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1. Introduction

The notion of interacting Fock space (IFS) was introduced in Ref. 2 and axiom-

atized in Ref. 3 where it was conjectured that the category of IFS could play for

general probability measures the same role as the usual Fock space for the Gaussian

measures. The first confirmation of this conjecture came from the paper1 of Accardi

and Bożejko who showed that the theory of one-mode interacting Fock spaces is
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canonically isomorphic to the theory of orthogonal polynomials in one variable.

The isomorphism is canonical in the sense that it carries the multiplication oper-

ator by the independent variable to a linear combination of creation, annihilation,

and number operators on the corresponding interacting Fock space.

The problem to extend the Accardi–Bożejko isomorphism to the case of several

variables has been recently solved by Accardi and Nahni4 and extended to the infi-

nite dimensional case by Accardi, Kuo and Stan. A new feature in the multi-mode

case is that not all interacting Fock spaces are canonically isomorphic to spaces of

orthogonal polynomials. Those being so are characterized in terms of a sequence of

quadratic commutation relations among finite dimensional matrices. Moreover, the

quantum decomposition of an arbitrary vector-valued random variable with finite

moments of any order can be easily written down as a sum of creation, annihilation

and number operators.

This result opens the way to the program of coding the whole information of a

probability measure into a set of commutation relations canonically associated to it

in full analogy to what happens with the codification of the properties of a Gaussian

measure into the Heisenberg commutation relations plus the Fock property.

In this paper we begin to realize this program by showing how some properties of

a probability measure on Rd are reflected by the actions of its creation, annihilation,

and number operators.

2. Fundamental Identities

Let d ∈ N be fixed. Let µ be a probability measure on the Borel subsets of Rd.

Throughout this paper we fix the canonical basis in Rd and identify vectors x =

(x1, . . . , xd) ∈ Rd with ordered d-tuples of real numbers. However, all the results

below can be formulated in an intrinsic, i.e. coordinate independent way and this

will be discussed in a future paper. We assume that µ has finite moments of all

orders, i.e. for all 1 ≤ p < ∞ and j ∈ {1, 2, . . . , d},
∫

Rd |xj |
pµ(dx) < ∞. We denote

the inner product on L2(Rd, µ) by 〈, 〉.

Let F0 = C · 1 be the complex multiples of the constant function equal to 1

in L2(Rd, µ), and for n ≥ 1 let Fn be the complex vector space of all polynomial

functions of variables x1, x2, . . . , xd of degree less than or equal to n. We have:

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ · · · ⊂ L2(Rd, µ) .

Let G0 = C · 1 and for n ≥ 1 let Gn be the orthogonal complement of Fn−1 in

Fn. Notice that Fn−1 and Fn are finite dimensional (therefore closed) subspaces

of L2(Rd, µ). Then the Hilbert spaces Gn, n ≥ 0, are orthogonal subspaces of

L2(Rd, µ). Let H denote the orthogonal direct sum of Gn, n ≥ 0:

H =
⊕

n≥0

Gn (Hilbert space sense) . (2.1)

For any j ∈ {1, 2, . . . , d}, we denote by Xj the multiplication by xj operator. This

operator is densely defined on H. Its domain contains Fn, ∀ n ≥ 0, since µ has finite
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moments of any order. Note that, for every n ≥ 0, Xj maps Fn into Fn+1 and is a

symmetric operator.

Lemma 2.1. For any j ∈ {1, 2, . . . , d} and n ≥ 0, we have

XjGn ⊥ Gk , ∀ k 6= n− 1, n, n+ 1 .

Proof. Let φ ∈ Gn. Then Xjφ ∈ Fn+1. Hence Xjφ ⊥ Gk for all k ≥ n+ 2. On the

other hand, for any ψ ∈ Gk with k ≤ n − 2, we have Xjψ ∈ Fn−1 hence, by the

symmetry of Xj

〈Xjφ, ψ〉 = 〈φ,Xjψ〉 = 0 .

Thus Xjφ ⊥ Gk for all k ≤ n− 2.

For any n ≥ 0, let Pn denote the orthogonal projection of H onto Gn.

Theorem 2.1. (Recurrence relations) For any j ∈ {1, 2, . . . , d} and n ≥ 0, the

following equality holds:

XjPn = Pn+1XjPn + PnXjPn + Pn−1XjPn , (2.2)

where P−1 = 0 by convention.

Proof. Equation (2.2) is equivalent to

Xjφ = Pn+1Xjφ+ PnXjφ+ Pn−1Xjφ , ∀ φ ∈ Gn . (2.3)

Let φ ∈ Gn. By Lemma 2.1, Xjφ can be written as

Xjφ = u+ v + w , (2.4)

where u ∈ Gn+1, v ∈ Gn and w ∈ Gn−1. Apply Pn+1 to both sides of Eq. (2.4).

Since Pn+1u = u and Pn+1v = Pn+1w = 0, we get u = Pn+1Xjφ. Similarly, we can

apply Pn and Pn−1 to both sides of Eq. (2.4) to get v = PnXjφ and w = Pn−1Xjφ.

Thus Eq. (2.3) is proved.

Now for each j ∈ {1, 2, . . . , d} and n ≥ 0 we define the following operators:

D+
n (j) = Pn+1XjPn : Gn → Gn+1 , (2.5)

D0
n(j) = PnXjPn : Gn → Gn , (2.6)

D−
n (j) = Pn−1XjPn : Gn → Gn−1 . (2.7)

We define F−1 and G−1 to be the null space {0}.

Theorem 2.2. For any i, j ∈ {1, 2, . . . , d} and n ≥ 0 the following identities hold:

• D+
n+1(i)D

+
n (j) = D+

n+1(j)D
+
n (i) , (2.8)

• D0
n+1(i)D

+
n (j) +D+

n (i)D0
n(j)

= D0
n+1(j)D

+
n (i) +D+

n (j)D0
n(i) , (2.9)
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• D−
n+1(i)D

+
n (j) +D0

n(i)D0
n(j) +D+

n−1(i)D
−
n (j)

= D−
n+1(j)D

+
n (i) +D0

n(j)D0
n(i) +D+

n−1(j)D
−
n (i) . (2.10)

Proof. Apply Pn+2Xi to both sides of Eq. (2.2) to obtain

Pn+2XiXjPn = Pn+2XiPn+1XjPn + Pn+2XiPnXjPn

+Pn+2XiPn−1XjPn .

Observe that

Pn+2XiPn+1XjPn = D+
n+1(i)D

+
n (j) ,

Pn+2XiPnXjPn = Pn+2XiPn−1XjPn = 0 .

Therefore, we obtain the equality:

Pn+2XiXjPn = D+
n+1(i)D

+
n (j) . (2.11)

Interchange the role of i and j to get

Pn+2XjXiPn = D+
n+1(j)D

+
n (i) . (2.12)

Since Pn+2XiXjPn = Pn+2XjXiPn, Eqs. (2.11) and (2.12) yield the identity in

Eq. (2.8).

Similarly, apply Pn+1Xi to both sides of Eq. (2.2) to get

Pn+1XiXjPn = Pn+1XiPn+1XjPn + Pn+1XiPnXjPn

+Pn+1XiPn−1XjPn .

Observe that

Pn+1XiPn+1XjPn = D0
n+1(i)D

+
n (j) ,

Pn+1XiPnXjPn = D+
n (i)D0

n(j)

Pn+1XiPn−1XjPn = 0 .

Therefore, we obtain the equality:

Pn+1XiXjPn = D0
n+1(i)D

+
n (j) +D+

n (i)D0
n(j) .

Interchange the role of i and j. Since Pn+1XiXjPn = Pn+1XjXiPn, we obtain the

identity in Eq. (2.9).

Finally, apply PnXi to both sides of Eq. (2.2) and interchange the role of i and

j to obtain the identity in Eq. (2.10).

Proposition 2.1. For any j ∈ {1, 2, . . . , d} and n ≥ 0 the operators D+
n (j), D0

n(j)

and D−
n (j) satisfy the identities:

(D+
n (j))∗ = D−

n+1(j) , (D0
n(j))∗ = D0

n(j) .
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Proof. Since X∗
j = Xj we have the equalities

(D+
n (j))∗ = (Pn+1XjPn)∗ = PnXjPn+1 = D−

n+1(j) ,

(D0
n(j))∗ = (PnXjPn)∗ = PnXjPn = D0

n(j) ,

which prove the proposition.

For each j ∈ {1, 2, . . . , d}, we define the densely defined linear operators a+(j),

a0(j) and a−(j), on H, by

a+(j)|Gn
= D+

n (j) , a0(j)|Gn
= D0

n(j) , a−(j)|Gn
= D−

n (j) , (2.13)

for all n ≥ 0.

Equation (2.2) becomes now:

Xj = a+(j) + a0(j) + a−(j) , ∀ j ∈ {1, 2, . . . , d} . (2.14)

Theorem 2.3. If µ is any probability measure on R
d having finite moments of any

orders, then ∀ i, j ∈ {1, 2, . . . , d}

a−(i)a−(j) = a−(j)a−(i) , a+(i)a+(j) = a+(j)a+(i) . (2.15)

Proof. The equality a+(i)a+(j) = a+(j)a+(i) is a restatement of Eq. (2.8). Taking

the adjoint on both sides of this relation we obtain a−(j)a−(i) = a−(i)a−(j).

For all j ∈ {1, 2, . . . , d} and n ≥ 1, we have a−(j) : Gn → Gn−1. The constant

polynomial 1 is called the vacuum vector. We have a−(j)1 = 0, ∀ j ∈ {1, 2, . . . , d}.

Lemma 2.2. Let j ∈ {1, 2, . . . , d}. We have a0(j)1 = 0 if and only if

〈xj〉 :=

∫

Rd

xjµ(dx) = 0 . (2.16)

Proof. We have

D0
0(j)1 = P0XjP01 = 〈xj , 1〉1 =

(
∫

Rd

xjµ(dx)

)

1 .

Thus a0(j)1 = 0 if and only if
∫

Rd xjµ(dx) = 0.

3. Polynomially Symmetric Measures

For any monomial xi1
1 x

i2
2 · · ·xid

d , we define its degree to be i1 + i2 + · · · + id.

Definition 3.1. A measure µ on Rd is called polynomially symmetric if all of its

mixed moments of odd order vanish, i.e. for all monomials xi1
1 x

i2
2 · · ·xid

d of odd

degree, we have
∫

Rd x
i1
1 x

i2
2 · · ·xid

d µ(dx) = 0.

Definition 3.2. A measure µ on Rd is called symmetric if for any Borel subset A

of Rd we have µ(A) = µ(−A), where −A := {−x |x ∈ A}.
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Observe that if µ is symmetric, then µ is also polynomially symmetric. The

converse is not true. In Example 5.1 of Sec. 5 we present a polynomially symmetric

measure that is not symmetric.

Let P be the set of all polynomials in the variables x1, x2, . . . , xd. Let Weven be

the vector subspace of P spanned by the set of all monomials of even degree and

Wodd the vector subspace of P spanned by the set of all monomials of odd degrees.

Let us assume that µ is polynomially symmetric. If f ∈ Weven and g ∈ Wodd,

then, since µ is polynomially symmetric, E[fḡ] = 0, where E denotes the ex-

pectation with respect to µ, i.e. the polynomials f and g are orthogonal. Thus

Weven ⊥ Wodd. We may apply the Grahm–Schmidt orthogonalization procedure

first to Weven and obtain a complete orthonormal set S1 for Weven. After this we

may apply the Grahm–Schmidt orthogonalization procedure to Wodd and obtain

a complete orthonormal set S2 for Wodd. Since S1 ⊂ Weven, S2 ⊂ Wodd, and

Weven ⊥Wodd, we have S1 ⊥ S2. Thus S := S1 ∪ S2 is a complete orthonormal set

for the space P of all polynomial functions. Using this complete orthonormal set S

for P , we can see that all polynomials in Gn, when n is even, are linear combina-

tions of monomials of even degree. When n is odd, all polynomials in Gn are linear

combinations of monomials of odd degree.

Theorem 3.1. If µ is a probability measure on Rd, having finite moments of all

orders, then µ is polynomially symmetric if and only if for all j ∈ {1, 2, . . . , d},

Xj = a+(j) + a−(j) .

This means that for all j ∈ {1, 2, . . . , d}, a0(j) = 0.

Proof. (⇒) Let us assume that µ is polynomially symmetric. Let j ∈ {1, 2, . . . , d}.

To show that a0(j) = 0, we must prove that for any n ≥ 0, PnXjPn = 0. To prove

this, we will show that for any polynomials f and g, we have 〈PnXjPnf, g〉 = 0.

