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HIGHER POWERS OF q-DEFORMED WHITE NOISE

LUIGI ACCARDI AND ANDREAS BOUKAS

Dedicated to Professor Yuri M. Berezansky on the occasion of his 80-th birthday.

Abstract. We introduce the renormalized powers of q-deformed white noise, for
any q in the open interval (−1, 1), and we extend to them the no–go theorem re-
cently proved by Accardi–Boukas–Franz in the Boson case. The surprising fact is
that the lower bound (6.5), which defines the obstruction to the positivity of the
sesquilinear form, uniquely determined by the renormalized commutation relations,
is independent of q in the half-open interval (−1, 1], thus including the Boson case.
The exceptional value q = −1, corresponding to the Fermion case, is dealt with in
the last section of the paper where we prove that the argument used to prove the
no–go theorem for q 6= 0 does not extend to this case.

1. Introduction

The construction of the Fock representation for the renormalized square of white noise
(RSWN), obtained in [2], led to an unexpected connection with the Meixner classes in [3].
These classes also appeared, in a different context, in a series of papers by Berezansky
and his school (see [9], [8], [14], [15] and the references therein). After these results the
problem to extend the above analysis to higher powers of white noise naturally arised.
Up to now all the attempts in this direction have run into the obstruction of the no–go
theorems. Let us briefly outline the essence of the problem.

Once proved that both the first and second order Boson white noise admit a Fock
representation, it was natural to ask whether there exists a Fock representation for the
combination of the two. This question was raised by P. Sniady in [17] who observed that
it has a negative answer. This is due to the fact that, if such a representation exists,
then the scalar product of the corresponding ”Fock space” is uniquely determined by the
commutation relations. But it turns out that the renormalization procedure perturbs
the algebra in such a way that this ”scalar product” cannot be positive semi-definite.

Now the first order white noise over R can be described as the current algebra of the
1-mode CCR algebra

[a, a+] = 1
over the algebra

C := {step functions on Rd} ⊆ L∞(Rd, dx)
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(cf. Section 2 for this notion). Similarly the second order white noise can be described
as the current algebra of the sl(2, R)-Lie algebra

[a2, a+2] = c + 4a+a,

[a2, a+a] = 2a+a

based on the same algebra C ⊆ L∞(Rd, dx) as above.
The combined 1-st and 2-d order Boson white noise can be defined as the current

algebra over the Lie algebra, with generators:

a, a+, 1, a+a+, a2, a+2

also called the Schrödinger algebra [12], based on the same algebra C as above. Clearly
the 1-mode CCR gives a Fock representation for this algebra.

Therefore Sniady’s theorem can be rephrased as follows: the Schrödinger algebra has
a Fock representation but its current algebra over C has no Fock representation.

The problem of lifting a representation of a ∗-Lie algebra to an associated current
algebra, is deeply related to an old open problem of quantum field theory: giving a
meaning to the “higher powers of free fields”. Since a Boson free field is nothing but
a Boson white noise, this problem is equivalent to constructing a mathematical object
which has the right to be called “a higher (≥ 2) power of white noise”.

In the above notations, a naive way to state the problem of constructing higher powers
of white noise would be: consider the 1-dimensional Schrödinger representation of the
CCR:

[a, a+] = 1

acting on L2(R). The linear span of the non-commutative monomials in a, a+ is an
infinite dimensional Lie algebra, called the full oscillator algebra, which by construction
admits a Fock representation.

Does there exist a Fock representation of the current algebra of the oscillator algebra
over on Rd with the Lebesgue measure?

Since the full oscillator algebra contains the Schrödinger algebra, we know that the
answer to this question is negative.

However the analogy with the second order case suggests the possibility that a more
restricted program might be realized, namely that representations of some special (but
nontrivial) ∗-Lie sub-algebras of the oscillator algebra might exist.

The most natural thing to do was to start with the cubic powers a3, a+3 and consider
the ∗-Lie algebra generated by them; then take the smallest power not contained in this
algebra and iterate the procedure.

Accardi, Boukas and Franz proved in [1] that even the first step of this restricted
program, i.e. the case of a3, a+3, faces a no–go theorem. Recently Accardi and Boukas
proved in [4] that the same negative result holds for an, a+n for any n ≥ 3.

More precisely they proved that, if a ∗-Lie sub-algebra of the oscillator algebra contains
an for some n ≥ 3, then the associated current algebra based on a algebra C of step
functions over a measure space (S,B, µ) cannot have a Fock representation unless there
exits a fundamental volume κ > 0 with the property that, if I ⊆ S is a measurable set
satisfying χI ∈ C, then µ(I) > κ. Moreover this fundamental volume is the inverse of the
renormalization constant, introduced in [2], thus in particular, it is independent of n.

A natural next question is if these no–go theorems are specific to the Boson case, i.e.
if they still hold under more general commutation relations.

In the present paper we introduce the algebra of renormalized powers of q-deformed
white noise and we extend the above mentioned no–go theorem to the q-oscillator algebra,
with q ∈ (−1, 1).
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A surprising result in this extension is that the fundamental volume κ is the same as
in the Boson case. In particular it does not depend on q.

2. Current representations of Lie algebras

Current representations of Lie algebras were first introduced by Araki in [7] and [6]
and then studied by several authors. The monographs of Parthasarathy and Schmidt
[16] and of Guichardet [13] are good and complementary introductions to the subject.
Here we recall the terminology introduced in [5].

Definition 1. Let G be a complex ∗-Lie algebra. A canonical set of generators of G is a
linear basis of G

l+α , l−α , l0β , α ∈ I, β ∈ I0

where I0, I are sets, satisfying the following conditions:

(l0β)∗ = l0β , ∀β ∈ I0,

(l+α )∗ = l−α , ∀α ∈ I

and all the central elements among the generators are of l0-type (i.e. self-adjoint).

We will denote cγ
αβ(ε, ε′, δ) the structure constants of G with respect to the generators

(lεα):

[lεα, lε
′

β ] = cγ
αβ(ε, ε′, δ)lδγ :=

∑
γ∈I0

cγ
αβ(ε, ε′, 0)l0γ +

∑
γ∈I

cγ
αβ(ε, ε′,+)l+γ +

∑
γ∈I

cγ
αβ(ε, ε′,−)e−γ .

In the following we will consider only locally finite Lie algebras, i.e. those such that,
for any pair α, β ∈ I ∪ I0 only a finite number of the structure constants cγ

αβ(ε, ε′, δ) is
different from zero.

Definition 2. Let there be given
– a ∗-Lie algebra G,
– a measurable space (S,B),
– a ∗-sub-algebra C ⊆ L∞C (S,B) for the pointwise operations.
The current algebra of G over C is the ∗-Lie algebra

G(C) := {C ⊗ G, [ · , · ]}

where C ⊗ G is the algebraic tensor product, the Lie brackets [ · , · ] are given by

[f ⊗ l, g ⊗ l′] := fg ⊗ [l, l′], f, g ∈ C, l, l′ ∈ G

and the involution ∗ is given by

(f ⊗ l)∗ := f ⊗ l∗, f ∈ C, l ∈ G

where f denotes complex conjugate.

Remark. If (lεγ) is a canonical set of generators of G then the set

{f ⊗ l+α , f∗ ⊗ l−α , Re(f)⊗ l0γ : α ∈ I , γ ∈ I0 , f ∈ C}

(Re(f) := (f + f)/2) is a canonical set of generators of G(C).
In the following we will use the notations:

l+α (f) := f ⊗ l+α , l−α (f) := f∗ ⊗ l−α , l0α(f) := f ⊗ l0γ

and, when no confusion can arise, we will often speak of the current algebra (lεα(f)).
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Definition 3. A representation of a ∗-Lie algebra G is a triple

{H,D, π}

where
– H is an Hilbert space ,
– D is a total subset of H ,
– π : D → H is a map such that:
(i) for any l ∈ G, π(l) is a pre-closed operator on D with adjoint π(l∗) ,
(ii) for any l, l′ ∈ G

π([l, l′]) = [π(l), π(l′)]

where the commutator on the right hand side is meant weakly on D.

Remark. At the algebraic level the existence of representations of current algebras over
{G, (lεα)} is easily established for an arbitrary measure space (S,B, µ) and sub-∗-algebra

C ⊆ L∞(S,B, µ).

In fact, if {π,K} is any representation of G one can define a structure of ∗-Lie algebra on

C ⊗ π(G) ∈ L(L2(S,B, µ)⊗K)

in terms of the brackets

[f ⊗ π(e), g ⊗ π(l′)] := fg ⊗ π([l, l′]).

Therefore, defining
l+α (f) := f ⊗ π(l+α ),

l◦α(f) := f ⊗ π(l◦α)

one has
l+α (f)∗ = f ⊗ π(l+α )∗ = f ⊗ π((l+α )∗) = f ⊗ π(l−α ),

(l0β(f))∗ = f ⊗ π(l0β)∗ = f ⊗ π(l0β) = l0β(f),

[lεα(f), lε
′

β (g)] = [fε ⊗ π(lεα), gε′ ⊗ π(lε
′

β )] = fεgε′ ⊗ [π(lεα), π(lε
′

β )]

= fεgε′ ⊗ π[lεα, lε
′

β ] = cγ
αβ(ε, ε′, δ)fεgε′ ⊗ lδγ .

Thus the current algebra relations are verified. Thus any representation of G can be lifted
to a representation of the current algebra G ⊗ G. We will see the following that, in some
cases, there exists no lifting which preserves some special property of the representation
of G, e.g. the property of being a Fock representation with respect to a given canonical
set of generators.

Definition 4. Let G be a ∗-Lie algebra with a canonical set of generators (lεα). A repre-
sentation {K,D, π} of G on a Hilbert space K is called a Fock representation if

(i) there exists a unit vector Φ ∈ K such that ∀α ∈ I and ∀β ∈ I0, with the exception
of those β ∈ I0 which correspond to central elements, one has

π(l−α )Φ = π(l0β)Φ = 0,

(ii) the set
{π(l+α )nΦ : α ∈ I , n ∈ N}

is total in K.

Problem. Let {G, (lεα)} be a ∗-Lie algebra with a canonical set of generators. Suppose
that {G, (lεα)} admits a Fock representation. Under which conditions on the measure
space (S,B, µ) and on the ∗-sub-algebra

C ⊆ L∞(S,B, µ)
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does the current algebra

{lεα(f) : ε ∈ {+,−, 0} , α ∈ I or α ∈ I0 , f ∈ C}

admit a Fock representation?

3. q-numbers

The following notation will be used throughout this paper (cf. [10]). For n = 1, 2, . . .

[n]q :=
qn − 1
q − 1

, [0]q := 0,

[n]q! :=
n∏

m=1

[m]q, [0]q! := 1,

(
n

k

)
q

:=
[n]q!

[k]q! [n− k]q!
=

n−k∏
i=1

qk+i − 1
qi − 1

and we have the q-binomial theorem

(x + y)n =
n∑

k=0

(
n

k

)
q

yk xn−k

where n = 1, 2, . . . and x, y are such that x y = q y x. The following known identity will
be crucial in establishing the explicit form of the lower bound in the no–go Theorem 1
below.

Lemma 1. For q ∈ (−1, 1)
n∑

λ=0

qλ2
(

n

λ

)2

q

=
(

2n

n

)
q

.(3.1)

Proof. Let x, y be such that x y = q y x. Then by the q-binomial theorem

(x + y)2n =
n∑

k=0

(
2n

k

)
q

yk xn−k(3.2)

and also

(x + y)2n = (x + y)n (x + y)n =
n∑

k=0

(
n

k

)
q

yk xn−k
n∑

l=0

(
n

l

)
q

yl xn−l

=
n∑

k,l=0

(
n

k

)
q

(
n

l

)
q

yk xn−k yl xn−l

=
n∑

k,l=0

(
n

k

)
q

(
n

l

)
q

yk+l q(n−k) lx2n−k−l.

(3.3)

Looking at (3.3) for k + l = n and equating coefficients with (3.2) we obtain(
2n

n

)
q

=
n∑

k=0

q(n−k)2
(

n

k

)2

q

=
n∑

k=0

q(n−k)2
(

n

n− k

)2

q

=
n∑

λ=0

qλ2
(

n

λ

)2

q

which is (3.1). �
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4. 1-mode q-commutation relations

In this section we recall some known facts on the q-commutation relations and then we
describe the q-analogue of the full oscillator algebra, i.e. the Lie algebra of all polynomials
in the 1-mode Boson creation and annihilation operators.

Definition 5. The q-commutator algebra is the associative ∗-algebra with canonical gen-
erators {a, a+, 1} satisfying (a+)∗ = a; 1∗ = 1 (identity) and the commutation relations

(4.1) a a† − q a† a = 1.

Bozeiko, Kummerer and Speicher proved in [10] that this algebra admits a Fock re-
presentation if q ∈ (−1, 1). Bozeiko and Speicher had also proved in [11] that this algebra
does not admit a Fock representation if |q| > 1.

In the following we sum up some known properties of these operator which will be
used throughout the present paper.

Proposition 1. Then, for n ≥ 1 and q 6= ±1 one has

(4.2) a (a†)n − qn (a†)n a =
qn − 1
q − 1

(a†)n−1 = [n]q (a†)n−1.

Proof. The case n = 1 is clear. Assuming (4.2) to be true for n we have

a (a†)n+1 = a (a†)n a† =
(

qn − 1
q − 1

(a†)n−1 + qn (a†)n a

)
a†

=
qn − 1
q − 1

(a†)n + qn (a†)n a a†

=
qn − 1
q − 1

(a†)n + qn (a†)n(1 + q a† a)

=
qn − 1
q − 1

(a†)n + qn (a†)n + qn+1 (a†)n+1 a

= qn+1 (a†)n+1 a +
qn+1 − 1

q − 1
(a†)n

so (4.2) is true for n + 1 also. �

Proposition 2. Let a, a† and q be as in Proposition 1 and let n, k ≥ 1. Then

(4.3) an (a†)k − qnk (a†)k an =
n∑

λ=1

φλ(n, k; q) (a†)k−λ an−λ

where

φλ(n, k; q) =


q(n−λ)(k−λ)

λ−1∏
ρ=0

qk−ρ − 1
q − 1

(
δn,λ + (1− δn,λ)

n−λ−1∏
ρ′=0

qn−ρ′ − 1
qn−λ−ρ′ − 1

)
,

if λ ≤ n and λ ≤ k
0, if λ > n or λ > k

=

 q(n−λ)(k−λ) [k]q!
[k − λ]q!

(
δn,λ + (1− δn,λ)

(
n

λ

)
q

)
, if λ ≤ n and λ ≤ k

0, if λ > n or λ > k

where δn,λ is Kronecker’s delta and we assume, without loss of generality, that k ≥ n
(otherwise, just take the adjoint of ( 4.3)).
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Proof. We will use induction on n and treat k as a constant. The case n = 1 is just
Corollary 1. Assume (4.3) to be true for n. Then

an+1 (a†)k = a an (a†)k

= a

(
qnk (a†)k an +

n∑
λ=1

φλ(n, k; q) (a†)k−λ an−λ

)

= qnk a (a†)k an +
n∑

λ=1

φλ(n, k; q) a (a†)k−λ an−λ

= qnk

(
qk (a†)k a +

qk − 1
q − 1

(a†)k−1

)
an

+
n∑

λ=1

φλ(n, k; q)
(

qk−λ (a†)k−λ a +
qk−λ − 1

q − 1
(a†)k−λ−1

)
an−λ

= q(n+1)k (a†)k an+1 + qnk qk − 1
q − 1

(a†)k−1 an

+
n∑

λ=1

φλ(n, k; q) qk−λ (a†)k−λ an−λ+1

+
n∑

λ=1

φλ(n, k; q)
qk−λ − 1

q − 1
(a†)k−λ−1 an−λ

= q(n+1)k (a†)k an+1 +
(

qnk qk − 1
q − 1

+ φ1(n, k; q) qk−1

)
(a†)k−1 an

+
n∑

λ=2

φλ(n, k; q) qk−λ (a†)k−λ an−λ+1

+
n∑

λ=1

φλ(n, k; q)
qk−λ − 1

q − 1
(a†)k−λ−1 an−λ

= q(n+1)k (a†)k an+1 +
(

qnk qk − 1
q − 1

+ φ1(n, k; q) qk−1

)
(a†)k−1 an

+
n∑

λ=2

φλ(n, k; q) qk−λ (a†)k−λ an−λ+1

+
n+1∑
λ=2

φλ−1(n, k; q)
qk−λ+1 − 1

q − 1
(a†)k−λ an+1−λ

= q(n+1)k (a†)k an+1 +
(

qnk qk − 1
q − 1

+ φ1(n, k; q) qk−1

)
(a†)k−1 an

+
n∑

λ=2

(
φλ(n, k; q) qk−λ + φλ−1(n, k; q)

qk−λ+1 − 1
q − 1

)
(a†)k−λ an+1−λ

+ φn(n, k; q)
qk−n − 1

q − 1
(a†)k−n−1.

It thus suffices to show that

φ1(n + 1, k; q) = qnk qk − 1
q − 1

+ φ1(n, k; q) qk−1,(4.4)

φλ(n + 1, k; q) = φλ(n, k; q) qk−λ + φλ−1(n, k; q)
qk−λ+1 − 1

q − 1
(4.5)

for λ = 2, 3, . . . , n,
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φn+1(n + 1, k; q) = φn(n, k; q)
qk−n − 1

q − 1
.(4.6)

To prove (4.4) we have

qnk qk − 1
q − 1

+ φ1(n, k; q) qk−1 = qnk qk − 1
q − 1

+ q(n−1)(k−1) qk − 1
q − 1

qn − 1
q − 1

qk−1

= qnk qk − 1
q − 1

+ qn(k−1) qk − 1
q − 1

qn − 1
q − 1

= qn(k−1) qk − 1
q − 1

(
qn +

qn − 1
q − 1

)
= qn(k−1) qk − 1

q − 1
qn+1 − 1

q − 1
= φ1(n + 1, k; q).

To prove (4.6) we have

φn(n, k; q)
qk−n − 1

q − 1
=

n−1∏
ρ=0

qk−ρ − 1
q − 1

qk−n − 1
q − 1

=
n∏

ρ=0

qk−ρ − 1
q − 1

= φn+1(n + 1, k; q).

Finally, we prove (4.5) by distinguishing cases λ = n, λ = n − 1, and 2 ≤ λ ≤ n − 2.
Starting with the right hand side of (4.5), for λ = n we have

φn(n, k; q) qk−n + φn−1(n, k; q)
qk−n+1 − 1

q − 1

=
n−1∏
ρ=0

qk−ρ − 1
q − 1

qk−n + qk−n+1
n−2∏
ρ=0

qk−ρ − 1
q − 1

qn − 1
q − 1

qk−n+1 − 1
q − 1

= qk−n
n−1∏
ρ=0

qk−ρ − 1
q − 1

+ qk−n+1 qn − 1
q − 1

n−1∏
ρ=0

qk−ρ − 1
q − 1

=
(

qk−n + qk−n+1 qn − 1
q − 1

) n−1∏
ρ=0

qk−ρ − 1
q − 1

= qk−n qn+1 − 1
q − 1

n−1∏
ρ=0

qk−ρ − 1
q − 1

= φn(n + 1, k; q).

Similarly, for λ = n− 1 we have

φn−1(n, k; q) qk−n+1 + φn−2(n, k; q)
qk−n+2 − 1

q − 1

= qk−n+1
n−2∏
ρ=0

qk−ρ − 1
q − 1

qn − 1
q − 1

qk−n+1

+ q2(k−n+2)
n−3∏
ρ=0

qk−ρ − 1
q − 1

1∏
ρ′=0

qn−ρ′ − 1
q2−ρ′ − 1

qk−n+2 − 1
q − 1

= q2(k−n+1)
n−2∏
ρ=0

qk−ρ − 1
q − 1

qn − 1
q − 1

+ q2(k−n+2)
n−2∏
ρ=0

qk−ρ − 1
q − 1

qn − 1
q2 − 1

qn−1 − 1
q − 1



HIGHER POWERS OF q-DEFORMED WHITE NOISE 213

= q2(k−n+1)
n−2∏
ρ=0

qk−ρ − 1
q − 1

qn − 1
q2 − 1

qn−1 − 1
q − 1

(
q2 − 1

qn−1 − 1
+ q2

)

= q2(k−n+1)
n−2∏
ρ=0

qk−ρ − 1
q − 1

qn − 1
q2 − 1

qn−1 − 1
q − 1

qn+1 − 1
qn−1 − 1

= q2(k−n+1)
n−2∏
ρ=0

qk−ρ − 1
q − 1

qn+1 − 1
q2 − 1

qn − 1
q − 1

= φn−1(n + 1, k; q).

Finally, for 2 ≤ λ ≤ n− 2 the right hand side of (4.5) becomes

φλ(n, k; q) qk−λ + φλ−1(n, k; q)
qk−λ+1 − 1

q − 1

= q(n−λ)(k−λ)
λ−1∏
ρ=0

qk−ρ − 1
q − 1

n−λ−1∏
ρ′=0

qn−ρ′ − 1
qn−λ−ρ′ − 1

qk−λ

+ q(n−λ+1)(k−λ+1)
λ−2∏
ρ=0

qk−ρ − 1
q − 1

n−λ∏
ρ′=0

qn−ρ′ − 1
qn−λ+1−ρ′ − 1

qk−λ+1 − 1
q − 1

= q(n−λ+1)(k−λ)
λ−1∏
ρ=0

qk−ρ − 1
q − 1

×
( n−λ−1∏

ρ′=0

qn−ρ′ − 1
qn−λ−ρ′ − 1

+ qn−λ+1
n−λ∏
ρ′=0

qn−ρ′ − 1
qn+1−λ−ρ′ − 1

)

= q(n−λ+1)(k−λ)
λ−1∏
ρ=0

qk−ρ − 1
q − 1

×
( n−λ∏

ρ′=1

qn+1−ρ′ − 1
qn+1−λ−ρ′ − 1

+ qn−λ+1

∏n−λ+1
ρ′′=1 (qn+1−ρ′′ − 1)∏n−λ
ρ′=0(qn+1−λ−ρ′ − 1)

)

= q(n−λ+1)(k−λ)
λ−1∏
ρ=0

qk−ρ − 1
q − 1

n−λ∏
ρ′=0

qn+1−ρ′ − 1
qn+1−λ−ρ′ − 1

×
(

qn+1−λ − 1
qn+1 − 1

+ qn−λ+1 qλ − 1
qn+1 − 1

)
= q(n−λ+1)(k−λ)

λ−1∏
ρ=0

qk−ρ − 1
q − 1

n−λ∏
ρ′=0

qn+1−ρ′ − 1
qn+1−λ−ρ′ − 1

· 1 = φλ(n + 1, k; q).

�

Proposition 3. Let 0 6= q 6= ±1. For all n, k,N, K ≥ 0

(4.7)

a†
n

ak a†
N

aK − qkN−nK a†
N

aK a†
n

ak =
n∑

λ=1

φλ(k, N ; q) a†
n+N−λ

ak+K−λ

− qkN−nK
K∑

λ=1

φλ(K, n; q) a†
n+N−λ

ak+K−λ.



214 LUIGI ACCARDI AND ANDREAS BOUKAS

Proof. To prove (4.7) we notice that

a†
n

ak a†
N

aK = a†
n

(
qkN a†

N
ak +

k∑
λ=1

φλ(k, N ; q) a†
N−λ

ak−λ

)
aK

= qkN a†
n

a†
N

ak aK +
k∑

λ=1

φλ(k, N ; q) a†
n

a†
N−λ

ak−λ aK .

(4.8)

But

a†
n
a†

N
akaK = a†

N
a†

n
aKak

= a†
N

(
1

qnK
aK a†

n − 1
qnK

K∑
λ=1

φλ(K, n; q) a†
n−λ

aK−λ

)
ak

= q−nK a†
N

aK a†
n

ak − q−nK
K∑

λ=1

φλ(K, n; q) a†
N

a†
n−λ

aK−λ ak

(4.9)

and (4.7) follows by substituting (4.9) into the right hand side of (4.8). �

5. Current algebras over the q-commutation relations

In this section we introduce the q-deformed white noise and we prove that, when one
tries to introduce higher powers of white noise then, as in the Boson case, ill defined
powers of the δ-function appear. We then apply the same renormalization used in the
Boson case (see Proposition 4 below) and this allows to deduce the q-deformed version
of the Lie algebra of renormalized higher powers of white noise.

We fix our measure space to be

(S,B, µ) = (R, dx)

and the algebra C ⊆ L∞(R) to be the ∗-algebra of finitely valued Borel measurable step
functions with bounded support.

The current algebra extension of the relation (4.1) is

(5.1) afa+
g − qa+

g af = 〈f, g〉, f, g ∈ C

where 〈f, g〉 denotes the scalar product in L2(R, dx). In white noise notations this be-
comes

(5.2) at a†s − q a†s at = δ(t− s).

Corollary 1. For all t, s ∈ R+ and n ≥ 1, one has

(5.3) at (a†s)
n − qn (a†s)

n at =
qn − 1
q − 1

(a†s)
n−1 δ(t− s) = [n]q (a†s)

n−1 δ(t− s).

Proof. