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Abstract

A simple model of cleavage in brittle crystals consists of a layer of material
containing N atomic planes separating in accordance with an interplanar potential
under the action of an opening displacement δ prescribed on the boundary of the
layer. The problem addressed in this work concerns the characterization of the con-
strained minima of the energyEN of the layer as a function of δ asN becomes large.
These minima determine the effective or macroscopic cohesive law of the crystal.
The main results presented in this communication are: (i) the computation of the
� limit E0 of EN as N → ∞; (ii) the characterization of the minimum values of
E0 as a function of the macroscopic opening displacement; (iii) a proof of uniform
convergence of the minima of EN for the case of nearest-neighbor interactions;
and (iv) a proof of uniform convergence of the derivatives of EN , or tractions, in
the same case. The scaling on which the present �-convergence analysis is based
has the effect of separating the bulk and surface contributions to the energy. It
differs crucially from other scalings employed in the past in that it renders both
contributions of the same order.

1. Introduction

A simple model of cleavage in brittle crystals consists of a layer of material
containing N atomic planes separating in accordance with an interplanar potential
under the action of an opening displacement prescribed on the boundary of the
layer. Let δj represent the opening displacement of the j th interatomic plane in the
layer, δ = ∑N

j=1 δj the prescribed total or macroscopic opening displacement, and
EN(δ1, . . . , δN) the total energy per unit area of the layer as computed from the
interplanar potential. Then, a central goal is to characterize the constrained minima
ofEN as a function of δ asN becomes large. This minimization process determines
the effective or macroscopic cohesive law of the crystal.

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL ----------------------------------------File Options:     Compatibility: PDF 1.2     Optimize For Fast Web View: Yes     Embed Thumbnails: Yes     Auto-Rotate Pages: No     Distill From Page: 1     Distill To Page: All Pages     Binding: Left     Resolution: [ 600 600 ] dpi     Paper Size: [ 595 842 ] PointCOMPRESSION ----------------------------------------Color Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 150 dpi     Downsampling For Images Above: 225 dpi     Compression: Yes     Automatic Selection of Compression Type: Yes     JPEG Quality: Medium     Bits Per Pixel: As Original BitGrayscale Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 150 dpi     Downsampling For Images Above: 225 dpi     Compression: Yes     Automatic Selection of Compression Type: Yes     JPEG Quality: Medium     Bits Per Pixel: As Original BitMonochrome Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 600 dpi     Downsampling For Images Above: 900 dpi     Compression: Yes     Compression Type: CCITT     CCITT Group: 4     Anti-Alias To Gray: No     Compress Text and Line Art: YesFONTS ----------------------------------------     Embed All Fonts: Yes     Subset Embedded Fonts: No     When Embedding Fails: Warn and ContinueEmbedding:     Always Embed: [ ]     Never Embed: [ ]COLOR ----------------------------------------Color Management Policies:     Color Conversion Strategy: Convert All Colors to sRGB     Intent: DefaultWorking Spaces:     Grayscale ICC Profile:      RGB ICC Profile: sRGB IEC61966-2.1     CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data:     Preserve Overprint Settings: Yes     Preserve Under Color Removal and Black Generation: Yes     Transfer Functions: Apply     Preserve Halftone Information: YesADVANCED ----------------------------------------Options:     Use Prologue.ps and Epilogue.ps: No     Allow PostScript File To Override Job Options: Yes     Preserve Level 2 copypage Semantics: Yes     Save Portable Job Ticket Inside PDF File: No     Illustrator Overprint Mode: Yes     Convert Gradients To Smooth Shades: No     ASCII Format: NoDocument Structuring Conventions (DSC):     Process DSC Comments: NoOTHERS ----------------------------------------     Distiller Core Version: 5000     Use ZIP Compression: Yes     Deactivate Optimization: No     Image Memory: 524288 Byte     Anti-Alias Color Images: No     Anti-Alias Grayscale Images: No     Convert Images (< 257 Colors) To Indexed Color Space: Yes     sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments false     /DoThumbnails true     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize true     /ParseDSCCommentsForDocInfo false     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue false     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.2     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends false     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo false     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /sRGB     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 150     /EndPage -1     /AutoPositionEPSFiles false     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 600     /AutoFilterGrayImages true     /AlwaysEmbed [ ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 150     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 576.0 792.0 ]     /HWResolution [ 600 600 ]>> setpagedevice



Andrea Braides, Adrian J. Lew & Michael Ortiz

Nguyen & Ortiz [10] have investigated this problem for the special case of
nearest-neighbor interactions using formal asymptotics and renormalization group
techniques. Their work shows that the energy minimizers converge to a universal
form independent of the interplanar potential when a certain scaling of the variables
is introduced. The choice of scaling differs from the conventional scaling of bulk
elasticity, and is instead tailored to the physics of cohesive behavior, which involves
relations between energy per unit area and opening displacement. A striking dem-
onstration of the universality of the macroscopic cohesive law may be found in the
recent work of Hayes et al. [9], where the authors have computed the macroscopic
cohesive law for three disparate materials: aluminum (a metal); alumina (Al2O3,
a ceramic); and silicon (a semi-conductor) using density functional theory. When
the energy and opening displacement are scaled appropriately with respect to N,
all energy-displacement curves collapse onto a single universal curve. The work
of Hayes et al. [9] also points to the importance of allowing for surface relaxation
at newly created surfaces, an effect which is not within the scope of the nearest-
neighbor analysis of Nguyen & Ortiz [10].

In this paper we investigate the macroscopic limit N → ∞ of a layer of
interatomic planes by means of �-convergence. We consider a general class of
interaction potentials with a range encompassing an arbitrary number of neighbors.
The main results presented in this communication are:

(i) The computation ofE0 = �- limN→∞ EN upon a suitable normalization that
scales the macroscopic opening displacements and sets the absolute minimum
of the energies at 0.

(ii) The characterization of the minimum values ofE0 for each scaled macroscopic
opening displacement, which are determined to be of the form: min{αδ2, β},
for δ � 0, where α and β are constants.

(iii) A proof of uniform convergence of the minima of the sequence EN , as func-
tions of δ, for the case of nearest-neighbor interactions.

(iv) A proof of uniform convergence of the tractions for the case of nearest-neigh-
bor interactions.

The rescaled macroscopic cohesive law min{αδ2, β} for δ � 0 is precisely of the
universal form identified by Nguyen & Ortiz [10] and Hayes et al. [9], even for
interactions involving an arbitrary number of neighbors. In particular, the macro-
scopic behavior depends only on the constants α and β. The constant α is related
to the curvature, or stiffness, of the well of the interplanar potentials, whereas the
constant β is twice the relaxed surface energy.

Useful intuition into the analysis and results of this article may be built from the
following simple example. In the nearest-neighbor case, planes interact through a
single interplanar potentialφ(δj ), where δj is the separation between the two neigh-
boring planes. Suppose, that φ(δj ) attains a minimum value of 0 at δj = 0, and that
φ(δj ) consists of convex and concave parts separated by a single inflection point, cf.
Fig. 1. The total energy of the system in this case is: EN(δ1, . . . , δN) = ∑

i φ(δi).
For given N and δ, the equilibrium configuration of the system is one which
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Fig. 1. Example of an interplanar potential of the Lennard-Jones type, which displays only
one inflexion point separating convex and concave regions. For this simple case, a straightfor-
ward analysis proves the uniform convergence of PN(

√
Nδ) and its derivative with respect

to δ to the universal form min{αδ2, β}, for δ � 0, and its derivative, respectively. A sketch
of PN(

√
Nδ) for a particular value ofN is shown in the top figure. Also shown is a graphical

representation of the solution of equation (1). Given a value of δ/
√
N , the values of δN1 and

δN2 are determined by finding the horizontal line that leaves the point(s) in the dashed curve

at a distance δ/
√
N from the δ = 0 axis.

minimizes the total energy EN subject to the constraint
∑
i δi = δ. The value

of the energy at equilibrium, i.e., the effective energy of the layer, is, therefore,

PN(δ) = min

{
N∑

i=1

φ(δi) :
∑

i

δi = δ

}

.

As N → +∞, a scaling of the macroscopic opening displacement with N must
be introduced in order for the functions PN(δ) to possess meaningful asymptotic
behavior. The renormalization group approach of Nguyen & Ortiz [10] suggests
that the correct scaling is to consider the sequence PN(

√
Nδ) for a fixed δ. With

this scaling, the sequence of functions PN(δ) converge uniformly (Theorem 1). In
the case of a convex/concave potential such as shown in Fig. 1, a study of local
minima of the energy (cf., e.g., [4, 13, 10]) shows that only two cases need to be
considered: (a) all opening displacements δi fall in the convex region of the inter-
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atomic potential, and hence are equal; and (b) one single opening displacement falls
in the concave region. Configurations of the first type correspond to an intact layer,
whereas configurations of the second type correspond to a fractured layer. Account-
ing for cases (a) and (b), the scaled effective energy may be recast in the form

PN(
√
Nδ) = min

{
Nφ

( δ√
N

)
, (N − 1) φ

(
δN1 (δ)

) + φ
(
δN2 (δ)

)}
,

where δNi (δ) satisfy the following equilibrium equations and the boundary condi-
tions

{
φ′(δN1 (δ)) = φ′(δN2 (δ)), δN1 (δ) < δN2 (δ)

(N − 1)δN1 (δ)+ δN2 (δ) = √
N δ.