Let n ≥ 0 be fixed. Let f and g be two polynomials. Since Pnf ∈ Gn and

Png ∈ Gn, Pnf and Png are linear combinations of monomials that are either all

of even degree if n is even or all of odd degree if n is odd. We have:

〈PnXjPnf, g〉 = 〈XjPnf, Png〉

= E[Xj(Pnf)Png]

= E
[(

xj

∑

ak1···kd
xk1

1 · · ·xkd

d

)(

∑

bl1···ldx
l1
1 · · ·xld

d

)]

= E
[

∑

ak1···kd
bl1···ldx

k1+l1
1 · · ·x

kj+lj+1
j · · ·xkd+ld

d

]

=
∑

ak1···kd
bl1···ldE[xk1+l1

1 · · ·x
kj+lj+1
j · · ·xkd+ld

d ] .

Observe that:

(k1 + l1) + · · · + (kj + lj + 1) + · · · + (kd + ld)

= (k1 + · · · + kd) + (l1 + · · · + ld) + 1
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≡ n(mod 2) + n(mod 2) + 1(mod 2)

≡ (2n+ 1)(mod 2)

≡ 1(mod 2) .

Since µ is polynomially symmetric, we have:

E[xk1+l1
1 · · ·x

kj+lj+1
j · · ·xkd+ld

d ] = 0 .

(⇐) Let µ be a probability measure on Rd having finite moments of all orders, such

that for all 1 ≤ j ≤ d, a0(j) = 0. We will prove by induction on k that for all

monomials m(x) = xi1
1 x

i2
2 · · ·xid

d , of degree 2k + 1, we have
∫

Rd m(x)µ(dx) = 0.

For k = 0, the only monomials having degree 1 are mj(x) = xj , for 1 ≤ j ≤ d.

Since a0(j)1 = 0, it follows that P0Xj1 = 0. Since P0 is the projection on the one-

dimensional vector space C for which 1 is an orthonormal basis, we have P0Xj1 =

〈xj , 1〉1. Thus 〈xj , 1〉 = 0, which means
∫

Rd xjµ(dx) = 0, for all 1 ≤ j ≤ d.

Let us assume now that the expectation of all monomials of odd degree less than

or equal to 2k − 1 is zero, where k ≥ 1. We want to prove that the expectation of

all monomials of degree 2k + 1 is 0. Let m(x) = xi1
1 x

i2
2 · · ·xid

d be a monomial such

that i1 + i2 + · · · + id = 2k + 1. Let us a choose a number j ∈ {1, 2, . . . , d} such

that ij > 0. We can write m(x) = xjq(x)r(x), where q(x) and r(x) are monomials

of degree equal to k. Let F e
k be the vector space spanned by the monomials of even

degree less than or equal to k. Let F o
k be the vector space spanned by the monomials

of odd degree less than or equal to k. According to our induction hypothesis F e
k and

F o
k are orthogonal subspaces of L2(Rd, µ). Thus if we choose an orthonormal basis

{ei}i∈I of F e
k and an orthonormal basis {fj}j∈J of F o

k , then {ei}i∈I ∪{fj}j∈J is an

orthonormal basis of the space Fk of all polynomials of degree less than or equal to

k. Using this particular basis for Fk, according to our induction hypothesis, we can

see that: Pkq(x) = q(x) − uk−2(x) − uk−4(x) − · · · and Pkr(x) = r(x) − vk−2(x) −

vk−4(x) − · · ·, where ui and vi are linear combinations of monomials of the same

degree i.

Since a0(j) = 0, we have PkXjPkq(x) = 0. Thus we obtain:

0 = 〈PkXjPkq(x), r(x)〉

= 〈XjPkq(x), Pkr(x)〉

= 〈xj(q(x) − uk−2(x) − uk−4(x) − · · ·), r(x) − vk−2(x) − vk−4(x) − · · ·〉

= 〈xjq(x), r(x)〉 −
∑

E[w(x)] ,

where all the w(x) are monomials of odd degree less than or equal to 2k−1. By the

induction hypothesis E[w(x)] = 0. From the last equality we obtain 〈xjq(x), r(x)〉 =

0. This means E[m(x)] = 0.

Thus we have proved by induction that the expectation of all monomials of odd

degree is zero. Hence µ is polynomially symmetric.
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Definition 3.3. Let µ be a probability measure on Rd and c ∈ Rd. We say that

µ is polynomially symmetric about c, if for any monomial m(x) of odd degree, we

have:
∫

Rd

m(x− c)µ(dx) = 0 .

Let us observe that if µ is a polynomially symmetric probability measure on

Rd, then for any c = (c1, c2, . . . , cd) ∈ Rd, the probability measure µc, defined by

µc(B) := µ(B− c), where B is a Borel subset of Rd and B− c := {x− c |x ∈ B}, is

polynomially symmetric about c. We do the same construction for µc as we did for

µ, and call the corresponding spaces G̃n, n ≥ 0, and the corresponding operators

P̃n, n ≥ 0, ã−, ã0, and ã+. Since for any integrable function f with respect to µ,

we have
∫

Rd f(x)µ(dx) =
∫

Rd f(x − c)µc(dx), we can see that a polynomial Q(x)

belongs to Gn if and only if Q(x − c) belongs to G̃n. Moreover, {ei(x)}i∈I is an

orthonormal basis for Gn if and only if {ei(x−c)}i∈I is an orthonormal basis for G̃n.

Since PnXjPn = 0, ∀ 1 ≤ j ≤ d, we conclude that P̃n(Xj − cj)P̃n = 0, ∀ 1 ≤ j ≤ d.

Thus, for all n ≥ 0, we have:

ã0(j)|Gn
= P̃nXj P̃n

= P̃n(Xj − cj)P̃n + cj P̃n

= cjP̃n .

Hence ã0(j) = cjI . Therefore, we obtain the following:

Theorem 3.2. If µ is a probability measure on Rd, having finite moments of all

orders, then µ is polynomially symmetric about the point c = (c1, c2, . . . , cd) ∈ Rd

if and only if for all j ∈ {1, 2, . . . , d}, we have:

a0(j) = cjI . (3.1)

4. Polynomially Factorizable Measures

Definition 4.1. If µ is a probability measure on the Borel subsets of R
d, having

finite moments of any order, then we say that µ is polynomially factorizable if for

any non-negative integers i1, i2, . . . , id we have:

E[xi1
1 x

i2
2 · · ·xid

d ] = E[xi1
1 ]E[xi2

2 ] · · ·E[xid

d ] .

In the above definition E denotes the expectation with respect to µ.

Observe that if µ is polynomially factorizable, then for any polynomial functions

f1(x1), f2(x2), . . . , fd(xd), we have:

E[f1(x1)f2(x2) · · · fd(xd)] = E[f1(x1)]E[f2(x2)] · · ·E[fd(xd)] .

