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Abstract

A unifying framework in which the coexistence of differing forms of common cyclical features can be tested and imposed upon
a cointegrated VAR model is provided. This is achieved by introducing a new notion of common cyclical features, described as the
weak form of polynomial serial correlation, which encompasses most of the existing formulations. Statistical inference is based upon
reduced-rank regression, and alternative forms of common cyclical features are detected through tests for over-identifying restrictions
on the parameters of the new model. Some iterative estimation procedures are then proposed for simultaneously modelling various
forms of common features. The concepts and methods of the paper are illustrated via an empirical investigation of the US business
cycle indicators.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Common features; Reduced rank regression

0. Introduction

Many of the recent advances in modelling multiple time series have been concerned with the analysis of comovements
amongst economic variables. A common concept of long-run comovements is cointegration, according to which a vector
of I(1) time series is cointegrated when its elements share some common stochastic trends (Engle and Granger, 1987).
However, detrended economic variables often display quite similar cyclical patterns (Lucas, 1977). This well-known
“stylized fact” suggests that economic time series will tend to share common transitory components as well. Engle and
Kozicki (1993) proposed the notion of common serial correlation feature to detect short-run comovements among I(1)
variables. Indeed, common cycles exist in the multivariate Beveridge and Nelson (1981) decomposition of a multiple
I(1) time series when its first differences exhibit common serial correlation (Vahid and Engle, 1993). The idea of
common cycles has later been extended to seasonally integrated series (Cubadda, 1999), I(2) systems (Paruolo, 2006a),
and periodically integrated series (Haldrup et al., 2007).

From the statistical viewpoint, the presence of common cycles allows the vector error correction model (VECM) to
be reformulated as a reduced-rank regression (RRR) model. This implies that RRR techniques (see, inter alia, Johansen,
1996; Reinsel and Velu, 1998) can be used to obtain a more parsimonious model of the data. However, this notion of
common cycles is somewhat limited since it does not enable one to detect the presence of non-synchronous cycles
among I(1) time series (Ericsson, 1993). Consequently, some variants of the common cycles model have previously

*Tel.: +390672595847; fax: +39 062040219.
E-mail address: gianluca.cubadda@uniroma?2.it.

0167-9473/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2007.07.004



G. Cubadda / Computational Statistics & Data Analysis 52 (2007) 896906 897

been proposed in order to overcome this limitation. In this paper, attention is focussed on the forms of common serial
correlation that lead to a VECM with a partial reduced-rank structure. Such forms are the polynomial common features
that have been described by Cubadda and Hecq (2001) and the weak form of common serial correlation that has been
described by Hecq et al. (2000, 2006).

A serious limitation of existing methods for analysing common features is that they cannot incorporate several forms
of common serial correlation in the same VECM. Thus, although one can test for the presence of the various forms of
common features, existing procedures do not allow one to impose the implied reduced-rank structures on the estimated
model, and, therefore, the most parsimonious model cannot be fitted to the data.

The goal of this paper is threefold. First, it provides a new interpretation of the weak form of common serial correlation
that has implications for the short-run components of the series. Second, it proposes a new notion, named weak form
of polynomial common features, which encompasses all forms of common serial correlation that have hitherto been
considered in this context. Third, it is shown how diverse forms of common features can be detected and imposed upon
the estimated VECM. This goal is achieved by means of an iterative estimation procedure which is similar in the spirit
to the method that was proposed by Cubadda and Omtzigt (2005) to estimate the cointegration vectors jointly at the
zero and seasonal frequencies. In contrast to the nested reduced rank autoregressive model by Ahn and Reinsel (1988),
the new procedure can be applied even when the coexisting forms of common features are not nested.

This paper is organized as follows. Section 1 reviews some forms of common serial correlation and it introduces the
weak form of polynomial common features. Section 2 deals with the problem of simultaneously modelling differing
forms of common features. In Section 3, the methodology is applied to some US business cycle indicators. Section 4
contains the conclusions.

