticity.

4. The power method embedded in a Euler–Richardson iterative scheme

Given a generic non-singular n × n matrix B and a n-dimensional vector b, let us consider the

following vectorial application,

ΦB,b (Q , z) = z+ Q (b− Bz) , (3)

where Q ∈ Mn(C) and z is any n × 1 vector. Observe that the vector y = B−1b, is a fixed point

for Φ , independently from the choice of the matrix Q . So one may propose the iterative scheme

xk+1 = ΦB,b (Q , xk) to solve the linear system By = b. The convergence and the convergence rate of

such scheme depends on the choice of Q , for this reason Q is referred as the preconditioning matrix.

In this work, we apply the above scheme to the linear system (1), i.e. we consider the method

x0 ∈ R
n, xk+1 = ΦAT ,v (Q , xk) , k � 0 (4)

whose iteration matrix is

HQ = I − QAT



F. Tudisco, C. Di Fiore / Linear Algebra and its Applications 435 (2011) 2222–2246 2231

and we propose different choices for the preconditioner Q , looking for it through particular matrix

structures. We will notice that (4) for Q = I has the same complexity per step, memory usage, and

rate of convergence of the power method. For these reasons, in the following, we refer to (4), Q = I,

and to power method indifferently, even if the sequences {xk}k and {pk}k they define may differ (see

also [1]).

The idea behind our investigations is that a suitable preconditioner Q �= I used in the scheme (4)

could modify the spectrum of the iteration matrix HQ contracting its spectral radius and then giving

rise to a method whose convergence rate is higher than power method (Q = I).

Definition 4.1. The matrix Q in (4) is said to be a spectral preconditioner or a σ -preconditioner, if
ρ(I − QAT ) � β < ρ(I − AT ) = ρ(αPT ), for a positive β smaller than α.

We expect that a σ -preconditioner can be produced by choosing Q as an approximation (in a sense

thatwewill specify) of (AT )−1, sinceusingexactlyQ = (AT )−1 into (4) ensures that theonlyeigenvalue
of the iteration matrix is 0 with multiplicity n, or rather that (4) converges in one step.

Let us consider, first, the simplest case Q = ωI, where ω ∈ R. This choice for Q gives rise to the

Euler–Richardson (ER) method for linear systems (see [21], for instance). Since the eigenvalues of A

have positive real parts, there existsω. > 0 such that for allω ∈ (0, ω.) suchmethod is convergent.

The optimal value for ω is given by the following:

Theorem 4.2. Let A, x, α and v be as in (1). Choose x0 ∈ R
n and define the sequence

xk+1 = ΦAT ,v (ωI, xk) , k = 0, 1, 2, . . . . (5)

Then the highest rate xk can reach in converging to x is dominated by O(αk) and is obtained for ω = 1.

Proof. Consider the iteration matrix HωI = I − ωAT , let λ be the generic eigenvalue of A. Then

Λ(A) ⊆ Bα(1). The spectral radius ρ (HωI) is a holomorphic function of λ, thus it is dominated by

the value it assumes at the boundary ∂Bα(1). It is possible to parametrize λ|∂Bα(1) as a function of

φ ∈ R, λ|∂Bα(1) = �(φ) = 1 + αeiφ. Remark that ρ (HωI)
2 � maxφ∈R|1 − ω�(φ)|2 and that

|1−ω�(φ)|2 = 2ωα(ω− 1) cosφ +ω2α2 + (1−ω)2. It is not difficult to observe that this implies

min
ω∈R ρ (HωI)

2 � min
ω∈R max

φ∈R |1− ω�(φ)|
2 = α2,

therefore the thesis. �

Theorem 4.2 states that the convergence rate ρ (HI)
k of ER method, used to solve theW-pagerank

system (1), is less than or equal to O(αk), i.e. at most the convergence rate of the power method in

computing p = WTp. The ER method, referred in [6,4] as the Jacobi process, requires exactly O(p(n))
multiplications at each step, and exactly two real vectors to be stored, the same as the power method.

Therefore the choice of a preconditioning matrix Q in (4) different from the identity, is a way to

introduce a sort of preconditioned power method.

5. Polynomial preconditioning

In this section, we study the case in which Q = f (αPT ), being f a polynomial function. We are

interested in such a type of preconditioner since by the well-known Neumann series, 1 if φτ (X) =∑τ
ν=0 Xν then limτ→∞ φτ (αPT ) = (AT )−1, for all 0 � α < 1. Therefore φτ (αP

T ) is a polynomial

approximation of (AT )−1 as better as greater τ is. Thus, fixed the degree τ of f , we look for the optimal

1 We refer to the formula:
∑∞
ν=0 Xν = (I − X)−1 for all X ∈ Mn(C) such that ρ(X) < 1.
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choice of polynomial f in order to approximate (AT )−1 or, similarly, for an optimal preconditioner Q

of the form f (αPT ).

For the method defined by xk+1 = ΦAT ,v

(
f (αPT ), xk

)
, the iteration matrix becomes

Hf (αPT ) = I − f (αPT )
(
I − αPT

)
. (6)

Let g be the τ + 1 degree polynomial such that f (x)(1− x)+ γ = 1− g(x), for a suitable γ ∈ R.

If we indicate with ξi the generic eigenvalue of the matrix αP (note that this implies ξi ∈ Bα(0) i.e.|ξi| � α), then it results

ρ
(
Hf (αPT )

)
= max

i
|q(ξi)| � max|ξ |�α |g(ξ)+ γ | = max|ξ |�α |q(ξ)|

for a generic polynomial q such that q(1) = 1 and deg q = τ + 1. It follows that if P1
d denotes the set

of polynomials P1
d = {p ∈ R[x] : deg p = d, p(1) = 1} then looking for the optimal preconditioner

Q = f.(αPT ) can be reduced to the research of q. ∈ P1
τ+1 such that themodulus |q.(x)| isminimum

in the closed region |x| � α.