(1)

A schematic of this system is shown in Fig. 1. The functions δNi (δ) are then de-
fined for δ ∈ [δN ,+∞): δN1 is increasing, δN2 decreasing, and δN → 0 when
N → +∞. Therefore, the function φ̃N (δ) = (N − 1)φ(δN1 (δ))+φ(δN2 (δ)) is con-
cave and converges to β = φ(+∞) uniformly on (w,+∞) for allw > 0, whereas
φN(δ) = Nφ(δ/

√
N) converges locally uniformly on R to the quadratic approxi-

mation αδ2 of φ at 0. We thus conclude that PN(
√
Nδ) converges to min{αδ2, β}

uniformly on (w,+∞) for all w. In addition, its derivative converges away from
the point

√
β/α. If φ does not have a simple convex/concave form, it is not possible

to use the equilibrium equations as above. However, similar conclusions hold for
very general potentials, as shown in Section 3. There, we use properties of the ren-
ormalization group in order to “sandwich” PN between auxiliary upper and lower
potentials. Using the ordering and monotonicity properties of the renormalization
group we then show that the bounding potentials converge to the same universal
limit as in the convex/concave case, establishing the behavior of the derivatives.

In Section 4, the results for nearest-neighbor interactions are extended to a class
of minimum problems of the general form

PN(
√
Nδ)= min

{
N∑

i=1

φ(δi, δi+1, . . . , δi+K−1) :
∑

i

δi=δ, i �→ δiN -periodic

}

,

where we allow interactions between K + 1 neighboring planes. The use of peri-
odic boundary conditions is a matter of convenience and does not entail any loss
of generality. The properties which we require of the partial potentials φ are:

(i) The existence of a unique ground state, together with the existence of second
derivatives at that state.

(ii) The validity of a Cauchy-Born hypothesis close to the ground state, namely,
for macroscopic opening displacements close to the ground state, uniform
interplanar separation is energetically favorable.

(iii) An impenetrability property.
(iv) Growth conditions at +∞ that allow for detachments of planes.
(v) The property that when two neighboring planes are completely detached the

interactions of the remaining planes are decoupled.
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For instance, these assumptions are satisfied by the superposition

φ(δ1, δ2, . . . , δK) =
K∑

n=1

(
φn(δ1)+ · · · + φn(δn)

)

of K convex/concave potentials. The asymptotic form of PN is as in the nearest-
neighbor case, but the determination of the constant β requires the computation
of the optimal energy of boundary layers that abut to pairs of detached planes.
These boundary layers do not arise for nearest-neighbor interactions, which renders
the analysis of the general case comparatively much more challenging. The proof
relies on �-convergence techniques recently developed for the passage from dis-
crete to continuous variational problems. The �-limit result uses the separation-of-
scale arguments of Chambolle [7] and Braides, Dal Maso & Garroni [4], and
combines them with the analysis of internal boundary layers. It serves to emphasize
that whereas other scalings proposed in the past (Charlotte & Truskinovsky

[8], Braides & Cicalese [3]) separate the effects of bulk and surface contribution,
the scaling employed here considers both effects with the same order.

A principal objective of the present analysis is the derivation of effective cohe-
sive laws suitable for use in coarse-grained engineering calculations (cf., e.g., [10]).
In this regard, it should be carefully noted that the effective cohesive laws obtained
herein describe the mechanical response of an entire layer of interatomic planes,
including their elasticity. In macroscopic calculations, these effective cohesive laws
are reinterpreted as describing a property of a cohesive interface. Therefore, care
must be exercised in order to avoid double-counting the elasticity of the layer, once
in the cohesive law and a second time as part of the bulk behavior. In the context of
tension-shear interplanar potentials this issue was comprehensively addressed by
Rice [11] and by Rice & Beltz [12], who in particular showed how an inter-planar
potential can be corrected so as to eliminate the spurious double-counting of the
elastic energy. This correction can likewise be applied to the effective cohesive
laws derived in this work. The resulting tension-separation laws are characterized
by having an infinite slope at the origin, i.e., by being perfectly rigid at low applied
stress.

2. Problem definition and assumptions

We considerK partial interatomic potentials φn : R
n → (−∞,+∞] (1 � n �

K) such that, for each n:

(i) φn is a C2 function in its domain {x ∈ R : φn(x) < +∞}.
(ii)

lim
inf ti→−∞φn(t1, . . . , tn) = +∞. (2)

This condition may be regarded as requiring impenetrability property. In
particular we may have φn(t1, . . . , tn) = +∞ if ti � 0 for some i.
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(iii) For all n and 0 � j � n there exist functions ψjn such that

φn(t1, . . . , tn) = ψ
j−1
n (t1, . . . , tj−1)+ ψ

n−j
n (tj+1, . . . , tn)+ o(1) (3)

as tj → +∞, uniformly in t1, . . . , tj−1, tj+1, . . . , tn if all ti are equi-
bounded from below. This condition asserts that, when two planes detach
completely, the interactions between the remaining planes are uncoupled.
We assume that ψ0

n = 0 for definiteness and that for j � 1, ψjn : R
j →

(−∞,+∞] themselves satisfy conditions (i)–(iii).The condition thatψ0
n =

0 can be regarded as a normalization assumption that implies that

lim
inf ti→+∞φn(t1, . . . , tn) = 0, (4)

i.e., the interaction energy between n planes is 0 when they are completely
detached.

(iv) min φn < 0. In view of (4), this condition implies that the complete detach-
ment of all planes is not an absolute minimum for the energy.

Remark 1.

(a) Since we consider energies of the form

K∑

n=1

N∑

j=1

φn(δj , δj+1, . . . , δj+n−1) (5)

in conditions (i)–(iii) above, we are free to regroup some of the energy den-
sities without changing the double sum in (5). Consider, by way of exam-
ple, the case K = 2: for any s ∈ (0, 1) we may set φ̃1(t1) = sφ1(t1) and
φ̃2(t1, t2) = φ2(t1, t2) + (1 − s)(φ1(t1) + φ1(t2)). Clearly the energy in (5)
remains unchanged if we replace all φn by φ̃n. In particular, this shows that in
(iii) we may only require that each ψjn be bounded from below, instead of (2),
since we may always add to it (and, correspondingly, to φn) a term of the form
sj (φ1(t1)+ · · · + φ1(tj )).

(b) If φn(t1, . . . , tn) = φn(t1 + . . . + tn) then conditions (ii) and (iii) may be
replaced by

lim
s→−∞φn(s) = +∞, and lim

s→+∞φn(s) = 0,

respectively.
(c) Conditions (i)–(iii) can be weakened somewhat without essential modification

of the main conclusions of this work. In particular, condition (i) is necessary on
a neighborhood of the ground state only; in (ii) we may require that the growth
condition be satisfied for φ1 only; whereas in (iii) we may require that each
ψ0
n be a (possibly different) constant. However, these extensions will not be

pursued here in the interest of simplicity.
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We consider minimum problems of the form

PN(δ) = min

{ K∑

n=1

N∑

j=1

φn(δj , δj+1, . . . , δj+n−1) :

j �→ δj N -periodic,
N∑

j=1

δj = δ

}

(6)

and analyze the behavior of PN(δ) for N large and δ close to the ground state. In
order to make the latter statement precise, we introduce certain comparison inter-
planar potentials that will also be used in the proofs of the theorems. To this end,
we notice that PN(δ) can be equivalently written as

PN(δ) = min

{ N∑

i=1

K∑

n=1

K−n+1∑

j=1

1

K − n+ 1
φn(δi+j , . . . , δi+j+n−1) :

j �→ δj N -periodic,
N∑

j=1

δj = δ

}

(7)

We define the lower-bound comparison potential as

�−(δ) = inf

{ K∑

n=1

K−n+1∑

j=1

1

K − n+ 1
φn(δj , . . . , δj+n−1) :

K∑

i=1

δi = Kδ

}

. (8)

In this formula all interactions ofK consecutive planes are minimized at fixed total
mean displacement δ and without additional constraints such as periodicity. Note
the normalization factorK−n+1 that counts the number of n-interaction between
K + 1 neighboring planes.