1. Alternative notions of common cyclical features

Let us assume that an n-vector {y;,t =1, ..., T} of cointegrated time series of order (1, 1) is generated by the
following VECM:

T(L)Ay, = ®o + oLy | + &, (1)

for fixed valuesof y_ 11, ..., yo, where ﬁ; =, 45’1), o and f are both (n x r) matrices of full-rank r, @ is an r-vector,

rio=I,— Zfz_ll I'; L' is such that the matrix o/, I'(1) B has rank equal to (n — r) and det(I'(z)(1 — z) —af'z) =0
implies that z = 1 or |z| > 1, y = (y/,1)’, and & are i.i.d. N, (0, 2;) innovations if 7 >1 and an n-vector of zeros
otherwise.

Since Ay, is a stationary stochastic process, it admits the following Wold representation

Ay, = u+ C(L)g, (2)

where C(L) = I, + Z;’il C;, the coefficient matrices C; decrease exponentially fast, and u = @ + off'yo +
f:ll I';Ayi—; (see e.g. Johansen, 1996). From the expansion

C(L)=C(1)+ AC*(L), (3)
where C l* = —Z?il C; for i >0, we obtain the multivariate BN representation (Beveridge and Nelson, 1981) of the
series y;

Vi =0 + Tt + K4,

where 0; = yo + ut, 1 = C (1)2;;(1) &—i,and i, = C*(L)¢g,. Based on the popular view that the stochastic trend of an
I(1) time series is a random walk, the processes 7; and «; are, respectively, defined as the stochastic trends and cycles
of variables y,. Proietti (1997) discusses in details the relations among the multivariate BN representation and other
popular permanent—transitory decompositions.

It is well known that the presence of cointegration is equivalent to the existence of (n — r) common stochastic trends
since f8't; = 0 (Engle and Granger, 1987). Hence, a reduced rank restriction on the coefficient matrix of the terms y;_
in model (1) is associated with a reduced number of components that are responsible for the long-run behaviour of
series y;.



898 G. Cubadda / Computational Statistics & Data Analysis 52 (2007) 896—906

The analysis of common cyclical features is instead concerned with the short-run components of series y;. In
particular, the focus is on additional reduced-rank restrictions on the parameters of model (1) that have interesting
implications for the cycles x;. Let us briefly review the various forms of common cyclical features which have gained
some attention in the literature, starting with the seminal notion of common cyclical features proposed by Engle and
Kozicki (1993):

Definition 1 (Serial correlation common feature (SCCF)). Series Ay, have s (s <n) SCCFs iff there exists ann x s
matrix dg with full column rank such that the VECM in (1) can be rewritten as the following RRR model:

Ay, = P + ds 'swi—1 + &, 4)

where for any full column rank matrix M we denote by M a full column rank matrix such that M'M; =0, Y is an
(np —n 4+ r) x (n — s) matrix with full column rank, and w;_; = (yt*Llﬂ*, Ayt’_l’, R Ayt/—p—l—l)/'

The distinctive property of model (4) is that the predictable variations of series Ay; are entirely generated by the
(n — s) common factors y/'sw;_1. Indeed, by premultiplying both sides of Eq. (4) by s it follows that

Hence, the SCCF requires that there exists a linear combination of series Ay, that is an innovation with respect to €2;_1,
where €, is the g-field generated by {y;_;; i > 0}. Moreover, the presence of s SCCFs is equivalent to the existence of
(n — s) common cycles since, as shown by Vahid and Engle (1993), d5x; = 0.

Remark 1. Another well-known notion of common autocorrelation is discussed in the so-called common factor anal-
ysis, see, inter alia, Sargan (1983) and Mizon (1995). However, it is easy to check there is no relation of implication
between these two notions. A proof is available upon request.

A drawback of the above definition is that it does not take account of the possibility that common serial correlation
is present among non-contemporaneous elements of series Ay; (see, e.g., Ericsson, 1993). In order to overcome this
limitation, Cubadda and Hecq (2001) introduced the following variant of the SCCF.

Definition 2 (Polynomial serial correlation common feature (PSCCF)). Series Ay; have s PSCCFs iff there exists an
n x s matrix 0 p with full column rank such that 5},1“ 1 # 0, and the VECM in (1) can be rewritten as the following
partial RRR model:

AYI = gDO + FIA)’t—l + 5le/P(Ay;—27 sy Ay;—p+]a y?i]ﬁ*)/ + &, (5)

where Y p is an (np — 2n + r) x (n — s) matrix with full column rank.

In order to interpret the notion of PSCCF, let us premultiply both sides of Eq. (5) by 6’». We then obtain
O(L) Ay; = dp®o + dpers

where (L) =0p — I'} 0 p L. Hence, the PSCCF requires that there exists a first-order polynomial matrix 6(L) such that
d(L)' Ay, is unpredictable from the past. Notice that the notion of PSCCF can be easily generalized to the case where
the polynomial matrix 6(L) is of order m, where m < (p — 1). See Cubadda and Hecq (2001) for details.

The existence of the PSCCEF has an interesting implication for the BN cycles of series y;. Indeed, Cubadda and Hecq
(2001) proved that 6(L)'k; = —(YPF 1C(1)¢;. Hence, the same PSCCEF relationships cancel the dependence from the
past of both the first differences and cycles of series y;.

Notice that Egs. (4) and (5) imply that both the matrices ds and  p must lie in the left-null space of the error—correction
term loading matrix «. Hence, the number of the SCCFs or PSCCFs, s, cannot exceed the number of common trends
(n — r). In order to remove this restriction, Hecq et al. (2000, 2006) proposed the following notion of weak form
of SCCF.
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Definition 3 (Weak form of serial correlation common feature (WF)). Series Ay; have s WFs iff there exists ann X s
matrix dy with full column rank such that 6}« # 0, and the VECM in (1) can be rewritten as the following partial
RRR model:

Ayr = Qo+ af, v +Oow iy Ay 1, o Ay ) + e, (6)
where Yy, is an (np — n) x (n — s) matrix with full column rank.
The usual interpretation of the WF is that there exists a linear combination of series (Ay, — af, y;) that is an

innovation with respect to €;_1. It is, however, possible to provide a new reading that permits one to uncover an
interesting implication of the WF for the BN cycles k;. Indeed, premultiplying both sides of Eq. (6) by d7;, yields

Sw (L) y; = 0y (P + ad®)t) + Sy e, (7)

where oy (L) =0w — (o’ +1,,) 6w L. By substituting (3) into (2) and premultiplying both sides of the resulting equation
by dw (L) one obtains

Sw (L) Ayr = dw (1) p+ dw(L)IC(1) + AC*(L)]er.

Finally, by taking first differences of both sides of (7) and comparing the resulting equation with the one above, it
follows that

Ow (L) K = 0w (L)' C*(L)er = oy (In — C(1))er.

The above results, which highlight that the WF is an analogous property to the PSCCEF that applies to the levels rather
than to the differences of series y;, are summarized in the following proposition:

Proposition 1. Series Ay, have s WF's iff there exists a first-order polynomial matrix dw (L) such that (8, (L)y; —
oc&’W <I>’1 t) is an innovation process with respect to Q,_1. Moreover, dw (L) k; is also an innovation.

Remark 2. As correctly pointed out by a referee, the original definition of WF is not invariant to reparametrizations
of the VECM such as the one where the EC terms appear as f8'y,_,, in place of f8'y,_;. However, it is easy to see that
the definition of WF in terms of the polynomial matrix dw (L) does not suffer from this non-uniqueness problem. A
proof is available upon request.

Interestingly enough, it is possible to merge the notions of PSCCF and WF as follows.

Definition 4 (Weak form of polynomial serial correlation common feature (WFP)). Series Ay; have s WFPs iff there
exists an n X s matrix 9 with full column rank such that 6’za # 0, §=I"1 # 0, and the VECM in (1) can be rewritten
as the following partial RRR model:

Ayl = gDO + (xﬁ;yt*fl + FlAyl—l + 5FLWIF(Ayt/72’ ceey Ayt/fp+1)/ + &ty (8)

where Y/ is an (np — 2n) x (n — s) matrix with full column rank.

By premultiplying both sides of Eq. (8) by &’ we see that the WFP requires the existence of a second-order polynomial
matrix 6p (L) = 6 — (Bo’ + I, + I'})6p L + I'}dp L? such that

Sr (L) y; = 8 (@0 + 2 1) + Sy ©)

In order to establish the implications of the WFP for the cycles «;, let us substitute (3) into (2) and premultiply both
sides of the resulting equation by d z(L)’. We obtain that

Op (L)' Ay = 0r(1) 4 0r(L)IC(1) + AC*(L)]er.
Finally, by taking first differences of both sides of (9) and in view of the above equation one obtains

OF (L)' Ky = 0 (L) C*(L)er = Op[ly — C(D]er — 0p1C(1)er—1.
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Table 1
Canonical correlations and tests for common features
Model Xy 2t d
@ (Ayt/—l’""Ayt/—p+1’)’;kl1ﬁ*), 1 sx n(p—=2)+r+ys)
(6) Ay _y, .., Ay{,pﬂ)/ a,y?, By sx(n(p—=2)+s)
(5) Ayl s Ay B (1L, Ay,_ ) sx (m(p—=3)+r+s)
®) Ay, 5o Ay ) (A, Ay, v B sx (n(p—=3)+s)
Table 2
Estimators of the common features vectors and RRR coefficients
~A ~Ay ~ ~
Model @7, P (T o)
(4) /5\5 /lp\s
(6) Ow Yw
®) o U
(8) OF Vi

Hence, the second-order polynomial matrix ¢ (L) transforms the BN cycles k; into a VMA(1) process.

Let CanCor{Ay;, x; | z;} denote the partial canonical correlations between series Ay, and x; having removed the
linear dependence on z,. Maximum likelihood (ML) inference on the various forms of common features is obtained by
solving CanCor{Ay;, x; | z;} for proper choices of the variables x; and z;. In particular, let 4; denotes the ith smallest
squared partial canonical correlation fori =1, ..., n. Under the null that s common features of a given form exist, the
test statistic

N
LRy=-TY In(1—7), s=1,....n (10)
i=1

is asymptotically distributed as a ;(2 (dy) as detailed in Table 1, see, inter alia, Anderson (2002) and Paruolo (2003).

Moreover, let fﬁiAy and @7, respectively, denote the partial canonical coefficients of Ay; and x; associated with Z
Optimal estimates of both the common features vectors and (partial) RRR coefficients are then obtained as described
in Table 2.

Finally, the remaining parameters of the RRR models (4)—(6) and (8) are then estimated by OLS after fixing the
various matrices /’s to their estimated values.

2. Simultaneously modelling differing forms of common features

A serious limitation of the existing methods for common features analysis is that they cannot handle the possible
coexistence of differing types of reduced-rank restrictions in the same VECM. Consider, for instance, the following
model:

Ay = @0 + a1 Wy Ayi—1 + 051 Y Byt + OF LW (Ay oy o Ay, + e, (11)

where 0 = (04, 0p), 04 is ann X s matrix, 0p is an n x s matrix, the rank of matrix o equals (s; + s2), and ¥ 4
and Vg are, respectively, r x (n — 1) and n x (n — s2) matrices with full column ranks. Hence, model (11) exhibit
both s; WFs and s, PSCCFs.

Assume now that series Ay, are instead generated by the model below

Ayt = @0 + 5CL¢/C(Ayt/—19 y[*LI *)/ + 5FL‘M?(A)’;/_2» L) Ay[/—p-i-l)/ + Sty (12)

where 6c = 0, o is a full-rank s x s matrix, and Y is an (n 4+ r) x (n — s1) matrix with full column rank. It is
clear that 51 out of the s WFPs of model (12) are indeed SCCFs.
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Table 3
Tests for overidentifying restrictions in the WFP model

Model H’s matrices d>
4) H, =(In?0n><(n+r))/ sx(n+r)
(6) Hy = (Iyyr, 0(n+r)><n)/ s Xn
L, O Onsen )
5 Ha = n nxr nxn) .
( ) 3 <0I’1><Il Ol‘er II‘L

Even if the presence of these differing forms of common features can be tested by means of the statistic (10), it is
not possible to impose the implied reduced-rank structure on the estimated model. In this section we try to overcome
such a limitation. Based on Cubadda (2007), one can use the following RRR model:

Uur = 60 + 5J_ 'P/w;_1 +Ez, (13)
where u; = (Ay], v | . Ayt/_l’)/, Dy = (D4, 015 (r+m)) & = (&), O1xc(r4m))’s O is an (2n + r) x s matrix with s <n,
and Yis an (r + pn —n) x (2n + r — s) matrix such that

5qu/=<(a’Fl) (FZ,"'7FP—1)
Ir+n 0(r+n)><(pn72n) ’

Since model (13) is an isomorphic representation of model (8), statistical inference based on the solution of
CanCor{u;, w,—1 | 1} (14)

is identical to that for the existence of s WFPs. However, since the other forms of common features are nested in
model (13), inference on all of them can be conducted by means of a restricted solution of the canonical correlation
problem (14).

Remark 3. Given that the terms (y;‘i 1B Ay;_l’)/ are present in both u; and w;_y, the (n + r) largest canonical
correlation coming from (13) are exactly equal to one. However, the n smallest of such canonical correlations are the
same as those required for statistical inference on model (8) in Table 1.

In a manner similar to that of Johansen (1996), let us consider linear restrictions of the form 6 = H6, where H is
a known (2n + r) x g matrix with full column rank, and 0 is a g x s matrix to be estimated. Let V; denotes the ith
smallest squared canonical correlation, and @,H " denote the associated canonical coefficients of H'u; drawn from the
following canonical correlation program:

CanCor{H u;, w;_1 | 1}. (15)
Then the LR test statistic for the null hypothesis 6 = H0 is given by

S o~
1_ .
LRZ:TZIn(l f’), s=1,....n, (16)
i=1

where @; denotes the ith smallest squared canonical correlation drawn from the solution of (14), and the estimates
of the parameters 6 are given by [ZE{I LI ol "], Under the null hypothesis the test statistic (16) has a y%(d>) limit
distribution, where do =s(2n +r — g).

Let us suppose that s WFPs exist and one wishes to test if a more restricted form of common features exists in the
data. For this purpose, it is required to solve the restricted canonical correlation program (15) for proper choices of the
matrix H and to use the test statistic (16) as detailed in Table 3.

When differing forms of common features are simultaneously present in the data, a more elaborated statistical
approach is called for. For the sake of simplicity, the focus is only on the case where two differing types of common
features coexist; but the proposed methods can be easily generalized. It is convenient to separate the treatment of the
case where PSCCF’s and WF’s are both present as in model (11) from that of the case of nested common features
structures, which occurs in model (12).
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2.1. Coexistence of PSCCFs and WFs

Let us start by reparametrizing model (11) in terms of model (13). In view of Table 3, this is obtained by writing
0 = (02, 63) where 9, = H>0> and J3 = H303. Hence, premultiplying both sides of model (13) by, respectively, H; and
H; yields

3

Hyu; = Hy®o + Hyd, Vw1 + H}%,
and
H%”l‘ H3¢() + H}élqj wr—1 + H38[
By taking, respectively, the expectation of Hju, conditional to d5u, and that of Hju, conditional to d5u; one obtains
Hiu; = Hy®o + Hyd L W'w,—1 + E(HYE|05ur) + &,
=ty + Hyo L W'wi—y + 7p05u; + &o s
and
Hiu, = Hy®o + H;0 1 ¥ w1 + E(HE 10hu,) + &,
= 3 + H30 L W w1 + 9305ur + &34,

where &, and 3, are i.i.d. Gaussian innovations with respect to ;_;.
In view of the above partial RRR models, ML inference on the parameters 03 for fixed J, is obtained by solving

CanCor{Hju,, wi—1 | (1,u;02)'}, (17)
and, vice versa, ML inference on 0 having fixed d3 is obtained by the solution of
CanCor{Hyu;, wi—1 | (1, u;03)'}. (18)

Hence, the likelihood function of ¢ can be maximized by a linear switching algorithm similar to that proposed for
cointegration analysis by Johansen and Juselius (1992), Johansen (1996), and Paruolo (2006b, c). This algorithm,
which increases the likelihood function in each step, proceeds as follows:

(1) Estimate ¢ unrestricted and obtain an initial estimate of d, as the orthogonal projection of ¢ onto H,. This is
obtained as 52 = Hy(H, [Hy)™ 1H 5. Alternative choices of the starting values are discussed in details in Paruolo
(2006¢). R N R R

(2) For fixed 9, = ,, obtain 63 = H303, where 03 are the canonical coefficients of Hju, associated with the s smallest
eigenvalues drawn from the solution of (17).