Theorem 5.1. Let T
(d)
BR(0)

(z) = Td(z) = zd. Then Td(z) realizes the minimum

min
p∈P1

d

‖p(z)‖L∞(BR(0)) = ‖Td(z)‖L∞(BR(0)) . (7)

for all 0 < R < 1.

Proof. Consider, first, a monic polynomial p of degree d. If p �= Td(z) then p(z) = zd +∑d
j=1 ajzd−j ,∑

j |aj| �= 0. Setψ(z) = p(z)

zd
, thenψ is holomorphic over the open set {C\BR(0)}. Sinceψ(z) |z|↑∞−→ 1,

it follows from themaximum principle that maxz∈∂BR(0) |ψ(z)| > 1. Let’s indicate with ‖·‖∞ the sup-

norm over the compact set BR(0). It results

‖p(z)‖∞ = max
z∈∂BR(0)

|zd||ψ(z)| > ‖Td(z)‖∞ .

Consider now a generic polynomial g ∈ P1
d . Then it must exist a polynomial �(z) = cd−1zd−1 +· · · + c0 such that cd−1 �= 0 so that g(z) = 1 + (1 − z)�(z). The same considerations done for the

case above imply

‖g(z)‖∞ � |cd−1| ‖Td(z)‖∞
thereforewecan limit theattention to thecase |cd−1| < 1. Suppose‖g‖∞ < ‖Td‖∞; for themaximum

principle it would imply that maxφ∈R |g(Reiφ)| < Rd or equivalently maxφ∈R |g(Re
iφ)|

Rd
< 1, but the

latter inequality is impossible since

max
φ∈R
|g(Reiφ)|

Rd
= max

φ∈R

∣∣∣∣∣ 1Rd + �(Re
iφ)(1− Reiφ)

Rd

∣∣∣∣∣
� max

φ∈R

∣∣∣∣∣ 1Rd + cd−1Rd−1eiφ(d−1)
1− Reiφ

Rd

∣∣∣∣∣
�

∣∣∣∣ 1
Rd
+ 1− R

R
cd−1

∣∣∣∣ > 1

for all R and cd−1 such that 0 < R < 1, |cd−1| < 1. �
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We can now give an overestimation of the spectral radius for the iteration matrix (6). In fact, by

Theorem 5.1 it follows that

f.(x) = 1− T
(τ+1)
Bα(0)

(x)

1− x
=

τ∑
j=0

xj ,

thus ρ
(
Hf.(αPT )

)
� ρ

(
Hf (αPT )

)
for all polynomial f such that deg f = τ . Moreover, ρ

(
Hf.(αPT )

)
�

ατ+1.
This implies that each iteration of the method xk+1 = ΦAT ,v

(
f.(αPT ), xk

)
is equivalent to iterate

the Euler–Richardson method (5), with ω = 1, τ + 1 times, i.e. the method generates nothing else

than a subsequence of the sequence generated by the ER method. It follows that a preconditioner of

the form Q = f (αPT ) is not of any interest for our scopes.

6. Preconditioning by algebras U : the ERU algorithm

The second class of preconditioners for (4) is based on unitary matrix properties and fast transfor-

mations. Unlike the polynomial preconditioner studied in the previous section, this timewe obtain an

interesting method which exploits a possible σ -preconditioner Q .

Consider the subset U of the n× n complex matrices ring Mn(C)

U = {
X ∈ Mn(C) : X = UDU∗, D diagonal

}
, (8)

where U ∈ Un(C) is fixed. It is not difficult to prove that U is a n-dimensional vectorial subspace of

Mn(C), as well as a matrix algebra.

Given X ∈ Mn(C), we indicate with UX = UDXU
∗ the matrix of U that best approximates X in the

Frobenius norm, i.e.

‖UX − X‖F = min
Y∈U
‖Y − X‖F .

Note thatUX is well defined sinceMn(C) is a Hilbert spacewith respect to the inner product 〈X, Y〉F =∑
i,j xijyij , where x denotes the complex conjugate of x, and U is closed with respect to ‖·‖F, which is

exactly the norm induced by 〈·, ·〉F. In otherwordsUX is the projection of X ontoU with respect 〈·, ·〉F.
We also recall that ‖·‖F is unitary transform invariant, i.e. ‖MXQ‖F = ‖X‖F for all unitary matricesM,

Q .

The following result holds (see [22] or [23]):

Proposition 6.1. Let X be a n × n matrix, then (DX)ii = (U∗XU)ii . Therefore UX = U diag(U∗XU)U∗.
Moreover the operator X �→ UX is linear, i.e.

UαA+βB = αUA + βUB.

Now consider the use of U
−1
AT

as a preconditioner for the method (4), in order to solve the W-

pagerank linear system (1):

x0 ∈ R
n, xk+1 = ΦAT ,v

(
U
−1
AT
, xk

)
. (9)

Remark that the preconditioner we consider is the inverse of the best approximation of AT (with

respect ‖·‖F) into the subspace U , thus we expect that it is a good choice. In particular, we will

report some numerical experiences which show that at least one choice for U can make U
−1
AT

a σ -
preconditioner. We shall refer to (9) as the ERU method.
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Let us obtain an efficient implementation of the scheme (9). Observe that the linearity of X �→ UX

implies the identity UAT = I − αUPT . Thus the generic iteration (9) takes the form

xk+1 = xk + U (I − αDPT )
−1 U∗

(
v− ATxk

)
.