We now append the following assumptions:

(v) Existence of a uniform ground state: There exists a unique δmin such that

min
δ
�−(δ) = �−(δmin) =: �min; (9)

(vi) Uniform Cauchy-Born hypothesis near the ground state: There exist η > 0
and C > 0 such that

K∑

n=1

K−n+1∑

j=1

1

K − n+ 1
φn(δj , . . . , δj+n−1)

�
K∑

n=1

φn(δ, . . . , δ)+ C

K∑

j=1

(δj − δ)2 (10)

whenever
∑K
n=1 δn = Kδ and

∑K
n=1 |δn − δ| + |δ − δmin| � η.
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(vii) Non-degeneracy at the ground state:

�′′−(δmin) =
K∑

n=1

n∑

i=1

n∑

j=1

∂2φn

∂δi∂δj
(δmin, . . . , δmin) > 0; (11)

(viii) Non-degeneracy at +∞:

lim inf
δ→+∞ �−(δ) > �min. (12)

Remark 2. From the hypotheses above we have that, for |δ − δmin| � η,

�−(δ) =
K∑

n=1

φn(δ, . . . , δ), (13)

corresponding to the uniform state δi = δ for all i. This equality does not hold for
δ far from the ground state, as may be verified explicitly, e.g., for Lennard-Jones
potentials.

Remark 3. For K = 1 (nearest-neighbor interactions), the hypotheses above re-
duce to requirements on the sole energy density φ1. For K = 2 and φ2(δ1, δ2) =
φ2(δ1 + δ2), assumptions (v) and (vi) are satisfied if there exists δmin such that

φ1(δmin)+ φ2(2δmin) = min φ, (14)

where

φ(δ) = φ2(2δ)+ 1

2
min
t

{φ1(t)+ φ1(2δ − t)}, (15)

and the unique minimizer of the latter minimum problem for δ = δmin is t = δmin. It
may readily be checked that commonly used potentials, such as the Lennard-Jones
and Morse potentials, satisfy these assumptions.

Remark 4. From the assumptions above it follows, upon changing the value of C,
that for η small enough

K∑

n=1

K−n+1∑

j=1

1

K − n+ 1
φn(δj , . . . , δj+n−1)−�min � C

K∑

n=1

(δn − δmin)
2 (16)

whenever
∑K
n=1 |δn − δmin| � η. To verify this inequality we use an argument

by contradiction. Note that by (vi), the formula above holds for
∑
n δn = Kδmin;

hence to contradict it, with fixed N ∈ N, we suppose that δkn exist with
∑
n δ

k
n =

Kδk �= Kδmin and δk → δmin, such that (C as in (vi))

K∑

n=1

K−n+1∑

j=1

1

K − n+ 1
φn(δ

k
j , . . . , δ

k
j+n−1)−�min � C

N

K∑

n=1

(δkn − δmin)
2.
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By using the triangular inequality and (v) we obtain

K∑

n=1

K−n+1∑

j=1

1

K − n+ 1
φn(δ

k
j , . . . , δ

k
j+n−1)−�min

� 2C

N

K∑

n=1

(δkn − δk)2 + 2KC

N
(δk − δmin)

2

� 2C

N

( K∑

n=1

K−n+1∑

j=1

1

K − n+ 1
φn(δ

k
j , . . . , δ

k
j+n−1)−�min

)

+2KC

N
(δk − δmin)

2,

and hence,

�−(δk)−�−(δmin)

�
K∑

n=1

K−n+1∑

j=1

1

K − n+ 1
φn(δ

k
j , . . . , δ

k
j+n−1)−�min

� 2KC

N − 2C
(δk − δmin)

2,

which contradicts condition (vii) in view of the arbitrariness of N .

3. Renormalization group (RG) and nearest-neighbor interactions

In this section, we start by analyzing the case of nearest-neighbor interactions,
K = 1, with the aid of a Renormalization Group (RG) iteration. The appeal of this
approach is that it establishes a stronger convergence, namely, uniform conver-
gence, of the effective energy than that obtained from �-convergence. In addition,
the RG approach establishes the convergence of the derivatives of the energy, or
tractions.

For the nearest-neighbor case, hypotheses (i)–(viii) are simplified to assump-
tions on the sole interplanar potentialφ1. In particular, (vi) is automatically satisfied,
and the remaining assumptions reduce to:

(i) φ1 is a C2 function in its domain {φ1 < +∞};
(ii) lim

t→−∞φ1(t) = +∞;

(iii) lim
t→+∞φ1(t) = 0;

(iv) There exists a unique minimizer δmin of φ1 and min φ1 < 0;
(v) δmin is an interior point of {φ1 < +∞} and φ′′

1 (δmin) > 0.

In the interest of simplicity, in addition to these hypotheses in this section we
suppose that {x ∈ R : φ1(δ) �= +∞} is connected. In particular, this assumption
implies that, if φ1(δ) = +∞ for some δ < δmin, then φ1(δ) = +∞ for all δ � δ.
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Moreover, we note that by Taylor’s theorem and the preceding assumptions there
exist C > 0 and η > 0 such that

φ1(δ) � φ1(δmin)+ C(δ − δmin)
2, (17)

whenever | δ − δmin |< η.

3.1. Renormalization group transformation

The renormalization group transformation R is defined on an interplanar
potential through a two-step process, namely relaxation and renormalization. The
relaxation of an interplanar potential φ1 is given by another interplanar potential
φ1 defined as

φ1(δ) = inf
δ∈R

[φ1(δ)+ φ1(δ − δ)]. (18)

The interplanar potential Rφ1 then follows by renormalization, i.e.,

(Rφ1)(δ) = φ1(
√

2δ). (19)

Evidently, R is well defined for all functions bounded from below, and, in partic-
ular, for all interplanar potentials. For 2n + 1 atomic planes, problem (6) can be
equivalently stated in terms of the renormalization group transformation as

P2n(δ) = min
{2n−1
∑

j=1

Rφ1(δj ) :
2n−1
∑

j=1

δj = δ/
√

2
}

= min
{2n−2
∑

j=1

R2φ1(δj ) :
2n−2
∑

j=1

δj = δ/
√

22
}

...

= min
{
Rn−1φ1(δ1)+ Rn−1φ1(δ2) : δ1 + δ2 = δ/

√
2n−1

}

= Rnφ1(δ/
√

2n). (20)

For purposes of the present analysis, it is simpler to redefine φ1 such that 0 is its
absolute minimum point and �min = 0, i.e., we define a function ψ1(δ) = φ1(δ +
δmin)−�min. Then, limδ→+∞ ψ1(δ) = −�min and limδ→−∞ ψ1(δ) = +∞.

The following remark summarizes the properties of interplanar potentials that
are preserved under the recursive application of the renormalization group trans-
formation.

Remark 5.

(a) Let ψ : R → (−∞,+∞) be an interplanar potential such that
1. ψ is a C0 function in its domain, which contains 0 in its interior;
2. ψ has a unique minimum at 0, ψ(0) = 0;
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3. ψ satisfies

lim
δ→−∞ψ(δ) = +∞, lim

δ→+∞ψ(δ) = −�min (21)

and

lim
δ→0

ψ(δ)

δ2 = C. (22)

Then Rψ has these properties as well. It is straightforward to verify that Rψ is
a C0 function and that

lim
δ→+∞Rψ(δ) = −�min, lim

δ→−∞Rψ(δ) = +∞. (23)

It is also clear that Rψ(0) � 0, that Rψ(δ) = 0 if and only if δ = 0, and that
δ = 0 is in the interior of the domain of Rψ . Therefore, there remains to prove
only that equation (22) holds forRψ . To verify this property, note that for ε > 0
there exists ξ > 0 such that

(C − ε)δ2 � ψ(δ) � (C + ε)δ2, (24)

whenever |δ| < 2ξ , and therefore,

(C − ε)
[
δ

2 + (δ − δ)2
]

� ψ(δ)+ ψ(δ − δ) � (C + ε)
[
δ

2 + (δ − δ)2
]
,

(25)

whenever |δ|, |δ| < ξ . Note also that for |δ| small enough

ψ(δ) = min
|δ|�ξ

[
ψ(δ)+ ψ(δ − δ)

]
. (26)

Since inequality (25) holds when |δ| < ξ , it also holds for the corresponding
minima. Then, in conjunction with (26) we obtain

C − ε

2
� lim
δ→0

ψ(δ)

δ2 � C + ε

2
, (27)

which holds for all ε > 0, and (22) follows after renormalization.
(b) We note, for subsequent reference, that hypotheses (i)–(vii) imply that for all

ε > 0,

inf|δ|>ε ψ
1(δ) > 0. (28)

(c) Since ψ1 is C2, and (ψ1)′′(0) > 0, we have

lim
δ→0

ψ1(δ)

δ2 = C, (29)

where 0 < C < +∞. Hence we conclude that ψ1 satisfies hypotheses 1–3 in part
(a) of this remark.
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We proceed to establish a monotonicity property ofR. Consider two interplanar
potentials ψ1 and ψ2, not necessarily continuous, such that ψ1(δ) � ψ2(δ) for all
δ ∈ R. Then, (Rψ1)(δ) � (Rψ2)(δ) for all δ ∈ R. The property follows directly
by noting that for all δ ∈ R,

ψ1(δ)+ ψ1(δ − δ) � ψ2(δ)+ ψ2(δ − δ). (30)

Therefore, ψ1(δ) � ψ2(δ) and (Rψ1)(δ) � (Rψ2)(δ) for any δ ∈ R.
Next, we prove a property of the derivative of Rψ which will be used subse-

quently to prove the convergence of tractions.