If there exist d probability measures µ1, µ2, . . . , µd on R, such that for all B1,

B2, . . . , Bd Borel subsets of R,

µ(B1 ×B2 × · · · ×Bd) = µ1(B1)µ2(B2) · · ·µd(Bd) ,
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then µ is polynomially factorizable. The converse is not true. In Example 5.2 of

Sec. 5 we present a polynomially factorizable measure that is not a product measure.

Let µ be a polynomially factorizable measure on the Borel subsets of Rd. For any

i ∈ {1, 2, . . . , d}, let Hi be the closure of the space Pi, of all polynomial functions

of the variable xi, in the space L2(Rd, µ). Every function in Pi is a polynomial

function depending only on the variable xi. Let H be the closure of the space P , of

all polynomial functions of d variables: x1, x2, . . . , xd, in the space L2(Rd, µ). The

multilinear function T : P1 ×P2 × · · · × Pd → P , defined by T (f1, f2, . . . , fd) = f ,

where f(x1, x2, . . . , xd) = f1(x1)f2(x2) · · · fd(xd), generates a linear map U between

the algebraic tensor product P1 ⊗ P2 ⊗ · · · ⊗ Pd and the space P . Because µ is

polynomially factorizable, U preserves the inner product. Indeed, for any f1, g1 ∈

P1, f2, g2 ∈ P2, . . . , fd, gd ∈ Pd, we have:

〈U(f1 ⊗ f2 ⊗ · · · ⊗ fd), U(g1 ⊗ g2 ⊗ · · · ⊗ gd)〉

= 〈f1(x1)f2(x2) · · · fd(xd), g1(x1)g2(x2) · · · gd(xd)〉

= E[f1(x1)ḡ1(x1)f2(x2)ḡ2(x2) · · · fd(xd)ḡd(xd)]

= E[f1(x1)ḡ1(x1)]E[f2(x2)ḡ2(x2)] · · ·E[fd(xd)ḡd(xd)]

= 〈f1, g1〉〈f2, g2〉 · · · 〈fd, gd〉

= 〈f1 ⊗ f2 ⊗ · · · ⊗ fd, g1 ⊗ g2 ⊗ · · · ⊗ gd〉 .

U is onto since any monomial belongs to its range. Since P1⊗P2⊗· · ·⊗Pd is dense

in the Hilbert space H1 ⊗H2 ⊗ · · · ⊗ Hd and P is dense in H, the operator U can

be uniquely extended to a unitary operator Ũ from H1 ⊗ H2 ⊗ · · · ⊗ Hd onto H.

Thus we may identify the Hilbert spaces H1 ⊗H2 ⊗ · · · ⊗ Hd and H.

For any i ∈ {1, 2, . . . , d} and k a non-negative integer, let F
(i)
k be the vector space

spanned by the polynomial functions 1, xi, x
2
i , . . . , x

k
i . Let G

(i)
k be the orthogonal

complement of F
(i)
k−1 into F

(i)
k , where F

(i)
−1 := {0}. To compute this orthogonal

complement we consider F
(i)
k−1 and F

(i)
k as being subspaces of the Hilbert space

Hi. We denote by P
(i)
k the projection operator from Hi onto G

(i)
k and by X

(i)
i

the densely defined operator on Hi given by the multiplication by the polynomial

function xi.

For any i ∈ {1, 2, . . . , d} and n a non-negative integer, we define the operators

D−
n,i, D

0
n,i and D+

n,i, from Hi into Hi, in the following way:

D−
n,i = P

(i)
n−1X

(i)
i P (i)

n , D0
n,i = P (i)

n X
(i)
i P (i)

n and D+
n,i = P

(i)
n+1X

(i)
i P (i)

n .

Lemma 4.1. Let µ be a polynomially factorizable probability measure on the Borel

subsets of Rd. If we identify the space H with the space H1 ⊗H2 ⊗ · · · ⊗ Hd, then

for any n ≥ 0, we have:

Pn =
∑

i1+i2+···+id=n

P
(1)
i1

⊗ P
(2)
i2

⊗ · · · ⊗ P
(d)
id

. (4.1)

In the above sum all the indices ij are considered to be non-negative.
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Proof. Since the tensor product of orthogonal projections is an orthogonal projec-

tion, it follows that each term P
(1)
i1

⊗ P
(2)
i2

⊗ · · · ⊗ P
(d)
id

is an orthogonal projection.

If ij 6= kj , then P
(j)
ij
P

(j)
kj

= 0 and thus the terms in the sum from the right-hand

side of (4.1) are orthogonal (i.e. the composition of any two different terms is zero).

Thus the right-hand side of (4.1) is an orthogonal projection. If P and Q are two

orthogonal projections of the same Hilbert space H , then we say that P ≥ Q if the

range of P contains the range of Q. If i1 + i2 + · · ·+ id = n and f(x) ∈ Fn−1, then

f(x) =
∑

aj1,j2,...,jd
x

j1
1 x

j2
2 · · ·xjd

d with j1 + j2 + · · · + jd ≤ n− 1. Thus there exists

k ∈ {1, 2, . . . , d} such that ik > jk and so P
(1)
i1

⊗ · · · ⊗ P
(d)
id

(xj1
1 · · ·xjd

d ) = 0. Hence

P
(1)
i1

⊗ · · · ⊗P
(d)
id
f(x) = 0. Therefore the range of P

(1)
i1

⊗ · · · ⊗ P
(d)
id

is orthogonal to

the space Fn−1. It is obvious that the range of P
(1)
i1

⊗ · · · ⊗P
(d)
id

is contained in Fn.

Thus Pn ≥ P
(1)
i1

⊗· · ·⊗P
(d)
id

. Therefore Pn ≥ Qn, where Qn denotes the right-hand

side of (4.1).

We prove now by induction on n, that Pn = Qn. For n = 0, this is obvious since

both P0 and Q0 are projections on the one-dimensional vector space spanned by

the vacuum vector 1. Let us assume that Pk = Qk, for all k ≤ n − 1, and prove

that Pn = Qn. To see this, we must show that for any monomial m(x) = xi1 · · ·xid

d ,

such that i1 + · · · + id = n, we have Pnm(x) = Qnm(x). We can write:

xi1
1 = P

(1)
i1
xi1

1 +

i1−1
∑

j=0

P
(1)
j xi1

1 ,

...

xid

d = P
(d)
id
xid

d +

id−1
∑

j=0

P
(d)
j xid

d .

Multiplying these relations and keeping in mind that we have identified H with

H1 ⊗H2 ⊗ · · · ⊗ Hd, according to our induction bypothesis, we can see that:

Pnm(x) = P
(1)
i1
xi1

1 P
(2)
i2
xi2

2 · · ·P
(d)
id
xid

d

= (P
(1)
i1

⊗ P
(2)
i2

⊗ · · · ⊗ P
(d)
id

)(xi1
1 x

i2
2 · · ·xid

d )

= Qnm(x) .

Let µ be a polynomially factorizable measure on Rd. If we identify the space H

with the space H1 ⊗H2 ⊗· · ·⊗Hd, then for any 1 ≤ j ≤ d, we have the operatorial

relation:

Xj = I1 ⊗ · · · ⊗ Ij−1 ⊗X
(j)
j ⊗ Ij+1 ⊗ · · · ⊗ Id , (4.2)

where Ik is the identity operator of the space Hk, for any k 6= j.

Theorem 4.1. Let µ be a polynomially factorizable measure on Rd. If we identify

the space H with the space H1 ⊗H2 ⊗ · · · ⊗ Hd, then for all 1 ≤ j ≤ d and n ≥ 0
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the following three operatorial relations hold:

D−
n (j) =

∑

i1+···+id=n

P
(1)
i1

⊗ · · · ⊗ P
(j−1)
ij−1

⊗D−
ij ,j ⊗ P

(j+1)
ij+1

⊗ · · · ⊗ P
(d)
id

,

D0
n(j) =

∑

i1+···+id=n

P
(1)
i1

⊗ · · · ⊗ P
(j−1)
ij−1

⊗D0
ij ,j ⊗ P

(j+1)
ij+1

⊗ · · · ⊗ P
(d)
id

,

D+
n (j) =

∑

i1+···+id=n

P
(1)
i1

⊗ · · · ⊗ P
(j−1)
ij−1

⊗D+
ij ,j ⊗ P

(j+1)
ij+1

⊗ · · · ⊗ P
(d)
id

.

Proof. We will check only the first relation. The other two will be proved similarly.

We have:

D−
n (j)

= Pn−1XjPn

= Pn−1(I1 ⊗ · · · ⊗X
(j)
j ⊗ · · · ⊗ Id)

×
∑

i1+···+id=n

P
(1)
i1

⊗ · · · ⊗ P
(j)
ij

⊗ · · · ⊗ P
(d)
id

= Pn−1

∑

i1+···+id=n

(I1P
(1)
i1

) ⊗ · · · ⊗ (X
(j)
j P

(j)
ij

) ⊗ · · · ⊗ (IdP
(d)
id

)

=
∑

k1+···+kd=n−1

P
(1)
k1

⊗ · · · ⊗ P
(j)
kj

⊗ · · · ⊗ P
(d)
kd

×
∑

i1+···+id=n

P
(1)
i1

⊗ · · · ⊗ (X
(j)
j P

(j)
ij

) ⊗ · · · ⊗ P
(d)
id

=
∑

k1+···+kd=n−1

∑

i1+···+id=n

[(P
(1)
k1
P

(1)
i1

) ⊗ · · · ⊗ (P
(j)
kj
X

(j)
j P

(j)
ij

)

⊗ · · · ⊗ (P
(d)
kd
P

(d)
id

)] ,

where “×” means composition of operators.

Observe that if

(P
(1)
k1
P

(1)
i1

) ⊗ · · · ⊗ (P
(j)
kj
X

(j)
j P

(j)
ij

) ⊗ · · · ⊗ (P
(d)
kd
P

(d)
id

) 6= 0 ,

then i1 = k1, . . . , ij−1 = kj−1, ij+1 = kj+1, . . . , id = kd. Since i1 + · · · + id = n and

k1 + · · · + kd = n− 1, it follows that ij = kj + 1. Thus we obtain:

D−
n (j) =

∑

i1+···+id=n

P
(1)
i1

⊗ · · · ⊗ (P
(j)
ij−1X

(j)
j P

(j)
ij

) ⊗ · · · ⊗ P
(d)
id

=
∑

i1+···+id=n

P
(1)
i1

⊗ · · · ⊗D−
ij ,j ⊗ · · · ⊗ P

(d)
id

.
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Theorem 4.2. Let µ be a polynomially factorizable probability measure on the

Borel subsets of Rd. Then, for all j 6= k, we have:

a−(j)a+(k) = a+(k)a−(j) , (4.3)

a0(j)a+(k) = a+(k)a0(j) , (4.4)

a0(j)a−(k) = a−(k)a0(j) . (4.5)

Proof. To check the commutation relation a−(j)a+(k) = a+(k)a−(j), we need to

check that for all n ≥ 0, we have D−
n+1(j)D

+
n (k) = D+

n−1(k)D
−
n (j). Let us assume

that j < k. The case j > k can be treated similarly or by duality. From the previous

theorem we know that:

D−
n+1(j)D

+
n (k)

=
∑

r1+···+rd=n+1

P (1)
r1

⊗ · · · ⊗ P (j−1)
rj−1

⊗D−
rj ,j ⊗ P (j+1)

rj+1
⊗ · · · ⊗ P (d)

rd

∑

s1+···+sd=n

P (1)
s1

⊗ · · · ⊗ P (k−1)
sk−1

⊗D+
sk ,k ⊗ P (k+1)

sk+1
⊗ · · · ⊗ P (d)

sd

=
∑

r1+···+rd=n+1

∑

s1+···+sd=n

[(P (1)
r1
P (1)

s1
) ⊗ · · · ⊗ (D−

rj ,jP
(j)
sj

)

⊗ · · · ⊗ (P (k)
rk
D+

sk ,k) ⊗ · · · ⊗ (P (d)
rd
P (d)

sd
)] .

To have P
(l)
rl
P

(l)
sl

6= 0, for all l ∈ {1, . . . , d} \ {j, k}, we must have rl = sl, for all

l ∈ {1, . . . , d} \ {j, k}.

Since D−
rj ,jP

(j)
sj = P

(j)
rj−1X

(j)
j P

(j)
rj P

(j)
sj , if D−

rj ,jP
(j)
sj 6= 0, then rj = sj . If rj = sj ,

then D−
rj ,jP

(j)
sj = D−

sj ,j .

Since P
(k)
rk
D+

sk,k = P
(k)
rk
P

(k)
sk+1X

(k)
k P

(k)
sk

, if P
(k)
rk
D+

sk ,k 6= 0, then rk = sk + 1. If

rk = sk + 1, then P
(k)
rk D+

sk ,k = D+
sk,k.

Thus we obtain:

D−
n+1(j)D

+
n (k)

=
∑

s1+···+sd=n

P (1)
s1

⊗ . . .⊗D−
sj ,j ⊗ · · · ⊗D+

sk,k ⊗ · · · ⊗ P (d)
sd

.

In the same way, we can show that:

D+
n−1(k)D

−
n (j)

=
∑

s1+···+sd=n

P (1)
s1

⊗ · · · ⊗D−
sj ,j ⊗ · · · ⊗D+

sk,k ⊗ · · · ⊗ P (d)
sd

.

Thus D−
n+1(j)D

+
n (k) = D+

n−1(k)D
−
n (j).

The commutation relationships (4.4) and (4.5) are proved similarly.
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Proposition 4.1. If µ is a probability measure on Rd such that for any j 6= k, the

operators a−(j) and a+(k) commute, then for any j, k ∈ {1, 2, . . . , d} we have:

a0(j)a0(k) = a0(k)a0(j) . (4.6)

Proof. Let j, k ∈ {1, 2, . . . , d} be fixed.

If j = k, then it is obvious that a0(j) and a0(k) commute.

If j 6= k, then, according to Eq. (2.10), for any n ≥ 0, we have:

D−
n+1(j)D

+
n (k) +D0

n(j)D0
n(k) +D+

n−1(j)D
−
n (k)

= D−
n+1(k)D

+
n (j) +D0

n(k)D0
n(j) +D+

n−1(k)D
−
n (j) .

Since a−(j)a+(k) = a+(k)a−(j) it follows that

D−
n+1(j)D

+
n (k) = D+

n−1(k)D
−
n (j) .

Since a+(j)a−(k) = a−(k)a+(j) it follows that

D+
n−1(j)D

−
n (k) = D−

n+1(k)D
+
n (j) .

Thus we obtain

D0
n(j)D0

n(k) = D0
n(k)D0

n(j) .

Since this is true for all n ≥ 1, we obtain a0(j)a0(k) = a0(k)a0(j).

Proposition 4.2. Let µ be a probability measure on R
d having finite moments of

any order. Let j, k ∈ {1, 2, . . . , d}. Then the following two statements are equivalent:

(1) a0(j)a+(k) = a+(k)a0(j) and a0(j)a0(k) = a0(k)a0(j).

(2) a0(j)Xk = Xka
0(j).

Proof. (1) ⇒ (2) Let us assume that a0(j)a+(k) = a+(k)a0(j) and a0(j)a0(k) =

a0(k)a0(j). Taking the adjoints on both sides of the first equality we obtain

a−(k)a0(j) = a0(j)a−(k). Thus:

a0(j)Xk = a0(j)[a+(k) + a0(k) + a−(k)]

= a0(j)a+(k) + a0(j)a0(k) + a0(j)a−(k)

= a+(k)a0(j) + a0(k)a0(j) + a−(k)a0(j)

= [a+(k) + a0(k) + a−(k)]a0(j)

= Xka
0(j) .

(2) ⇒ (1) Let us assume now that a0(j)Xk = Xka
0(j). Let n ≥ 0 be fixed. For any

ϕ ∈ Gn we have a0(j)Xkϕ = Xka
0(j)ϕ. This means

a0(j)a+(k)ϕ+ a0(j)a0(k)ϕ+ a0(j)a−(k)ϕ

= a+(k)a0(j)ϕ+ a0(k)a0(j)ϕ+ a−(k)a0(j)ϕ .
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Since a0(j)a+(k)ϕ ∈ Gn+1 and a+(k)a0(j)ϕ ∈ Gn+1, a0(j)a0(k)ϕ ∈ Gn

a0(k)a0(j)ϕ ∈ Gn, a0(j)a−(k)ϕ ∈ Gn−1 and a−(k)a0(j)ϕ ∈ Gn−1, and the

spaces Gn+1, Gn and Gn−1 are orthogonal, we obtain: a0(j)a+(k)ϕ = a+(k)a0(j)ϕ,

a0(j)a0(k)ϕ = a0(k)a0(j)ϕ and a0(j)a−(k)ϕ = a−(k)a0(j)ϕ.

Combining Theorem 4.2, Proposition 4.1, and Theorem 2.3 we obtain the fol-

lowing:

Corollary 4.1. Let µ be a polynomially factorizable probability measure on the

Borel subsets of Rd. If j, k ∈ {1, 2, . . . , d} and j 6= k, then for any Y ∈

{a−(j), a0(j), a+(j)} and Z ∈ {a−(k), a0(k), a+(k)}, we have:

Y Z = ZY .

Theorem 4.3. If µ is a polynomially factorizable probability measure on the Borel

subsets of Rd, then for all i, j, k ∈ {1, 2, . . . , d}, we have:

[a0(i), [a−(j), a+(k)]] = 0 , (4.7)

where [A,B] := AB −BA for any two operators A and B.

Proof. We analyze three cases:

Case I. If j 6= k, then Theorem 4.2 implies [a−(j), a+(k)] = 0. Thus

[a0(i), [a−(j), a+(k)]] = 0.

Case II. If j = k and i 6= j, then according to Theorem 4.2, a0(i) commutes

with both operators a−(j) and a+(j). Thus a0(i) commutes with the commutator

of a−(j) and a+(j).

Case III. If i = j = k, then according to Theorem 4.1, for any n ≥ 0, we have:

a0(j)[a−(j), a+(j)]|Gn

=
∑

l1+···+ld=n

P
(1)
l1

⊗ · · · ⊗D0
lj ,j(D

−
lj+1,jD

+
lj ,j −D+

lj−1,jD
−
lj ,j) ⊗ · · · ⊗ P

(d)
ld

.

We also have:

[a−(j), a+(j)]a0(j)|Gn

=
∑

l1+···+ld=n

P
(1)
l1

⊗ · · · ⊗ (D−
lj+1,jD

+
lj ,j −D+

lj−1,jD
−
lj ,j)D

0
lj ,j ⊗ · · · ⊗ P

(d)
ld

.

D0
lj ,j and D−

lj+1,jD
+
lj ,j − D+

lj−1,jD
−
lj ,j are linear operators from the space G

(j)
n

into itself. Since the vector space G
(j)
n has dimension at most 1, any two linear

operators from G
(j)
n into G

(j)
n commute. Thus, we have:

D0
lj ,j(D

−
lj+1,jD

+
lj ,j −D+

lj−1,jD
−
lj ,j) = (D−

lj+1,jD
+
lj ,j −D+

lj−1,jD
−
lj ,j)D

0
lj ,j .