Set û = U∗u for a generic n × 1 vector u. Then left-multiplying by U∗ the expression obtained, we

have the following updating formula

x̂k+1 = x̂k + (I − αDPT )
−1 (̂

v− x̂k + αU∗PTUx̂k

)
,

whereDPT is thediagonalmatrix that characterizesUPT inU .Note that ifP changesand/or itsdimension

increases then the essential quantities to define DP can be in real time updated at very low cost (this

is true for a particular U, see Section 7).

Let s : Cn → R
+ indicate a stopping criterion for the kth approximant; the algorithm below is a

possible implementation of the ERU method for theW-pagerank computation:

(A1) An implementation of the ERU algorithm (9)

Compute v̂ = U∗v and DQ = (I − αDPT )
−1.

Choose x̂ ∈ C
n and a tolerance τ ∈ R

+.
Set
y← Ux̂
z← PTy
y← U∗z
y← v̂− x̂+ αŷ
x̂← x̂+ DQy
until s(̂x) < τ . Then set y = Ux̂, and propose

y
‖y‖1 as an approximation of

theW-pagerank vector p = x
‖x‖1

In order to estimate the number of multiplicative operations that each step of such Algorithm

requires, we introduce the notation

χ(Λ) = � multiplicative operations required to computeΛ.

Thus one can compute ŵ, givenw and U, with χ(U∗w)multiplicative operations, or DPT with χ(DPT ),
given P and U. Then, if y is a generic n × 1 vector, it follows that p(n) = χ(PTy) = dPT n and

that the complexity of Algorithm ERU is χ(PTy) + χ(U∗y) + χ(Uy) + O(n) for each step, plus

χ(DPT )+ χ(U∗y)+ χ(Uy)+ O(n) only once.

Definition6.2. Wesay thatQ is a lowcomplexity spectral preconditioner, or brieflya LCσ -preconditioner,
if Q is a spectral preconditioner that can be computed with O(n) multiplications and such that the

computation ofΦAT ,v(Q , xk) also requires O(n)multiplications.

The question is to find an unitary matrix U such that the preconditioner U
−1
AT

is a LCσ -

preconditioner. For instance, ifU is any Householder unitarymatrix then it is easy to show thatU
−1
AT

is

a LC-preconditioner. Here we show, keeping in high esteem experimental results, that at least a choice

of U makes the matrix U
−1
AT

a σ -preconditioner (see Section 8) which, for any θ > 1, can be com-

puted with less than O(nθ )multiplicative operations and gives rise to a method whose computational

complexity each iteration is less that O(nθ ), too. Let us prove this fact.

First observe that if
{
Ψ U

1 , . . . , Ψ
U
n

}
= Ψ U is an orthogonal basis for U , with respect to the inner

product 〈·, ·〉F, then for any X ∈ Mn(C), there exist φX
1 , . . . , φ

X
n such that UX = ∑n

i=1 φX
i Ψ

U
i . Also

observe that, by the known Hilbert projection theorem, UX can be characterized as the unique matrix
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of U such that〈
Ψ U

i ,UX − X
〉
F
= 0, i = 1, 2, . . . , n.

Therefore, by the orthogonality of the basis Ψ U we have the following formula for φX
i :

φX
i =

〈
Ψ U

i , X
〉
F〈

Ψ U
i , Ψ

U
i

〉
F

, i = 1, 2, . . . , n. (10)

Now introduce the Fourier matrix, i.e.

F = 1√
n

(
ω(k−1)(j−1)n

)n
k,j=1 , ωn = e−

2π i
n .

We have the following:

Proposition 6.3. Consider the case U = F or, in other words, the case in which U is the space F of

circulant matrices. Then

1. For any n × 1 vector y, χ(U∗y) = χ(Uy) = O(n log2 n), by the well-known fast Fourier transform

algorithm.

2. Ψ U
i = Π i−1 whereΠ is the n× n matrix such thatΠ i = Π i mod n and

(Π)ij =
{
1 j = i+ 1 mod n

0 otherwise
.

3. φX
i = 1

n

〈
Π i−1, X

〉
F
, i = 1, . . . , n. Moreover (DX)ii is the Discrete Fourier Transform of φX

i , i.e.

(DX)ii =
(
n

1
2 UφX

)
i
.

4. Using the previous formulas, by the sparsity of P, one can compute the set {φP
i }ni=1 with O(n) multi-

plications, and then DPT via the formula DPT =
√

nF∗φP , so that χ(DPT ) = O(n log2 n).
5. The iterative ERU method can be implemented via Algorithm (A1) with

χ(PTy)+ χ(Uy)+ χ(U∗y)+ O(n) = O(n log2 n)

multiplicative operations for each step, plus χ(DPT )+ χ(U∗v)+ χ(Uy)+ O(n) = O(n log2 n) only

once. Notice that χ(U∗v) = 0 if v = 1
n
e.

Proof. Observe that, if x is the conjugate of x, then (F∗PTF)ii = (FPF)ii = (F∗PF)ii. Moreover, since

P is real and there exists a real basis for the circulant matrices (precisely {Π i}i=0,...,n−1), the matrix

FP is real too [24]. As a consequence FPT = F∗P = F T
P , or, in other words, DPT = DP . This proves

4. Points 1, 2 and 3 are well-known facts, see, for instance, [24] or [25]. Finally, for 5, just note that

F∗v = 1
n
F∗e = 1√

n
e1, thus no operation is required to compute suchmatrix-vectormultiplication. �

Thus we propose the circulant matrix F
−1

AT
as a preconditioner for (4).

6.1. On the complexity and the use of the circulant preconditioner

Asa consequenceof Proposition6.3, by choosingU = F weobtain apreconditioner that canbe com-

putedwithO(n log2 n)multiplications and such that the new approximation xk+1 = ΦAT ,v

(
F
−1

AT
, xk

)
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can be computed from xk with O(n log2 n)multiplications. Thus, applying the preconditioning matrix

F
−1

AT
as well as computing the eigenvalues of such preconditioner requires a surplus of operations.

However, as underlined in [3] it is often convenient to spendmore effort to decrease the running time

of the solving method when the same matrix is used many times to solve different problems. In the

Google case, for instance, the same matrix P is also required for personalized web search [26] or in

the case of the heuristic for collusion-proof pagerank [27,3]. Moreover the interest of the method just

introduced, consists in its convergence rate, as discussed afterwards.

Let us obtain an estimate on howmuch the complexities of a single iteration of the ERF algorithm,

implemented as in (A1), and of the power method differ. Suppose that n = 2γ is the order of P or

rather log2(n) = γ . Therefore the floating point multiplications required by the ERF algorithm each

step are χ(PTy) + 2χ(Fy) = (2γ + dP)n. Therefore the method requires about
(
1+ 2γ

dP

)
times

the multiplicative operations required by the power method. For what concerns memory usage, four

complex vectors are needed to implement ERF , thus four times the memory allocations required to

implement the power method.

Further studies could reduce the complexity per step of the ERU method and the requiredmemory

allocations. In particular, a LCσ -preconditioner can be probably found into a subspace of Mn(C), for
instance, there are lot of other interesting choices of algebras U (different from circulants) associated

with fast discrete transforms U. Besides the trigonometric and Hartley-type possible choices of U, all

giving rise to fast discrete transforms (see, for instance, [24,28–30]), one can simply consider House-

holder real unitary matrices. In such case it is easy to obtain a LC-preconditioner. Note that all such

alternative choices of U reduce the required memory allocations from 4 complex to 4 real vectors.

6.2. About the convergence of the method

In the following theorem, we introduce a sufficient condition for the convergence of the ERU

method, and in particular, of the ERF method. However, muchmore faithful convergence rate estima-

tions will be deduced in Section 8, as a consequence of some observations and experimental results.

Theorem 6.4. Let A, v, x and α be as in (1). Let β be such that 0 < β < 1, {xk}k the sequence in (9), and

γ
(1)
A,U =

∥∥∥U∗ATU
∥∥∥
1∥∥AT

∥∥
1

(11)

for a given unitary matrix U. If

min
i=1,...,n

∣∣∣(U∗ATU)ii

∣∣∣ � γ
(1)
A,U

1+ α
1+ β (12)

then xk
k↑∞−→ x and the convergence rate of ERU algorithm, as implemented in (A1), is dominated by

O(βk).

Proof. Given X ∈ Mn(C), set X̂ = U∗XU and

Gj(X) =
⎧⎪⎪⎨⎪⎪⎩x : |x − (X)jj| �

n∑
i=1
i �=j

|(X)ij|
⎫⎪⎪⎬⎪⎪⎭

for j = 1, 2, . . . , n.
Left multiply xk+1 (defined in (9)) by U∗, to obtain

x̂k+1 = ΦÂT ,̂v

(
diag(ÂT )−1, x̂k

)
(13)
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(note that U∗ATxk = (U∗ATU)(U∗xk) = ÂT x̂k). Moreover (9) converges if and only if (13) converges

(as k diverges). Observe that the quasi-stochasticity of P implies

‖A‖∞ � 1+ α,
where the equality holds if and only if there exists at least one index i ∈ {1, . . . , n} such that (P)ii = 0

and the ith row of P is not null. As a consequence

n∑
i=1
i �=j

∣∣∣∣(diag(ÂT )−1ÂT
)
ij

∣∣∣∣ = n∑
i=1
i �=j

∣∣∣∣∣ (ÂT )ij

(ÂT )ii

∣∣∣∣∣ �

∥∥∥ÂT
∥∥∥
1

mini

∣∣∣(ÂT )ii

∣∣∣ − 1 � β

where
(
diag(ÂT )−1ÂT

)
jj
= 1 for all j = 1, . . . , n. It follows that

G =
n⋃

i=1
Gi

(
diag(ÂT )−1ÂT

)
⊆ Bβ(1). (14)

By the known Gershgorin theorem, all the eigenvalues of diag(ÂT )−1ÂT are in G . Then by (14) it

results that the spectral radius of the iteration matrix of the sequence (9) is less than or equal to β ,

or rather that such sequence converges with a O(βk) rate. Finally observe that x̂ = limk→∞ x̂k solves

the linear system v̂ = ÂT x̂. So the solution for (1) is obtained by the identity x = Ux̂. �

Remark that under convergence hypothesis, the limit x of the sequenceΦAT ,v

(
U
−1
AT
, xk

)
is solution

of the real linear system (1); thus it will be a real vector, even if (9) defines a sequence of complex

vectors, as in the case U = F .

Before to proceed with the study of the preconditioner U
−1
AT

with U = F , let us observe that other

approximationsofAT couldbe chosen inU . In particular, in [31,32] it is shown thatUX is notnecessarily

the best possible preconditioner in U for a linear system Xz = b. More precisely, denoted with R(m)

the set of all rank m matrices (m constant with respect to n), and with ŨX + R̃
(m)
X the matrix solving

the U + R(m) approximation problem of X [31], the authors show that ŨX works as a preconditioner

better than UX provided U = F and X is Toeplitz. It would be interesting to investigate if the result is

yet true when X is our matrix AT = I− αPT . Moreover, for X = I− αPT one should also investigate if

there are algebras U closer to X than F , and thus preconditioners UX (ŨX ) better that FX (F̃X ).

7. Updating the circulant preconditioner

Observe that, by the particular structure of P, the following formulas hold, for a generic n × 1

vector y

y∗Py = ∑n
k=1 yk(Py)k =

∑
k:ν(k)�=∅ yk 1

μk

∑
s∈ν(k) ys, (15)

y∗Py = (PTy)∗y = ∑
k:ρ(k)�=∅ yk

∑
s∈ρ(k) 1

μs
ys. (16)

Let us associate to P its best circulant approximation FP . It follows from the previous section that

FP = F diag(F∗PF)F∗ = √nF diag(FφP)F∗. (17)

As a consequence of Propositions 6.1 and 6.3, the computation of the eigenvalues of the projection FAT

can be brought back to the computation of the eigenvalues of FP . By (17) it is clear that there are two

formulas for the eigenvalues of FP . Let us explicit these formulas.
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For the first one just observe that (15) and (16), y = ej , imply

(F∗PF)jj = 1

n

∑
k:ν(k)�=∅

∑
s∈ν(k)

1

μk

ω(s−k)(j−1) = 1

n

∑
k:ρ(k)�=∅

∑
s∈ρ(k)

1

μs

ω(k−s)(j−1).

For the second one, note that, if si denote the sums of the entries on the ith diagonal of P, i =
−n + 1, . . . ,−1, 0, 1, . . . , n − 1 (f.i. . . ., s−1 = ∑n−1

i=1 (P)i+1,i, s0 =
∑n

i=1(P)ii, s1 =
∑n−1

i=1 (P)i,i+1,
. . .), then we have s0 = 0 and, for i = 1, . . . , n− 1,

si =
∑

t=1...n−i,t∈ρ(t+i)

1

μt

= ∑
t=1...n−i,t+i∈ν(t)

1

μt

,

s−i =
∑

t=1...n−i,t∈ν(t+i)

1

μt+i
= ∑

t=1...n−i,t+i∈ρ(t)

1

μt+i
.

In order to obtain the latter formulas, use, for instance, the following remark:

(Pet+i)k =
⎧⎨⎩

1
μk

∑
s∈ν(k)(et+i)s ν(k) �= ∅

0 ν(k) = ∅ =
⎧⎨⎩

1
μk
ν(k) �= ∅, t + i ∈ ν(k)

0 otherwise
.

The elements on the first row of FP , say cT = [c0 c1 · · · cn−1], are the coefficients of FP when written

in terms of the orthogonal basis {Ψ F
j = Π j−1}j (see Section 6). In other words the ci are equal to the

φX
i in (10) when X = P and U = F , so that c = φP and FP = ∑n−1

i=0 ciΠ
i. Thus the vector c can be

computed via the identities

c0 = s0/n = 0, ci = (si + s−n+i)/n, i = 1, . . . , n− 1,

and we have the second formula for the eigenvalues of FP :

FP = F diag(zP)F
∗, zP =

√
nFc. (18)

Observe that the particular structure of EP allows us to assume that it is the adjacency matrix of an

oriented graph, for instance, describing the links among the web pages. Therefore we can say that a

change on EP is nothing else than a change of the graph it describes, and vice versa. It is also clear that

whenever suchmatrix changes, also thematrix P changes, and the preconditionerFP (orUP in general)

needs to be computed again. The observations done and the latter formula (18) allow us to propose

an algorithm generating the preconditionerFP for the upgraded row-constant quasi-stochasticmatrix

P, known the preconditioner for the current P. Note that such algorithm can be implemented very

cheaply if the eigenvalues of FP are computed only any time the dimension n of P doubles (see the end

of this section).

Whenever something changes in the graph that EP describes, we have to update P and FP . Let us

denotewith Pold → Pnew such elementary updating, where thematrix Pold is the current P (we assume

the eigenvalues ofFPold have been already computed) and Pnew , the updated P, has a dimension greater

by one or equal to the dimension of Pold. For updating FP we have to compute the new si in order to

define the new ci and thus the new vector zPnew (of the eigenvalues of FPnew ).

Recall that by the sparsity of P the preconditoner FP can be computed in O(n) operations from

scratch (as observed in Proposition 6.3). However, updating the essential quantities, i.e. the si, to

define the eigenvalues of FPnew requires very few operations (we show this fact below describing, case

for case, how the new si can be computed from the old si, in the main situations that may occur). So, it

is convenient to do only these operations for many successive elementary updates Pold → Pnew until

P has reached a previously established dimension. Then compute the eigenvalues of FP .
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(1) Adding a new vertex. This is the case in which the graph described by EP increases by one vertex,

that is Pnew increases by a new row (and thus a new column) with respect Pold:

Pold −→ Pnew =
⎛⎝ Pold 0

· · · 1
μn+1 · · · 0

⎞⎠
We suppose to enumerate with n + 1 the new vertex. We have to associate to it the new objects

μn+1, ν(n+ 1) ⊂ {1, . . . , n}, ρ(n+ 1) ⊂ {1, 2, . . . , n+ 1} (we need newmemory allocations for

them). Note that in the case in which EP describes a web graph (as in the case of Google), updating P

following the birth of a new vertex implies thatμn+1 = |ν(n+ 1)| is small and that ρ(n+ 1) = ∅
(since the site just born is unknown to the others, then there are no edges pointing to the new vertex

yet).

Then introduce the two new numbers sn, s−n (we need other two new cells in memory for them),

and set:

sn := 0, s−n := 0, sj−n−1 := sj−n−1 + 1

μn+1
, j ∈ ν(n+ 1).

After this, introduce another new number cn (we need a further new cell in memory for it), and set:

cn := 0, cj := (sj + s−(n+1)+j)/n, j ∈ ν(n+ 1).

Finally, set n := n+ 1

(2) An element ofΔP changes. By analogy with the case EP describes a web graph, this is the situation

in which the birth of a new site coincides with the death of an old one.

Assume that the rth element ofΔPold changes. Then

Pold =

⎛⎜⎜⎜⎝ · 1
μr
· 0 · 1

μr
·

⎞⎟⎟⎟⎠ −→ Pnew =

⎛⎜⎜⎜⎝
0

· 1
μnew

r
· 0 · 1

μnew
r
·

0

⎞⎟⎟⎟⎠ .
Set

sk−r := sk−r − 1

μr

, k ∈ ν(r),

and apply the operations described in the Case 4 below, for j = r and ∀i ∈ ρ(r). Moreover we must

define new μr , ν(r) ⊂ {1, . . . , n} \ {r}, and ρ(r), ρ(r) = ∅. Then set

sk−r := sk−r + 1

μr

, k ∈ ν(r),

ck−r = (sk−r + s−n+k−r)/n, k ∈ ν(r), k− r > 0,

cn+k−r = (sn+k−r + sk−r)/n, k ∈ ν(r), k− r < 0.

(3) An element of EP changes from 0 to 1. Assume that the ijth element of EP changes from 0 to 1. This

is the case in which a new edge from the vertex i to the vertex j is added to the graph. It is clear

that this implies that also the iith element of ΔP changes, since (ΔP)ii = (EPe)i = μi. Precisely it

increases by one, i.e.

Pold =

⎛⎜⎜⎜⎝ · · · 1
μi
· · · 0 · · ·

⎞⎟⎟⎟⎠ −→ Pnew =

⎛⎜⎜⎜⎝ · · · 1
μi+1 · · · 1

μi+1 · · ·

⎞⎟⎟⎟⎠
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The following operations must be done:

sj−i := sj−i + 1

μi + 1
, sk−i := sk−i + 1

μi + 1
− 1

μi

, k ∈ ν(i).
⎧⎨⎩ cj−i = (sj−i + s−n+j−i)/n, if j − i > 0, or

cn+j−i = (sn+j−i + sj−i)/n, if j − i < 0,⎧⎨⎩ ck−i = (sk−i + s−n+k−i)/n, k ∈ ν(i), k− i > 0,

cn+k−i = (sn+k−i + sk−i)/n, k ∈ ν(i), k − i < 0.

Then setμi := μi+ 1, ν(i) := ν(i)∪ {j}, ρ(j) := ρ(j)∪ {i}. The latter identities require reordering
(forward shift).

(4) An element of EP changes from 1 to 0. This case, similarly to the case described before, corresponds

to the situation in which the edge from i to j is removed from the graph, i.e. the ijth element of

EP changes from 1 to 0. As observed before, this implies that the iith element of ΔP changes too.

Precisely it decreases by one:

Pold =

⎛⎜⎜⎜⎝ · · · 1
μi
· · · 1

μi
· · ·

⎞⎟⎟⎟⎠ −→ Pnew =

⎛⎜⎜⎜⎝ · · · 1
μi−1 · · · 0 · · ·

⎞⎟⎟⎟⎠
The operations required in this case are similar to the operations required by the Case 3. Precisely

sj−i := sj−i − 1

μi

, sk−i := sk−i + 1

μi − 1
− 1

μi

, k ∈ ν(i)\{j},

cj−i, cn+j−i as in Case 3, and ck−i, cn+k−i as in Case 3 except that k runs on ν(i) \ {j}.
Then set μi := μi − 1, ν(i) := ν(i)\{j}, ρ(j) := ρ(j)\{i}. The latter identities require reordering

(backward shift).

Remark 7.1. Note that, after Case 1 or Case 2 has been run, the site i∗ which has created the new site

(n in Case 1 and r in Case 2) must create a link to such new site. In other words, after Case 1 or Case 2

we have to run Case 3 for j = n and i = i∗ ∈ {1, . . . , n− 1} or for j = r and i = i∗ ∈ {1, . . . , n}\{r}.
The simultaneous updating of the matrix P and of its circulant projection FP

Let N be a fixed natural number. By the following procedure one could generate a transitionmatrix

P of orderN and, simultaneously, its best circulant approximationFP (or,more precisely: non-negative

integersμ1, . . . , μN and sets ν(1), . . . , ν(N) defining P; and real numbers s−N+1, . . . , s0, . . . , sN−1,
c0, . . . , cN−1, z1, . . . , zN defining FP = F diag(z)F∗).

Consider an initial matrix P of small size (i.e. choose a small n and define μi, ν(i), i = 1, . . . , n).
Then

• Apply to P the operators Case (1)–(3), Case (2)–(3),(3),(4) repeatedly, in suitable order, eachpossibly

more times, until n is equal to N. During this phase, for what concerns FP , update only the si. (Note

that the operator Case (2)–(3) requires |ρ(r)| applications of (4); so it is expensive if |ρ(r)| is large.
However, the death of r means generally a small |ρ(r)|.)
• When n = N compute also the first row cT of FP and the vector z = √nFc of the eigenvalues of FP

Note that it is advisable to choose N as a power of 2, so that the FFT involved (in computing the

vector z defining the preconditioner FP , and in each step of the ERF method) are more efficient. Note
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also that the above procedure can be repeated starting from the new P. This procedure will be applied

to generate test matrices PN , P2N , P4N , . . ., in a future work, in order to make a deeper experimental

investigation of the ERU efficiency in solving W-pagerank problems larger than those considered in

the following section.

8. Numerical experiences and results

In this section, we study the efficiency of the ERF algorithm by the help of numerical experiences.

In particular, we bear out the claim that F
−1

AT
is a σ -preconditioner.

8.1. Numerical estimations of the efficiency and of the convergence rate

The plots in Fig. 2 and the values in Table 1 show how the spectral radii of the iteration matrices

H = HI = I − AT and H
F
−1

AT
= I − F

−1
AT

AT differ. They are made using a randomly generated each

time different matrix P, satisfying the properties requested.

In particular, they show that the particular quasi-stochastic row-constant structure of P seems

to ensure that the spectrum Λ(H) consists of a small cluster round 0 and a single eigenvalue whose

magnitude is close toα, therefore only one eigenvalue ofA is responsible of the low rate of convergence

of power method (or rather ER method).

Call λα (|λα| ≈ α), the maximal eigenvalue of H = αP and Γα(dP) the smallest open disc in C

containing all the eigenvalues ofH except for λα; thenwe haveΛ(H) ⊂ Γα(dP)�{λα}. The numerical

experiments show that Γα essentially does not depend on α but just on the sparsity of the matrix,

or rather on the density dP . Namely we observe that Γα(x) ⊂ Γα(y) whenever x > y, and Γα(x)
essentially does not change if α moves into [0.8, 1). We believe that Γ (dP) is a family of decreasing

subsets such thatΓ (dP) ↓ {0} as dP → n. See Fig. 2 or Table 1 for clearness. The slow convergence rate

of Euler–Richardson method only depends on λα; but observe that such eigenvalue can be removed

by preconditioning A, in fact the spectrumΛ

(
H

F
−1

AT

)
is all contained into a small cluster round 0, not

much different from Γα(dP). That is, F
−1

AT
seems to be effectively a σ -preconditioner.

This implies that the ERF method is more efficient in terms of convergence rate than the power

method. In particular, let β = β(α) be the spectral radius of the preconditioned iteration matrix

H
F
−1

AT
. We underline that, accordingly with the experimental results, we have β(1− ε) < 0.3, for all

1 > ε > 0 and that β(α) is an increasing (bounded) function of α, whereas |λα| = ρ(H) = ρ(I− A)
is always very close to α.

To ensure a numerical precision τ we need at least kF = log(τ )/ log(β) iterations of the ERF

algorithm, or kR = log(τ )/ log(|λα|) iterations of the ER (power) method. Therefore

Proposition8.1. Letχ(R)andχ(F)denote, respectively, thenumberofmultiplicativeoperations required

for each step by the power method and by the ERF method. Let β and λα be as defined above. If

|λα|
χ(F)
χ(R) > β (19)

then the ERF method produces an approximation of the W-pagerank with less multiplicative operations

than the power method.

Proof. It is an immediate consequence of the fact that (19) holds if and only ifχ(F)kF < χ(R)kR. �

For instance (see Table 1) if α = 9/10 and dP = 15 then β ≈ 0.23 and |λα| ≈ 0.75. Taking no

notice of additive operations, we observed in the previous section that χ(F)/χ(R) ≈ 1+ 2γ
dP

, being

γ = �log2 n�. Since log β
log |λα | ≈ 5.1, condition (19) is verified for all positive γ such that γ < 31.
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Fig. 2. The figures show the spectra of H = I − AT (on the left) and of HF−1
AT
= I −F

−1
AT

AT (on the right), for different values of

α, n and the density dP . Note that the dimension of the cluster does not depend on n but only on dP , nevertheless it nearly does not

change when α moves through 0.9, 0.99, and also (for brevity, not reported in figure) 0.85.
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Fig. 2. (continued)

Moreover by the results in Table 1 it is clear that, fixed γ (i.e. fixed the order n), condition (19) still

holds when dP or α increase with respect the one here we consider. Nevertheless, the less null rows

(or columns) are in P, the more |λα| is close to α and (19) is satisfied for smaller values of dP or of α.
Another nodal point concerns the memory allocations required by the method. In spite of the

strong advantages in terms of convergence rate obtained by preconditioning power method as in the

ERF algorithm, the latter novel method needs more data storage each iteration. It is well known

that the low complexity implementation of power method needs only two real vector to be stored

each iteration [1, pp. 77–78]. On the contrary, as well as Krylov subspace methods (applied to the

Google case in [3,4,6], for instance), the ERF method requires more then two vectors to be stored. In

the present form four complex vectors need to be stored, which results in a four-times increasing of

memoryusage.Note that theERU algorithmcanbe implementedbyusing lessmemory allocations, for

Table 1

How the spectral radius of the iteration matrix changes due to preconditioning.

n α dP ρ(I − AT ) ρ
(
I −F

−1
AT

AT
)

2000 0.9 14 0.730126 0.236481
2000 0.9 25 0.742434 0.171224
2000 0.9 50 0.735128 0.127395
1500 0.9 15 0.751222 0.229036
1500 0.99 15 0.827462 0.249464
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instance, by choosing U as a real matrix. Anyway the aim of this work is to show how convergence rate

advantages can be assured by preconditioning the powermethod. Finally, notice that the approachwe

are proposing (to precondition the power method) is substantially different from the residual Krylov

subspace minimization idea [4,6].

8.2. Performance on test problems

This subsection is devoted to the choice of an easily computable stopping criterion for the ERF

algorithm. Let us introduce the following vectors:

rR(k) = v− ATxk,

rF (k) = v− AT (F x̂k),

r̂F (k) = v̂− ÂT x̂k.

Note that rR and rF coincide. A classic way to stop the power method is to evaluate ‖rR(k)‖ for a

suitable norm (generally L1 or L2). In order to establish a stopping criterion for the ERF method, it

would be natural to consider ‖rF‖, and to compare it with ‖rR‖. However in the ERF algorithm the

evaluation of rF ismore expensive than the evaluation of r̂F . In particular, it requires onemore discrete

Fourier transformation each step. Anyway it can be easily observed that ‖r̂F (k)‖2 = ‖rF (k)‖2, and
hence that

max

{
‖rF (k)‖2 ,

‖rF (k)‖1√
n

}
� ‖r̂F (k)‖1 �

√
nmin {‖rF (k)‖1 , ‖rF (k)‖2} . (20)

Therefore the use of L2 metric allows to avoid the additional operations that the computation of rF
requires, i.e. one can check the value of r̂F in order to decide to stop the ERF algorithm. Alternatively,

(20) shows that also the metric of L1 can ensure the same helpful property, at least for k large. In fact
‖rF‖1 small enough (i.e. k large enough) implies

√
n ‖rF‖1 small, especially for n not too large. Finally

we underline that one can use other types of stopping criterion, for example the same used in solving

the Google-pagerank problem. In particular, the classical step-reduction norm ‖x̂k − x̂k−1‖, proposed
in [3], would not require additional computations.

We have done several numerical tests, in which we simulate the linear system (1) and apply to it

the method (5), withω = 1 (i.e. the power method), and the ERF algorithm, as implemented in (A1),

for different choices of the dimension n and the parameter α. Since the results are all very similar,

here we illustrate, in Fig. 3, only the results of one of them. We report the values of the iteration index

k and the L1 norm of the three residuals rR(k) for Richardson method, and rF (k) = v − AT (F x̂k),

r̂F (k) = v̂ − ÂT x̂k for the ERF method. Since the dimension n in our experiments is much smaller

than the inverse of the numerical accuracy, by (20) we can consider L1 residuals instead of L2. The

numerical results show that the L1 norms of rF and r̂F decrease closely, as (20) ensures.

From the numerical experiences we emphasize the following facts:

1. As we expect, the number of iterations required to reduce the residuals, for both the methods,

does not depend on the dimension n.

2. Thenumberof iterations that ERF needs to reduce‖r̂F‖1 under a certain threshold, is significantly

less than the number that Richardson method requires for reducing ‖rR‖1 (see Fig. 3). Moreover,

the difference between the twomethods becomesmore evident asα increases, in fact the spectral

radius of the preconditioned iteration matrix does not depend on α but only on the density of P,

whereas the powermethod iterationmatrix spectral radius is strictly dependent onα and close to

it. This is an interesting result recalling that the web hyperlink graphmodel is muchmore faithful

to the original Random surf model as α is close to 1 (see [1] or [2]).

It should be noticed that it is not easy to verify the convergence condition (12) in our case where U is

F , the Fourier matrix. In fact, the number γ
(1)
A,F in (11) is easily valuable (and is equal to 1) only in the
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Fig. 3. The plots in logarithmic scale show both the three residuals ‖rR‖1, ‖rF‖1 and ‖r̂F‖1 over the number of iterations. It is

noticeable how using the circulant σ -preconditioner assures a drastic increase of the convergence rate. Moreover observe how close

are the residuals ‖r̂F‖1 and ‖rF‖1 (they are not distinguishable by the plots).

case U is a L1 isometry, or, equivalently, U = ΠDwhereΠ is a permutationmatrix and D is a diagonal

unitarymatrix. Despite of this we finally underline that the ERF method converges all timeswe tested

it, for all the values we gave to α, for all the randomly generated matrices P that we considered (with

the properties discussed in Section 1), and for all the values of the dimension n that our available

means can support.

9. Conclusions

In this paper, we study several aspects of the W-pagerank computation problem, and we indicate,

in particular, the preconditioning of power method as a way to improve its rate of convergence, in

computing the W-pagerank vector p. We introduce a quasi-stochastic row-constant sparse matrix

P, and we define the W-matrix as a positive stochastic matrix of the form W = αP + R, R rank-

one, α ∈ (0, 1), and the W-pagerank vector as the vector p = WTp. So, we have the W-pagerank

computation problem of calculating p. All results obtained apply to the Google-pagerank computation

problem [1], as well as to the problem of computing the vertexrank of the graph associated to any

other set of information. We begin by investigating the (clustering) spectral properties of the matrix

P, stating some bounds for its maximal singular value and for its second eigenvalue, useful to study

the convergence of iterative methods in solving the W-problem. Then, we apply to the W-pagerank

problem the Euler–Richardson (ER) iterative scheme, preconditioned by a matrix Q , with the aim of

choosingQ so that the spectral radius of the ER iterationmatrix isminimized. It is shown that only one

eigenvalueofP seems tobe responsibleof the lowrateof convergenceofERwithQ = I (i.e. of thepower

method), and it is proposed at least one choice of Q that seems to remove such eigenvalue, remarkably

improving ER convergence rate. In fact, such Q is defined in terms of the best approximation of P in

a generic matrix algebra U = {UDU∗ | D diagonal}, U unitary, and the corresponding ER method is

referred to as ERU . First we obtain a convergence result for ERU and then the choice U = circulants

is discussed in detail. In particular, taking into account the possible continuous changes in P and the

continuousgrowthof its dimension,we introduceauseful procedureupdating in real time theessential

quantities defining the proposed circulant preconditioner Q . The arithmetic operations per step and

the memory allocations required to implement ERU (any time pmust be recomputed) are more than

those required by the power method ER, and thus ERU is superior to such method for not too large P.

However, the several numerical experiences reported, showing the high improvement in convergence

rate that can be obtained by preconditioning, and the general theory developed in this paper, are a

reason to investigate different choices ofU and ofQ ∈ U more efficient in case of huge P. In fact, other
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approximations in U of P, which can be preconditioners better than the T. Chan-like approximation

(as in [31,32]), and other algebras U , closer to P, can be now investigated.
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