Proposition 1. Let w = inf{x ∈ R : ψ(x) < +∞}. If ψ ∈ W 1,∞(w,+∞) then
Rψ ∈ W 1,∞(

√
2w,+∞). Furthermore, there exists a function y : R → R such

that

ψ(y(x))+ ψ(x − y(x)) = ψ(x) = inf
δ∈R

[ψ(δ)+ ψ(x − δ)] , (31)

for which the following identity holds:

(Rψ)′(x) = √
2 ψ ′(y(

√
2x)) (32)

for almost every x ∈ (√2w,+∞).

Proof. We begin by noting that, since limδ→−∞ ψ = +∞, the y(x) satisfying
equation (31) exists for all x ∈ R. Without loss of generality, we assume y(x) �
x − y(x) for all x, or y(x) � x/2. If x ∈ (

√
2w,+∞) we additionally have

ψ(
√

2x) � 2ψ(x/
√

2) < +∞, and consequently, w � y(
√

2x) and w <
√

2x −
y(

√
2x).

Next we prove that Rψ is absolutely continuous in every bounded interval
[a, b] ∈ (

√
2(w + ε),+∞) for all ε > 0. To this end, consider a collection

of non-overlapping intervals {[ai, bi]} of [a, b]. Then, for any [ai, bi] such that
0 < bi − ai < ε/

√
2 there are two cases. One possibility is

0 � Rψ(bi)− Rψ(ai) � ψ(
√

2bi − y(
√

2ai))− ψ(
√

2ai − y(
√

2ai))

� ‖ψ ′‖L∞(w,+∞)

√
2 (bi − ai), (33)

since
√

2bi − y(
√

2ai) = √
2(bi − ai) + (

√
2ai − y(

√
2ai)) > w. Here we

have used the fact that ψ ∈ W 1,∞(w,+∞) is Lipschitz with Lipschitz constant
‖ψ ′‖L∞(w,+∞). The second case is

0 > Rψ(bi)− Rψ(ai) � ψ(
√

2bi − y(
√

2bi))− ψ(
√

2ai − y(
√

2bi))

� −‖ψ ′‖L∞(w,+∞)

√
2 (bi − ai), (34)

where we have used the bound
√

2ai −y(
√

2bi) > w. To prove this bound, assume
the contrary. Then,

√
2ai − w � y(

√
2bi) � bi√

2
	⇒ √

2ai − bi√
2

� w. (35)
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But

√
2ai − bi√

2
�

√
2ai − ai√

2
+

(
ai√

2
− bi√

2

)

� w + ε − ε

2
� w + ε

2
, (36)

which contradicts (35). Then, from (33) and (34) we obtain
∑

i

|Rψ(bi)− Rψ(ai)| � ‖ψ ′‖L∞(w,+∞)

√
2

∑

i

(bi − ai) (37)

for
∑
i (bi − ai) small enough. This proves that Rψ is absolutely continuous in

every interval (
√

2(w + ε),+∞) for all ε > 0, whence we conclude that (Rψ)′
exists almost everywhere in (w,+∞), and is the distributional derivative of Rψ .
Finally, equation (32), which we prove next, allows us to conclude that Rψ ∈
W 1,∞(

√
2w,+∞). Begin by noting that

1

h
[Rψ(x + h)− Rψ(x)]

� 1

h

[
ψ(

√
2x − y(

√
2x))+ ψ(y(

√
2x)+ √

2h)− Rψ(x)
]

� 1

h

[
ψ

(
y(

√
2x)+ √

2h)
)

− ψ
(
y(

√
2x)

)]
,

for all h > 0 small enough. Then we can conclude that

(Rψ)′(x) �
√

2 ψ ′(y(
√

2x)
)

(38)

for almost every x >
√

2w. Similarly, from

1

h
[Rψ(x)− Rψ(x − h)]

� 1

h

[
Rψ(x)− ψ(

√
2x − y(

√
2x))− ψ(y(

√
2x)− √

2h)
]

for all h > 0 small enough, we obtain

(Rψ)′(x) �
√

2 ψ ′(y(
√

2x)
)

(39)

for almost every x >
√

2w, and equation (32) follows. ��

3.2. Coarse-graining of interplanar potentials

Successive coarse-grainings of the interplanar potentials may be the achieved
by recursive application of R. More precisely, the transformation Rn, n ∈ N0, is
defined inductively as Rn = R ◦ Rn−1 for n � 1, with R0 being just the identity.
The n-th coarse-grained interplanar potential corresponding to an initial interplanar
potential ψ is defined as ψn = Rnψ . It is clear that Rnψ is well defined. Specifi-
cally, we endeavor to characterize the limit of Rnψ as n → +∞, which defines
the effective or macroscopic cohesive potential.
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Theorem 1. Letψ be an interplanar potential, such that the hypotheses of Remark
5 are satisfied. ThenRnψ = ψn → ψ∞ uniformly in (z,+∞), for all z ∈ R. Here,

ψ∞(δ) =
{
Cδ2 if δ < 0,
min{Cδ2,−�min} if δ � 0.

(40)

In terms of the minimum problem (6),

lim
n→+∞P2n(

√
2nδ + 2nδmin)− 2n�min = ψ∞(δ) (41)

uniformly in (z,+∞).

Remark 6. For the sake of simplicity, in the proof we consider only interplanar
potentials ψ with convex growth to −∞. Thus, we suppose that there exists a con-
vex function ψconvex and δ0 < 0 such that ψconvex(δ) � ψ(δ) for all δ < δ0. It
follows from the monotonicity of R that Rnψ has the same property. In general,
the theorem is valid for potentials that satisfy hypothesis (ii), e.g., potentials with
logarithmic growth to −∞.

Convergence of tractions. The uniform convergence of the interplanar potentials
stated in Theorem 1 also implies the strong convergence inL∞ of the renormalized
traction, defined as the distributional derivative of the interplanar potential.

Theorem 2. Let tn(δ) and t∞(δ) denote the distributional derivatives of Rnψ(δ)
and ψ∞(δ) respectively. Then,

tn → t∞ in L∞((z, xc − ε) ∪ (xc + ε,+∞)), (42)

where xc =
√

−�min
C

for any z ∈ R and any ε > 0. Additionally, tn
∗
⇀ t∞ in

L∞(z,+∞) for any z ∈ R.

Remark 7.

(a) The failure to obtain uniform convergence close to xc is not surprising, since
the limit t∞ is discontinuous at that point.

(b) With reference to the minimum problem (6), let T2n be the distributional deriv-
ative of P2n with respect to its argument, i.e.,

T2n() = P ′
2n(). (43)

Then, from Theorem 2 we see that√
2n T2n(

√
2nδ + 2nδmin) → t∞(δ) (44)

in L∞((z, xc − ε)∪ (xc + ε,+∞)) for any z ∈ R and any ε > 0. Note that the
convergence is attained for a precisely scaled value of δ.

Remark 8. In [10] potentials of the following type are considered

φ0(δ) =
{
ϕ(δ) if δ � 0,

+∞ otherwise,
(45)

where ϕ(δ) has a unique minimum at ϕ(0) = 0, limδ→+∞ ϕ(δ) = −�min > 0,
and ϕ(δ) is C2 in [0,+∞). All results and proofs proceed mutatis mutandis in the
general case. In this case, Rnφ0(δ) → min{Cδ2,−�min} uniformly in [0,+∞),
and Rnφ0(δ) = +∞ for δ < 0. An analogous result for the tractions holds as well.
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Proof of Theorem 1.

1. Action of R on special potentials. Let � : R → (−∞,+∞) be an interplanar
potential of the form

�(δ) =
{
ϕ(δ) if δ < δc,

H if δ � δc,
(46)

where ϕ : R �→ (−∞,+∞] is a convex function, continuous for all δ � 0, with
a unique minimum at δ = 0, ϕ(0) = 0, 0 < H < +∞. Here δc > 0 denotes the
only nonnegative solution of ϕ(δc) = H . Then,

Rn�(δ) =
{

2nϕ(δ/
√

2n) if δ < δcn,

H if δ � δcn,
(47)

where δcn > 0 denotes the single nonnegative solution of 2nϕ(δcn/
√

2n) = H .
To prove the previous statement, we compute firstR�. We begin by noting that

since ϕ is convex we have

2ϕ(δ/2) = min
δ∈R

[
ϕ(δ − δ)+ ϕ(δ)

]
. (48)

Then,

R�(δ/
√

2) = min{ inf
δ
2 �δ<δc

[
ϕ(δ)+ ϕ(δ − δ)

]
, inf
δ�δc

[
H +�(δ − δ)

]}

=
{

min{2ϕ(δ/2),H + infδ�δc ϕ(δ − δ)} if δ < 2δc,
H if δ � 2δc.