(3) For fixed 03 = 53 obtain 52 = H262 where 93 are the canonical coefficients of Hz/u, associated with the s; smallest
eigenvalues drawn from the solution of (18).

(4) Repeat (2) and (3) until numerical convergence occurs.

The LR test statistic for the null hypothesis 6 = (H>02, H303) versus the alternative that o is unrestricted is then
given by

LR3 = T log(det(Z;) det(Z,) "), (19)

where ’Z\b and i are the residual covariance matrices of models (8) and (11), respectively. The test statistic (19) follows
asymptotically a y2 (d3) distribution, where d3 = (syn + spr — s). Notice that Paruolo (2006b) corrected a common
error in previous formulations of such a LR test statistic.

Regarding the estimators of the parameters of model (11), l,b A is given by the canonical coefficients of Ay, ;
associated with the (n — s1) largest canonical correlations drawn from (17), /5 is given by the canonical coefficients
of ﬂ* yt | associated with the (n — sz) largest canonical correlations drawn from (18) and 1// r is obtained by regressing

(5 F l& Fl)~ Iy FTor onry,, where 5 F is given by the first n rows of the matrix (52, 53) and ro; and ry, are, respectively,



G. Cubadda / Computational Statistics & Data Analysis 52 (2007) 896906 903

the residuals of a regression of Ay, and (Ay, ,, ..., Ay;7p+1)/ on (AyL]@A, yt’ilﬂ*/w\B)/. Finally, the remaining
parameters of model (11) are estimated by OLS after fixing the parameter matrices /4, Y g and /¢ to their estimated
values.

Remark 4. Notice that the necessary and sufficient condition for identification of the parameters (05, /3) (see Johansen,
1995) is here satisfied since rank(H | H3) =rank(H;, H)) =n>s.

2.2. Nested forms of common features

In order to simplify notation, let us suppose that the statistical problem consists of testing whether s; out of the s
WEPs are indeed common features of a restricted form. However, it will be clear that the proposed solution applies to
any case of nested common features. Hence, let us write 6 = (J,, d,), where 6, = H;0; for j =1,2,3,0;isa g; x s
matrix with full column rank, and J,, is an n x s matrix with full column rank.

A reasoning which is similar to that of the previous subsection yields to the following equations:

Hju, = H)®o + H} 5LV w1 + B(HE|0,u,) + &,

= :ur + Hj{élql/wl—l + ’yré;ut + ér,ta
and

Hlyup=H) @+ H} 60 % w1 +EH] 5100u) + &,

=u, + H}L(ﬂlp w1 + 7,001 + Curts

where ¢, ; and ¢, , are i.i.d. Gaussian innovations with respect to €,_. Hence, the statistical problem is solved by the
following switching algorithm:

I. Estimate ¢ unrestricted and obtain an initial estimate of o, as 6, = H;(H J/ H j)_lH ]/.5.

II. For fixed 6, = o,, obtain 6, = H; 0,, where 0, are the canonical coefficients of H J’ | uy associated with the s,
smallest eigenvalues drawn from the solution of

CanCor{H]’lut, w1 | (1,u,0,)"}. (20)

Notice that EM is restricted to H ]’ |, in order to avoid a singularity problem in the canonical correlation problem
(20).

III. For fixed d, = 5u, obtain 5r =H; 0, i, where 8 as the canonical coefficients of H "u; associated with the s smallest
eigenvalues drawn from the solutlon of

CanCor{H}ut,wt_l | (1, u;04)"}. (21
IV. Repeat II and III until numerical convergence occurs.

The LR test statistic for the null hypothesis 6, = H;0; versus the alternative that J, is unrestricted is again given by
(19), where 28 is in this case the residual covariance matrlx of the model associated with matrix H; in Table 3, and
ds =s1(dy/s — 1), see again Table 3.