Therefore, we obtain:

a0(j)[a−(j), a+(j)]|Gn
= [a−(j), a+(j)]a0(j)|Gn

,

for all n ≥ 0. Thus [a0(j), [a−(j), a+(j)]] = 0.
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We prove now the converse of Theorem 4.2.

Theorem 4.4. Let µ be a probability measure on the Borel subsets of Rd such that,

for all j 6= k, we have:

a−(j)a+(k) = a+(k)a−(j) ,

a0(j)a+(k) = a+(k)a0(j) .

Then µ is polynomially factorizable.

Proof. Since for all j 6= k, a0(j)a+(k) = a+(k)a0(j), taking the adjoints on both

sides of this equation, we obtain: a−(k)a0(j) = a0(j)a−(k). Because for all j 6= k,

the operators a−(j) and a+(k) commute, according to Proposition 4.1, for any r,

s ∈ {1, 2, . . . , d}, the operators a0(r) and a0(s) also commute. Using Theorem 2.3,

we conclude that, for all j 6= k, any operator from the set {a−(j), a0(j), a+(j)}

commutes with any operator from the set {a−(k), a0(k), a+(k)}.

For any 1 ≤ j ≤ d and n ≥ 1, we define a j-word of length n, to be any operator

of the form w = aε1(j)aε2(j) · · · aεn(j), where εi ∈ {−, 0,+}, ∀ 1 ≤ i ≤ n. The

operators aε1(j), aε2(j), . . . , aεn(j) are called the letters of the word w.

The identity operator I , of L2(Rd, µ), is considered to be a j-word of length 0,

for any 1 ≤ j ≤ d.

Let m(x) = xi1
1 x

i2
2 · · ·xid

d be a monomial. Let φ = 1 be the vacuum vector (the

constant polynomial function 1). We have

m(x) = X i1
1 X

i2
2 · · ·X id

d φ

= (a−(1) + a0(1) + a+(1))i1 · · · (a−(d) + a0(d) + a+(d))idφ

=
∑

(aε1
1(1)aε1

2(1) · · · aε1
i1 (1)) · · · (aεd

1 (d)aεd
2 (d) · · · aεd

id (d))φ ,

where εs
r ∈ {−, 0,+}, for all 1 ≤ s ≤ d and 1 ≤ r ≤ is. Thus

m(x) =
∑

w1w2 · · ·wdφ ,

where wj is a j-word of length ij , ∀ 1 ≤ j ≤ d. According to our hypothesis, if

j 6= k, then any j-word commutes with any k-word.

Since for any 1 ≤ j ≤ d and any integer n, a−(j)|Fn
: Fn → Fn−1, we say

that a−(j) represents one step backward. Similarly we say that a+(j) represents

one step forward, while a0(j) represents a neutral step. Thus a−(j) is considered

to be a negative letter, a+(j) a positive letter, and a0(j) a neutral letter. If n is a

negative integer, then we declare Fn to be the null space {0}. We define the signum

s(w) of a word w, to be the number of positive letters of w minus the number of

negative letters of w. If w∗ denotes the adjoint of w, then s(w∗) = −s(w).

All the terms w1w2 · · ·wdφ, containing at least one word wj0 that has more

negative letters than positive letters, are equal to 0. Indeed, for such a term,

w1w2 · · ·wdφ = w1 · · ·wj0−1wj0+1 · · ·wd(wj0φ) = 0 ,
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since wj0φ = 0, because we start from the vacuum space and do more steps back-

ward than we do forward. Thus m(x) =
∑

w1w2 · · ·wdφ, where each term contains

only words having the number of negative letters less than or equal to the number

of positive letters. Hence:

E[m(x)] = 〈m(x), φ〉

=
∑

s(w1)≥0,...,s(wd)≥0

〈w1 · · ·wdφ, φ〉

=
∑

s(w1)≥0,...,s(wd)≥0

〈φ,w∗
d · · ·w

∗
1φ〉 .

Observe that in the last sum all the terms, for which at least one of the words

{wj}1≤j≤d has a positive signum, are equal to zero. This is true, because if there

exists j ∈ {1, 2, . . . , d} such that s(wj) > 0, then s(w∗
j ) < 0 and, it follows, as

before, that w∗
d · · ·w

∗
1φ = 0. Therefore, we have:

E[m(x)] =
∑

s(w1)=0,...,s(wd)=0

〈w1 · · ·wdφ, φ〉 .

Observe that, since s(wd) = 0, wdφ ∈ F0, and thus wdφ = P0(wdφ) = 〈wdφ, φ〉φ =

E[wdφ]φ. Applying wd−1 to both sides of the equality: wdφ = E[wdφ]φ, we get

wd−1wdφ = E[wdφ]E[wd−1φ]φ. Iterating this process we obtain finally:

w1 · · ·wdφ = E[wdφ] · · ·E[w1φ]φ .

Thus we obtain:

E[m(x)] =
∑

s(w1)=0,s(w2)=0,...,s(wd)=0

〈w1w2 · · ·wdφ, φ〉

=
∑

s(w1)=0,s(w2)=0,...,s(wd)=0

〈E[wdφ]E[wd−1φ] · · ·E[w1φ]φ, φ〉

=
∑

s(w1)=0,s(w2)=0,...,s(wd)=0

E[wdφ]E[wd−1φ] · · ·E[w1φ]〈φ, φ〉

=
∑

s(w1)=0,s(w2)=0,...,s(wd)=0

E[w1φ]E[w2φ] · · ·E[wdφ]

=
∑

s(w1)=0

E[w1φ]
∑

s(w2)=0

E[w2φ] · · ·
∑

s(wd)=0

E[wdφ] .

Applying the last equality to the particular monomials m1(x) = xi1
1 , m2(x) =

xi2
2 , . . . ,md(x) = xid

d , we can see that: E[xi1
1 ] =

∑

s(w1)=0E[w1φ], E[xi2
2 ] =

∑

s(w2)=0E[w2φ], . . . , E[xid

d ] =
∑

s(wd)=0E[wdφ]. Thus:

E[m(x)] = E[xi1
1 ]E[xi2

2 ] · · ·E[xid

d ] .

Therefore µ is polynomially factorizable.
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From Proposition 4.2, Theorem 4.2 and Theorem 4.4 we obtain the following:

Theorem 4.5. A probability measure µ on Rd, having finite moments of any order,

is polynomially factorizable if and only if for all j, k ∈ {1, 2, . . . , d}, such that j 6= k,

the commutators [a−(j), a+(k)] and [a0(j), Xk] are both equal to zero.

Corollary 4.2. A polynomially symmetric about a point probability measure on

Rd is polynomially factorizable if and only if for all j 6= k we have a−(j)a+(k) =

a+(k)a−(j).

5. Examples

In this section we will give an example of a polynomially symmetric probability

measure that is not symmetric and an example of a polynomially factorizable prob-

ability measure that is not a product measure.

Let us consider the following function, introduced by Stieltjes in Ref. 12: f :

(0,∞) → R, f(t) = t− ln t sin(2π ln t).

Claim 5.1. For all non-negative integer n, we have:
∫ ∞

0

tnf(t)dt = 0 . (5.1)

We present below the proof of this claim as it appears in Ref. 11. Indeed, for

any non-negative integer n, making the change of variable t = eu+ n+1

2 , we have:
∫ ∞

0

tnf(t)dt

=

∫ ∞

0

tnt− ln t sin(2π ln t)dt

=

∫

R

en(u+ n+1

2
)e−(u+ n+1

2
)2 sin

(

2π

(

u+
n+ 1

2

))

eu+ n+1

2 du

= e(
n+1

2
)2

∫

R

e−u2

[sin(2πu) cos((n+ 1)π) + cos(2πu) sin((n+ 1)π)]du

= (−1)n+1e(
n+1

2
)2

∫

R

e−u2

sin(2πu)du

= 0 .

The last integral is zero since the integrand is an odd function.

Example 5.1. Let µ be the probability measure on R given by the density function

g : R → [0,∞), defined by:

g(x) =











cf+(x) if x > 0 ,

0 if x = 0 ,

cf−(−x) if x < 0 ,
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where a+ = max(a, 0), a− = −min(a, 0), ∀ a ∈ R, and c is a positive constant

chosen such that
∫

R
g(x)dx = 1.

It is easy to see that µ has finite moments of any order.

Claim 5.2. µ is polynomially symmetric.

Indeed, if n is an odd natural number, then we have:
∫

R

xnµ(dx) =

∫

R

xng(x)dx

= c

∫ 0

−∞

xnf−(−x)dx + c

∫ ∞

0

xnf+(x)dx

= c

∫ ∞

0

(−t)nf−(t)dt+ c

∫ ∞

0

tnf+(t)dt

= −c

∫ ∞

0

tnf−(t)dt+ c

∫ ∞

0

tnf+(t)dt

= c

∫ ∞

0

tn[f+(t) − f−(t)]dt

= c

∫ ∞

0

tnf(t)dt

= 0 .

Claim 5.3. µ is not symmetric.

Indeed, for any interval [a, b] contained in the set: {x > 0|f(x) > 0} we

have
∫ b

a
g(x)dx = c

∫ b

a
f+(x)dx > 0, but

∫ −a

−b
g(x)dx = c

∫ b

a
f−(x)dx = 0. Thus

µ([a, b]) 6= µ([−b,−a]).

Let f1 : (0,∞) → [0,∞), f1(t) = t− ln t[1+sin(2π ln t)] and f2 : (0,∞) → [0,∞),

f2(t) = t− ln t[1− sin(2π ln t)]. Since, according to (5.1),
∫ ∞

0
tnt− ln t sin(2π ln t)dt =

0, for any non-negative integer n, we have:

∫ ∞

0

tnf1(t)dt =

∫ ∞

0

tnf2(t)dt , ∀ n ∈ N ∪ {0} . (5.2)

In particular for n = 0, let k :=
∫ ∞

0
f1(t)dt =

∫ ∞

0
f2(t)dt.

Example 5.2. Let µ be the probability measure on R2 given by the density func-

tion h : R2 → [0,∞), defined by:

h(x, y) =







1

k
[f1(x) sin2 y + f2(x) cos2 y]e−y if x > 0 and y > 0

0 otherwise .
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For any non-negative integers m and n, we have:
∫

R2

xnymµ(dxdy)

=
1

k

∫ ∞

0

yme−y

[

sin2 y

∫ ∞

0

xnf1(x)dx + cos2 y

∫ ∞

0

xnf2(x)dx

]

dy

=
1

k

∫ ∞

0

yme−y

[
∫ ∞

0

xnf1(x)dx

]

(sin2 y + cos2 y)dy

=
1

k

[
∫ ∞

0

xnf1(x)dx

]
∫ ∞

0

yme−ydy .

Thus we obtain:
∫

R2

xnymµ(dxdy) =
1

k

[
∫ ∞

0

xnf1(x)dx

]
∫ ∞

0

yme−ydy . (5.3)

In particular for m = n = 0, we obtain:
∫

R2

1µ(dxdy) =
1

k

[
∫ ∞

0

f1(x)dx

]
∫ ∞

0

e−ydy

=
1

k
· k · 1

= 1 .

Hence µ is a probability measure on R2.

Taking m = 0 in formula (5.3), we can see that:
∫

R2

xnµ(dxdy) =
1

k

∫ ∞

0

xnf1(x)dx

∫ ∞

0

e−ydy

=
1

k

∫ ∞

0

xnf1(x)dx .

Hence
∫

R2

xnµ(dxdy) =
1

k

∫ ∞

0

xnf1(x)dx . (5.4)

Taking n = 0 in formula (5.3), we can see that:
∫

R2

ymµ(dxdy) =
1

k

∫ ∞

0

f1(x)dx

∫ ∞

0

yme−ydy

=
1

k
· k ·

∫ ∞

0

yme−ydy

=

∫ ∞

0

yme−ydy .
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Hence
∫

R2

ymµ(dxdy) =

∫ ∞

0

yme−ydy . (5.5)

From formulas (5.3)–(5.5), we can see that:
∫

R2

xnymµ(dxdy) =

∫ ∞

0

xnµ(dxdy)

∫ ∞

0

ymµ(dxdy) . (5.6)

Thus µ is polynomially factorizable.

Claim 5.4. µ is not a product measure.

Let us assume that two probability measures, µ1 and µ2, on R, exist, such that

for any two Borel subsets B1 and B2 of R, we have µ(B1 × B2) = µ1(B1)µ2(B2).

Since µ is absolutely continuous with respect to the Lebesgue measure on R2, it

follows that µ1 and µ2 are absolutely continuous with respect to the Lebesgue

measure on R. If u and v are the density functions of µ1 and µ2, respectively, then

we must have for almost all (x, y) ∈ R2, h(x, y) = u(x)v(y), which is impossible

since h(x, y) cannot be written as a function of x times a function of y.
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