(49)

Next, assume that δ � 0. Then, if δ � δc we have δ − δ � δ − δc � 0, and
consequently ϕ(δ − δ) � ϕ(δ − δc), since ϕ(δ) is decreasing when δ < 0. From
here we conclude thatH +ϕ(δ−δ) � ϕ(δc)+ϕ(δ−δc) � 2ϕ(δ/2), and therefore
R�(δ/

√
2) = 2ϕ(δ/2) for δ � 0. If 0 < δ <

√
2δc1, then 2ϕ(δ/2) < H , and

R�(δ/
√

2) = 2ϕ(δ/2). Finally, in the case
√

2δc1 � δ note that the convexity of ϕ
implies that

2ϕ(δc/2) � ϕ(δc)+ ϕ(0) = H = 2ϕ(δc1/
√

2) (50)

and, since ϕ(δ) is increasing for δ > 0,we obtain δc �
√

2δc1 � δ. In this case, by
choosing δ = δ in (49) it follows that R�(δ/

√
2) = H . To Summarize,

R�(δ) =
{

2ϕ(δ/
√

2) if δ < δc1,

H if δ � δc1.
(51)

Formula (47) follows by recursively applying the last result. Consider next the
interplanar potential

θ1(δ;H, h, ζ ) =






+∞ if δ < 0,
0 if δ = 0,
H if 0 < δ � ζ,

h if ζ < δ,

(52)
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where 0 < h � H , and ζ � 0. By direct computation, it is straightforward to verify
that

Rθ1(δ;H, h, ζ ) = θ1(δ;H, h, ζ/√2), (53)

and, by recursion,

Rnθ1(δ;H, h, ζ ) = θ1(δ;H, h, ζ/√2n). (54)

2. Equivalent upper and lower potentials. Given the interplanar potential ψ , for
all ε > 0 and every w ∈ R, there exist Nε ∈ N and interplanar potentials ψ−

ε and
ψ+
ε such that

ψ−
ε � ψ � ψ+

ε ∀δ ∈ R. (55)

In addition, there exists a constant M such that

0 � ψ∞ − Rnψ−
ε < εM (56)

and

0 � Rnψ+
ε − ψ∞ < εM, (57)

for all n > Nε, and all δ ∈ (w,+∞). The proof of this statement is given next.

3. Existence of upper potential ψ+
ε . Choose ζ > 0 such that

(C + ε)δ2 � ψ(δ) if | δ |< ζ, (58)

and λ > 0 such that

ψ(δ) < −�min + ε ∀δ > λ. (59)

Let �max = maxδ>δmin ψ(δ); clearly �max < +∞. Set

θ2(δ) =





+∞ if δ � −ζ,
�(δ) if − ζ < δ < ζ,

�max if δ � ζ,

(60)

where�(δ) is a convex function that satisfies�(δ) = (C+ε)δ2 whenever δ < ζ/2,
and �(ζ) = �max. From the previous computation, for n large enough we have
that

Rnθ2(δ) =






+∞ if δ � −ζ√2n,

(C + ε)δ2 if − ζ
√

2n < δ <

√
H
C+ε ,

�max if δ �
√

H
C+ε .

(61)

Define

ψ+
ε = min

{
θ1(δ;�max,−�min + ε, λ), θ2(δ)

}
. (62)
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Clearly ψ � ψ+
ε . By the monotonicity of R we obtain

Rnψ+
ε (δ) < min

{
Rnθ1(δ;�max,−�min + ε, λ), Rnθ2(δ)

}
, (63)

which for n large enough reduces to

Rnψ+
ε (δ) <






+∞ if δ � −ζ√2n,

(C + ε)δ2 if − ζ
√

2n < δ <

√
H
C+ε ,

−�min + ε if δ �
√

H
C+ε ,

(64)

whence (57) follows immediately.

4. Existence of lower potential ψ−
ε . Choose ζ > 0 such that

(C − ε)δ2 � ψ(δ) if | δ |< ζ, (65)

and λ > 0 such that

ψ(δ) > −�min − ε if δ > λ. (66)

Next, consider the interplanar potential

ψ−
ε (δ) =

{
�(δ) if δ < λ,

−�min − ε if δ � λ,
(67)

where �(δ) is a convex function such that �(δ) = (C − ε)δ2 if |δ| < ζ , �(λ) =
−�min − ε, and �(δ) < ψ(δ) for all δ ∈ R. That such a function exists follows
from Remark 5, part (b), by choosing ζ small enough and λ large enough. Note
that ψ−

ε < ψ . From the previous computation, for n large enough we have

Rnψ−
ε (δ) =






2n�(δ/
√

2n) if δ � −ζ√2n,

(C − ε)δ2 if − ζ
√

2n < δ <

√
H
C−ε ,

−�min − ε if δ �
√

H
C−ε ,

(68)

whence (56) follows immediately. A schematic representation of the upper and
lower potentials is shown in Fig. 2.

5. Convergence. Let ε > 0 and z ∈ R. Because of (55) and the monotonicity of
R, we have

Rnψ−
ε � Rnψ � Rnψ+

ε , (69)

for all n ∈ N and for all δ ∈ (z,+∞). In particular, if n > Nε ,

−εM < Rnψ−
ε − ψ∞ � Rnψ − ψ∞ � Rnψ+

ε − ψ∞ < εM, (70)

whence it follows that

lim
n→+∞ |Rnψ − ψ∞| < εM ∀δ > z. (71)
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Fig. 2. Schematic representation of the construction of upper and lower potentials. A typical
interplanar potential is shown in a solid line. Note the asymptotic behavior as δ → +∞
and the possibility of having multiple inflexion points, local minima and maxima. Possible
choices of upper and lower potentials are shown in dashed lines.

Since this holds for any ε > 0, the uniform convergence in (z,+∞) follows. To
prove (41) it suffices to note that

Rnφ1(δ + √
2nδmin) = Rnψ(δ)+ 2n�min, (72)

which together with (20) gives the desired result. ��
Proof of Theorem 2.

1. Asymptotic structure of minimizers. Let ψn = Rnψ , and define the function
yn(x) such that |yn(x)| � |x − yn(x)| and

ψ
n
(x) = inf

δ∈R

[
ψn(δ)+ ψn(x − δ)

] = ψn(yn(x))+ ψn(x − yn(x)), (73)

which is well defined since limδ→−∞ ψn(δ) → +∞, and ψn is continuous (it
may, however, not be uniquely defined). We seek to characterize the values of
yn(x). Let x0 < z < 0 be such that ψ∞(x) > −�min for all x < z, which
implies that ψ∞(z) > ψ∞(x) for x ∈ (z,+∞). For all ε > 0 there exists nε ∈ N

such that, for all n > nε, |ψn(x) − ψ∞(x)| < ε whenever x ∈ (x0,+∞) and
ψn(x) > ψ∞(x0) − ε whenever x ∈ (−∞, x0).The existence of nε such that the
last condition is satisfied is guaranteed by the shape of the lower potential (67).
Additionally, we take ε small enough such that ψ∞(z)+ ε � ψ∞(x0)− ε.
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We proceed to show that yn(x) > x0 and x − yn(x) > x0 for all x > z and
n > nε. First, we assume the contrary. Then, for some n > nε,

ψ
n
(x) > ψ∞(x0)− ε. (74)

But, by definition,

ψ
n
(x) � ψn(x) � ψ∞(x)+ ε � ψ∞(z)+ ε � ψ∞(x0)− ε, (75)

which contradicts the assumption. Next, we consider the functionφ(y, x) = ψ∞(y)
+ψ∞(x − y), whose minimum for every x is attained at y∞(x), where

y∞(x) =
{
x
2 if x �

√
2xc

0 if x �
√

2xc
, (76)

is bi–valued at
√

2 xc =
√

−2�min
C

. For x > z and n > nε ,

φ(yn(x), x)− 2ε � ψn(yn(x))+ ψn(x − yn(x))

� ψn(y∞(x))+ ψn(x − y∞(x))
� φ(y∞(x), x)+ 2ε,

or, equivalently,

0 � φ(yn(x), x)− φ(y∞(x), x) � 4ε. (77)

Let A = {(y∞(x), x) : x ∈ R}. Then, it is straightforward to verify that there exist
c1, c2 > 0 such that

c1 dA (y, x)2 ∧ c2 � φ(y, x)− φ(y∞(x), x), (78)

whenever |y| � |x − y|, where dA is the Euclidean distance from a point in R
2

to the set A. It follows from (77) and (78) that yn(x) → y∞(x) uniformly in any
set of the form (z,

√
2 xc − ε) ∪ (√2 xc + ε,+∞), for any ε > 0, and by the

arbitrariness of z, pointwise for all x ∈ R \ {√2 xc}.
2. Uniform convergence of tractions. We begin by considering the behavior of
(Rnψ)′(x) in a neighborhood of x = 0. With reference to Remark 5, part (b),
and hypotheses (i) and (vii), we can construct a continuous function �(x) as in
equation (46), such that�(x) = ψ(x) in an open neighborhood of x = 0 in which
ψ ′′(x) > 0, and �(x) � ψ(x) for all x. Then, for η > 0 small enough, equation
(47) gives

Rnψ(x) � 2nψ

(
x√
2n

)

= 2n�

(
x√
2n

)

= Rn�(x) � Rnψ(x) (79)

or

Rnψ(x) = 2nψ

(
x√
2n

)

(80)
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for all x ∈ (−η, η) and all n ∈ N. Also, by Taylor’s theorem we obtain

ψ ′(x) = (C + ξ(x)) x (81)

for all x ∈ (−η, η), with limx→0 ξ(x) → 0. Therefore,

(Rnψ)′(x) = √
2nψ ′

(
x√
2n

)

= (C + ξ(x/
√

2n))x, (82)

whence it follows that

lim
n→+∞(R

nψ)′(x) = Cx (83)

uniformly in (−η, η).
In the more general case of x ∈ (z,+∞), we know from Proposition 1 that for

n,m ∈ N, m � n, and for almost all x ∈ R,

(Rnψ)′(x) = √
2(Rn−1ψ)′(yn−1(

√
2 x)) (84)

=
√

22(Rn−2ψ)′(yn−2(
√

2 yn−1(
√

2 x)))
...

= √
2m(Rn−mψ)′(βnm(x)),

where βn0 (x) = x and βni (x) = yn−i (
√

2 βni−1(x)) for all i � n.
Next, we analyze the asymptotic behavior of the sequence βnm(x) as n → +∞.

Given ε > 0 and ζ > 0 sufficiently small, there exists nζ such that

ζ >

∣
∣
∣yn−m(

√
2βnm−1(x))− y∞(

√
2βnm−1(x))

∣
∣
∣ =

∣
∣
∣
∣β
n
m(x)− βnm−1(x)√

2

∣
∣
∣
∣ (85)

for all x ∈ (z, xc − ε), whenever 0 < m < n− nζ . Equation (85) is a consequence
of the uniform convergence of {yn(x)}. It follows by induction on m after notic-
ing that ζ can be chosen small enough such that if βnm−1(x) ∈ (z, xc − ε) then
βnm(x) ∈ (z, xc − ε), whenever 0 < m < n − nζ . By the recursive application of
(85) and the triangular inequality, it is straightforward to verify that

∣
∣
∣
∣β
n
m(x)− x√

2m

∣
∣
∣
∣ < ζ ∗ (86)

for all m, such that 0 � m < n − nζ and for all x ∈ (z, xc − ε), where ζ ∗ =
ζ
√

2/(
√

2 − 1). Similarly, if x > xc + ε, it follows from the uniform convergence
of {yn} that

|βn1 (x)| < ζ, (87)

and by using (86)

|βnm(x)| < (1 + 1/
√

2m−1)ζ ∗ (88)
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for allm such that 1 � m < n− nζ . With η as in equation (83), choose ζ such that
2ζ ∗ < η, andm � 1 such that x/

√
2m ∈ (−η+ ζ ∗, η− ζ ∗) for all x ∈ (z, xc − ε).

Then for n large enough we have
∣
∣(Rn−mψ)′(βnm(x))− Cβnm(x)

∣
∣ < Cζ ∗ (89)

for all x ∈ (z, xc − ε) ∪ (xc + ε,+∞), where we have used equations (86) and
(88) and replaced n for n − m and x for βnm(x) in equation (83). In particular, for
x ∈ (z, xc − ε), it follows from equation (86) that

∣
∣
∣
∣(R

n−mψ)′(βnm(x))− C
x√
2m

∣
∣
∣
∣ < 2Cζ ∗, (90)

or equivalently by using equation (84),
∣
∣(Rnψ)′(x)− Cx

∣
∣ <

√
2m+2Cζ ∗. (91)

Similarly, if x > xc + ε we find from equations (84), (88) and (89) that
∣
∣(Rnψ)′(x)

∣
∣ < 3

√
2mCζ ∗. (92)

Therefore, it follows that the tractions converge uniformly in any set (z, xc − ε) ∪
(xc + ε,+∞) for all z ∈ R and for any ε > 0. Finally, if x ∈ (xc − 2ε, xc + 2ε)
we have from equation (78) that, for n large enough, either |βn1 (x)− xc/

√
2| < ζ

or |βn1 (x)| < ζ . In either case, by using equations (86) and (84) we conclude that
the tractions are uniformly bounded in (z,+∞) for any z ∈ R, whence the weak∗
convergence of the tractions in the same interval follows. ��

4. �-limit of the energy functional

Under assumptions (i)–(viii) of Section 2, in this section we prove the following:

Theorem 3. There exist constants α and β such that for δ � 0,

PN(Nδmin + √
N δ) = N�min + min{αδ2, β} + o(1). (93)

The constants �min and α are simply given by

�min =
K∑

n=1

φn(δmin, . . . , δmin), α = 1

2

K∑

n=1

n∑

i=1

n∑

j=1

∂2φn

∂δi∂δj
(δmin, . . . , δmin),

(94)

while β = 2B −K�min, where B is the (free) boundary-layer energy

B = inf
R∈N

min
{∑

j�0

( K∑

n=1

K−n∑

j=0

1

K − n+ 1
φn(δi+j , . . . , δi+j+n−1)−�min

)

+
K−1∑

n=1

n−1∑

j=0

K − n− j

K − n+ 1
φn(δj , . . . , δj+n−1)

+
K∑

n=1

n−1∑

i=1

ψin(δ0, . . . , δi−1) : δj = δmin for j � R
}
. (95)
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If K = 1 (nearest-neighbor interactions) and φ1 = φ, then �min = φ(δmin),
α = 1

2φ
′′(δmin), and B = 0 so that β = −�min.

The behavior of minimum problems may be turned into the computation of a
�-limit on a metric (more precisely, metrizable) space. To this end, we may identify
each discrete function j �→ δj with a function on the continuum. One way to do
this is simply by identifying it with the piecewise-constant function

δ(t) = √
N (δi − δmin) if

i − 1

N
< t � i

N
.

In this way the domain of our energies may be interpreted as a subset of L1(0, 1)
(more precisely, as a subset of L1

loc(R)with a periodicity constraint). However, our
energies are not coercive on these sets: minimizers are not compact in L1(0, 1).
Therefore, we have to further view L1(0, 1) as a subset of the set of measures on
M([0, 1]), where we eventually obtain compactness and hence convergence of the
minimum problem. Moreover, in this framework sequences δN with an energy of
the same order as that of minimizers may converge to measures µ whose singular
part is composed of a finite number of Dirac deltas.

In order to have a more direct connection with known results, we additionally
use an equivalent identification. Instead of identifying each {δj } with a piecewise-
constant function we interpret our energies as defined on the space of piecewise-H 1

functions, i.e., functions u which are H 1 outside a finite number of points of dis-
continuity. This discontinuity set is denoted by S(u). The results thus obtained may
readily be recast in the framework of M([0, 1]) by interpreting µ as the derivative
of u, and hence each discontinuity of u as a Dirac mass of µ.

The identification is obtained by making the following changes in notation. We
set εN = 1

N
and, for given {δj } we define the function u : εNZ → R given by

u0 = u(0) = 0, uj = u(jεN) = u((j − 1)εN)+ √
εN(δj − δmin). (96)

Every such u is understood to represent a piecewise affine function with R as
domain given by

u(t) =
(

1 − t

εN
+ j

)
uj +

( t

εN
− j

)
uj+1 if jεN � t � (j + 1)εN , (97)

so that the convergence of the discrete functions can be interpreted in terms of that
of the corresponding interpolations.

We introduce the space AN(δ) as the set of functions u : εNZ → R such that
u((i +N)εN) = δ + u(iεN) (1-periodicity of u(t)− δt). We then have

PN(Nδmin + √
N δ)−N�min

= PN(Nδmin + √
N δ)−N

K∑

n=1

φn(δmin, . . . , δmin)
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= min
{ K∑

n=1

N∑

j=1

(
φn(δj , δj+1, . . . , δj+n−1)− φn(δmin, . . . , δmin)

)
:

j �→ δj is N -periodic and
N∑

j=1

δj = Nδmin + √
N δ

}

= min
{ K∑

n=1

N∑

j=1

(
φn

(√
εN

(uj+1 − uj

εN

)
+ δmin, . . .

. . . ,
√
εN

(uj+n − uj+n−1

εN

)
+ δmin

)

−φn(δmin, . . . , δmin)
)

: u ∈ AN(δ)
}
.

Theorem 3 in turn follows as a consequence of the following �-convergence result
for the functionals defined on AN(δ) by

EN(u) =
K∑

n=1

N∑

j=1

εNφ
N
n

(uj+1 − uj

εN
, . . . ,

uj+n − uj+n−1

εN

)
, (98)

where

φNn (z1, . . . , zn) = 1

εN

(
φn

(√
εNz1 + δmin, . . . ,

√
εNzn + δmin

)

−φn(δmin, . . . , δmin)
)
. (99)

Theorem 4. Let α and β be the constants defined above. Then the functionals EN
�-converge with respect to the L1-convergence to the functional E0 defined on
piecewise-H 1 functions such that u− δx is 1-periodic by

E0(u) =





α

∫ 1

0
|u′|2 dt + β#(S(u) ∩ (0, 1]) if u+ > u− on S(u),

+∞ otherwise.
(100)

Moreover, if δ > 0 the minimum values above converge to the minimum value

minE0 = min{αδ2, β}. (101)

Remark 9. �-limits of functionals of the form (98) and their multidimensional
analogs when φNn depend on z1 + · · · + zn have been extensively studied in recent
times (see, e.g., [7, 4–6, 1]). The choice of notation in terms of difference quotients
is made in order to facilitate usage of—and comparison with—those results.

In the proof of this theorem we make repeated use of the following results on
the energies

GN(u) =
N−1∑

j=1

�N

(uj+1 − uj

εN

)
, (102)
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where

�N(z) =
{
(εNc1z

2) ∧ c2 if z � 0,

(εNc1z
2) ∧ c3 if z < 0,

(103)

with ci > 0 (see, e.g., [2] Section 8.3):

(1) GN �-converge to

c1

∫ 1

0
|u′|2 dt + c2#{t ∈ (S(u)) : u+ > u−} + c3#{t ∈ (S(u)) : u+ < u−}.

(104)

(2) The functionalsGN are equicoercive on bounded sets of L1(0, 1). Moreover, if
(uN) is a bounded sequence in L1(0, 1) and supN GN(uN) < +∞ then there
exists a finite set S such that (uN) is precompact in H 1((0, 1) \ S).

(3) If supN GN(uN) < +∞ and η > 0 is fixed then the number of indices j such
that

uj+1 − uj

εN
>

η√
εN

(105)

is equibounded.

The proof of Theorem 4 consists of four steps. First, we prove that the sequence
EN is equicoercive, i.e., that from every sequence (uN) bounded in L1(0, 1) and
with supN EN(uN) < +∞ we may extract a converging subsequence. The proof
follows by remarking that we may obtain a lower bound ofEN with an energy of the
form (102), for which this property already holds. The second step is to provide a
lower bound for the limit energy. This step is in turn divided into two parts: first we
locally minimize the interaction of each group of K + 1 neighboring planes (with
the proper ‘multiplicities’ giving the factorK−n+1 in the definition of�−), thus
obtaining an estimate of the energy in terms of a sum of nearest-neighbor energies
with a proper scaling of�−−�min as an energy density. The�-limit of this simpler
energy is standard and provides a lower bound outside S(u). A bound on the energy
of a discontinuity between u− and u+ is then obtained by minimization among all
discrete transitions between these two values. In this step, hypothesis (iii) plays a
crucial role in establishing that the final energy necessary to create a discontinuity
does not depend on the values of u±. The third step consists of showing that these
bounds are optimal by exhibiting a recovery sequence for each piecewise-H 1 u. In
this step the hypothesis of the validity of the Cauchy-Born rule close to the ground
state is used to ensure that, away from jump points, we may take recovery sequences
simply as interpolations of the target function. Finally, we obtain the convergence
of minima by explicitly computing the values of the minima of the �-limit.

It is convenient to rewrite our energies taking into account the form in (7) of
problem PN(δ). To this end we introduce the energy

�(δ1, . . . , δK) =
K∑

n=1

K−n+1∑

j=1

1

K − n+ 1
φn(δj , . . . , δj+n−1). (106)
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Note that

�−(δ) = min
{
�(δ1, . . . , δK) :

K∑

i=1

δi = Kδ
}
,

and in particular that �(δ1, . . . , δK) � �min, the equality holding only for δ1 =
· · · = δK = δmin. As in (7) the energy EN can be rewritten as

EN(u) =
N∑

i=1

εN�N

(ui+1 − ui

εN
, . . . ,

ui+K − ui+K−1

εN

)
, (107)

where

�N(z1, . . . , zK) = 1

εN

(
�

(√
εNz1 + δmin, . . . ,

√
εNzK + δmin

)
−�min

)
.

(108)

Proof. Throughout the proof we identify (0, 1) with the circle, i.e., the points 0
and 1 are identified and jumps at 0 are taken into account in the limit energies.

Step 1. Coerciveness. We note that, from (vi) and Remark 4, it follows that there
exist constants K1,K2 > 0 such that

K∑

n=1

K−n+1∑

j=1

1

K − n+ 1
φn(δj , . . . , δj+n−1)−�min � K1

K∑

n=1

(δn − δmin)
2 ∧K2.

(109)

We then have

EN(u) =
N∑

j=1

εN�N

(uj+1 − uj

εN
, . . . ,

uj+K − uj+K−1

εN

)

�
N∑

j=1

εN

K∑

n=1

(
K1

(uj+n+1 − uj+n
εN

)2) ∧ K2

εN

= K

N∑

j=1

(
εNK1

(uj+1 − uj

εN

)2) ∧K2.

By Remark 9(2) we then conclude that, given a sequence (uN) with equi-
bounded energy (supN EN(uN) < +∞), upon addition of a constant the sequence
is compact in L1(0, 1), and, upon a finite set S ⊂ (0, 1] it is also locally weakly
compact in H 1((0, 1) \ S).
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Step 2. Lower bound. We have to prove the ‘liminf inequality’

E0(u) � lim inf
N

EN(uN) for all uN → u.

The lower bound needs to be proved only for sequences (uN) converging inL1 and-
with supN EN(uN) < +∞. This implies that (we can assume that) the sequence
also converges locally weakly in H 1 away from the set S in the sense of Step 1.

We begin by remarking that, from the growth conditions on φn and the hypoth-
eses on �−, we have

lim inf
δ→+∞ �−(δ) > �min, lim inf

δ→−∞ �−(δ) = +∞. (110)

We then infer (similarly to the the proof of the existence of lower potentials in the
previous section) that there exist constants C1, C2, C3 > 0 such that

�−(δ)−�min � �(δ − δmin) :=
{
C1(δ − δmin)

2 ∧ C2 if δ � δmin,

C1(δ − δmin)
2 ∧ C3 if δ � δmin.

(111)

Moreover, note that

sup{C1 : (111) holds} = 1

2

K∑

n=1

n∑

i=1

n∑

j=1

∂2φn

∂δi∂δj
(δmin, . . . , δmin) (112)

by hypothesis (vii) and

sup{C3 : (111) holds for some C1 and C2} = +∞ (113)

by (110).
We can then estimate

EN(u) =
N∑

j=1

εN

K∑

n=1

φNn

(uj+1 − uj

εN
, . . . ,

uj+n − uj+n−1

εN

)

�
N∑

j=1

(
�−

(
δmin + √

εN · uj+K − uj

KεN

)
−�min

)

�
N∑

j=1

�
(uj+K − uj

K
√
εN

)
. (114)

Let (uN) converge to u in L1. We then obtain

lim inf
N

EN(uN) � C1

∫ 1

0
|u′|2 dt + C2#{t ∈ S(u) : u+ > u−}

+C3#{t ∈ S(u) : u+ < u−} (115)

by Remark 9(1). By using (112) and (113) we finally get

lim inf
N

EN(uN) � α

∫ 1

0
|u′|2 dt + C2#S(u) (116)

and the constraint that u+ > u− on S(u).
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Next, we need to compute the contribution of the discontinuity. If we optimize
the constant C2 we find the value

sup{C2 : (111) holds for some C1 and C3} = lim inf
δ→+∞ �−(δ)−�min.

This estimate is sharp if K = 1; in general, this is only a lower bound, and finer
analysis is needed to describe the optimal transition between u− and u+. This is
explained by the fact that the minimization process giving �−(δ) may be incom-
patible with the minimal configuration giving �min.

We now give a sharp estimate for the energy that concentrates at a point t ∈ S(u).
Without loss of generality we may suppose that t = 0, and that w := u+(0) −
u−(0) > 0. Note that there exist indices jN such that εNjN → 0 and

lim
N

uN((jN + 1)εN)− uN(jNεN)√
εN

= +∞, (117)

otherwise uN would be equibounded in H 1 of a neighborhood of 0 (to this end,
remark that if |u′

N |∞ � η/
√
εN on some interval (−ξ, ξ) for some η > 0 then,

following Step 1 we obtain
∫ ξ
−ξ |u′

N |2 dt � C′ EN(uN) for some constant C′).
Again, it is not restrictive to suppose that jN = 0 for all N . By the equibound-

edness of EN(uN) and the growth condition (ii) we have

inf
N,j

uN((j + 1)εN)− uN(jεN)√
εN

> −∞;

hence by (iii), if j � 0 and j + n � 1 then, upon setting

wNj = uN((j + 1)εN)− uN(jεN)√
εN

,

we have

φn
(
δmin + wNj , . . . , δmin + wNj+n−1

) = ψ
j
n

(
δmin + wNj , . . . , δmin + wN−1

)

+ψj+n−1
n

(
δmin + wN1 , . . . , δmin + wNj+n−1

)
+ o(1) (118)

uniformly as N → +∞ by hypothesis (iii).
Fix M ∈ N. Let S be a finite set such that uN → u locally weakly in

H 1((0, 1) \ S) and |u′
N | � 1/(M

√
εN) for large enough N on each compact

set of (0, 1) \ S (by Remark 9(3)). Fix η > 0 such that S ∩ (−4η, 4η) = {0}. Note
that

|u′
N | � 1

M
√
εN

on (−3η,−η) and (η, 3η), (119)

and that uN → u uniformly in (−3η,−η) and (η, 3η). Let

JNη = {j ∈ Z : εNj ∈ (−2η, 2η)} =: {−jNη , . . . , jNη }. (120)
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We can then write

∑

j∈JNη
εN�N

(uN((j + 1)εN)− uN(jεN)

εN
, . . . ,

×uN((j +K)εN)− uN((j +K − 1)εN)

εN

)

= IN1 + IN0 + IN2 , (121)

where (wNj as above)

IN0 =
K∑

n=1

∑

j�0,j+n�1

(
φn

(
δmin + wNj , . . . , δmin + wNj+n−1

)

−ψj+n−1
n

(
δmin + wNj , . . . , δmin + wN−1

)

−ψjn
(
δmin + wN1 , . . . , δmin + wNj+n−1

)) −K�min,

IN1 =
∑

j∈JNη , j�1

εN�N

×
(uN((j+1)εN)−uN(jεN)

εN
, . . . ,

uN((j+K)εN)−uN((j+K−1)εN)

εN

)

+
K−1∑

n=1

n∑

j=1

K − n− j + 1

K − n+ 1
φn

(
δmin + wNj , . . . , δmin + wNj+n−1

)

+
K∑

n=1

n−1∑

j=1

ψ
j
n

(
δmin + wN1 , . . . , δmin + wNj

)
,

IN2 =
∑

j∈JNη , j�−K
εN

K∑

n=1

�N

×
(uN((j+1)εN)−uN(jεN)

εN
, . . . ,

uN((j+K)εN)−uN((j+K−1)εN)

εN

)

+
K−1∑

n=1

n−1∑

j=0

K − n+ j

K − n+ 1
φn

(
δmin + wN−j−n, . . . , δmin + wN−j−1

)

+
K∑

n=1

n−1∑

j=1

ψ
j
n

(
δmin + wN−j , . . . , δmin + wN−1

)
.

By (118) we have

lim
N
IN0 = −K �min. (122)
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Note the factorK , which derives from the decomposition of theK terms involving
�N labeled by j ∈ {1 −K, . . . , 0} into the three sums involving the φns.

We now compute the limit of IN1 , that of IN2 being completely analogous. Let
vN : Z → R be the function defined by

vN(j) =






uN(jεN) if − jNη � j � jNη +K,

uN(−jNη εN) if j < −jNη ,
uN(j

N
η εN) if j > jNη +K.

(123)

Upon setting

zNj = vN((j + 1)εN)− vN(jεN)√
εN

,

we may write

IN1 =
∑

j�1

εN�N

(vN(j + 1)− vN(j)

εN
, . . . ,

vN(j +K)− vN(j +K − 1)

εN

)

−
jNη +K
∑

j=jNη +1

εN�N

×
(vN(j + 1)− vN(j)

εN
, . . . ,

vN(j +K)− vN(j +K − 1)

εN

)

+
K−1∑

n=1

n∑

j=1

K − n− j + 1

K − n+ 1
φn

(
δmin + zNj , . . . , δmin + zNj+n−1

)

+
K∑

n=1

n−1∑

j=1

ψ
j
n

(
δmin + zN1 , . . . , δmin + zNj

)
. (124)

We can estimate

jNη +K
∑

j=jNη +1

εN�N

(vN(j + 1)− vN(j)

εN
, . . . ,

vN(j +K)− vN(j +K − 1)

εN

)

�
jNη +K
∑

j=jNη +1

sup
{
�(z1 + δmin, . . . , zK + δmin)−�min : |zi | � 1/M

}

� K sup
{
�(z1 + δmin, . . . , zK + δmin)−�min : |zj | � 1/M

}

=: ω
( 1

M

)
,

with limx→0 ω(x) = 0.
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We now define the boundary-layer energy of the discrete system as

B = inf
R∈N

inf






∑

j�0

(�n(zj + δmin, . . . , zj+K + δmin)−�min)

+
K−1∑

n=1

n−1∑

j=0

K − n− j

K − n+ 1
φn(δmin + zj , . . . , δmin + zj+n−1)

+
K∑

n=1

n−1∑

i=1

ψin(z0 + δmin . . . , zi−1 + δmin) : zj = 0 if j � R

}

.

(125)

We then obtain (taking zj = 1√
εN
(vN(j + 1)− vN(j)))

lim inf
N

IN1 � B − ω
( 1

M

)
, (126)

and, by the arbitrariness of M and a symmetric argument,

lim inf
N

IN1 � B, lim inf
N

IN2 � B. (127)

Since the estimates concerning u′ and S(u)may be decoupled, we may sum up the
previous inequalities to obtain

lim inf
N

EN(uN) � α

∫ 1

0
|u′|2 dt + (2B −K �min) #(S(u)) (128)

with the constraint u+ > u− on S(u).

Step 3. Upper bound. We have to prove the ‘limsup inequality’: that for every u
and for every r > 0 there exists a sequence (uN) (called a recovery sequence)
converging to u and such that

lim sup
N

EN(uN) � E0(u)+ r.

First, note that it is sufficient to check this property for piecewise H 1-functions
that are sufficiently smooth and locally constant on both sides of S(u), by a density
argument (see, e.g., [2] Section 1.7.1).

We confine our analysis to u ∈ C2(0, 1) with a discontinuity in 0 and such that
u = u+(0) on (0, η) and u = u−(0)(= u−(1)) < u+(0) on (−η, 0]. Let M ∈ N,
R ∈ N and let z : Z → R be such that zj = 0 for j � R, and

∑

j�0

(�n(zj + δmin, . . . , zj+K + δmin)−�min)

+
K−1∑

n=1

n−1∑

j=0

K − n− j

K − n+ 1
φn(δmin + zj , . . . , δmin + zj+n−1)

+
K∑

n=1

n−1∑

i=1

ψin(z0 + δmin . . . , zi−1 + δmin) � B + 1

M
. (129)



Effective Cohesive Behavior of Layers of Interatomic Planes

We then define uN as follows:

uN(jεN) =
{√

εN(
∑j−1
i=0 zi − ∑R

i=0 zi)+ u(jεN) if j � 0,√
εN(

∑0
i=−R zi − ∑0

i=−j zi)+ u(jεN) if j < 0.
(130)

Note that this definition makes sense since uN(jεN) = u(jεN) for |j | > R. It
can be easily checked now that (uN) is a recovery sequence for u. In fact, by the
definition of (zj ) we deduce that

∑

|j |<η/(2εN )
εN�N

(uN((j + 1)εN)− uN(jεN)

εN
, . . . ,

uN((j + 1)εN)− uN(jεN)

εN

)

� B + 1

M
,

while, using Taylor’s expansion of � at (δmin, . . . , δmin) we obtain

∑

|j |>η/(2εN )
εN�N

(uN((j + 1)εN)− uN(jεN)

εN
, . . . ,

uN((j + 1)εN)− uN(jεN)

εN

)

=
∑

|j |>η/(2εN )
εN�N

(u((j + 1)εN)− u(jεN)

εN
, . . . ,

u((j + 1)εN)− u(jεN)

εN

)

�
∑

|j |>η/(2εN )
(�(δmin + √

εN(u
′(jεN)+ o(1)), . . .

. . . , δmin + √
εN(u

′(jεN)+ o(1)))−�min)

�
∑

|j |>η/(2εN )
α εN |u′(jεN)|2 + o(1) � α

∫ 1

0
|u′|2 dt + o(1).

4. Convergence of minimum problems. The convergence of minimum problems
now follows immediately from the �-convergence of the functionals. It remains to
verify that

min{E0(u) : u− δt 1-periodic} = min{αδ2, 2B −K�min}, (131)

if δ > 0. This is a simple computation, with minimizers given by u(t) = δt or
u(t) = 0 (in this case with S(u) = Z). ��
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