Regarding the estimators of the RRR parameters, let us focus on model (12), i.e., j = 1. Then 1//C is given by the
canonical coefficients of (Ayt 1> y ﬁ*) associated with the (n — s1) largest canonical correlations drawn from (20),

and 1//  is obtained by regressing (5 F lé Fl)~ Iy F . Tor onry;, where K F is given by the first n rows of the matrix (5,, (5 ),
and ro; and 1, are, respectively, the residuals of aregression of Ay, and (Ay;_,,..., Ay, _ » +1) on WC(A)’, LB

The other coefficient matrices of models (12) are then estimated by OLS after ﬁxmg the parameter matrices /-~ and
Y to their estimated values. By a similar reasoning, one obtains the estimators of the RRR parameters when j =2, 3.
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3. Empirical example: common features of the US business cycle indicators

In order to illustrate the practical value of the proposed methods, let us consider the monthly indicators that The
Conference Board uses to build the composite coincident indicator of the business cycle in the US. In particular, the
empirical analysis concerns the logarithms of employees on non-agricultural payrolls, personal income less transfer
payments (corrected for additive outliers corresponding to 1992.12 and 1993.12), industrial production, and manufac-
turing and trade sales for the period 1974.1-2003.7. These series are graphed in Fig. 1. Although the data are available
from 1959.1, only the post first oil-shock period is used because a preliminary application of the test by Bai et al. (1998)
revealed that a VAR model of these series is affected by a structural break occurring in the late 1973.

According to the longest significant lag rule, a VAR(6) with a linear trend is fitted to the data. This model seems
to reproduce successfully the dynamic features of the data since the null hypothesis of no residuals autocorrelation is
clearly not rejected. Table 4 reports the results of the Johansen’s LR tests for cointegration, which suggest the existence
of one cointegrating vector.

Having fixed r =1, the presence of the various forms of common cyclical features is scrutinized. The results, reported
in Table 5, indicate s = 1 for the SCCF, WF and PSCCF, and s = 2 for the WFP. Overall, the evidence favours the
existence of one unrestricted WFP, and one common feature of a restricted form.

Since the presence of two unrestricted WFPs and one cointegration vector implies that one PSCCF exists, it is of
interest to check whether the restricted form of common feature is either a WF or an SCCF. A test for the former
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Fig. 1. The US business cycle coincident indicators.
Table 4
Trace tests for cointegration
r=0 r<i r<2 r<3
72.33* 38.26 21.20 9.236

*Significant at the 10% confidence level.
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Table 5
Common features tests

s21 §>2 5>3 s=4
SCCF 20.20* 88.70 187.8 495.7
WF 17.14* 60.24 155.7 421.1
PSCCF 16.25% 59.74 118.4 257.4
WEFP 15.56* 36.16* 90.36 207.7

*Significant at the 10% confidence level.

Table 6

Estimates of the common features’ relationships

SCCF (1,-1.571,0.423,0.038)' Ay,

WFP (1,0.445, —0.668, —0.469)’ Ay, — 0.004f, y* | + (0.673,0.191, 0.031, —0.100)' Ay,

hypothesis produces a test statistic equal to 7.64 with a p-value equal to 0.27, whereas a test for the latter hypothesis
produces a test statistic equal to 8.65 with a p-value equal to 0.28. Since the SCCF is nested within the WF, these results
put forward the coexistence of one unrestricted WFP and one SCCF. Notice that switching algorithm was terminated
when the relative decrease of det(2) become inferior than 0.01%. Overall, seven iterations were needed for numerical
convergence. The estimates of the associated common feature vectors are reported in Table 6.

Remarkably, the model that incorporates the above common features’ relationships has 52 parameters, whereas the
model that only satisfies the SCCF restrictions calls for the estimation of 74 parameters.

4. Conclusions

This paper offers an approach for simultaneously modelling differing forms of common cyclical features among
I(1) time series. After showing that several existing forms of common features are nested within a new model, namely
the weak form of PSCCFs, some iterative procedures are proposed for testing and imposing diverse forms of common
features upon a cointegrated VAR model. The empirical application reveals that the new methods provide a model of
the US business cycle indicators that is considerably more parsimonious than those obtained using the pre-existing
concepts of common features.
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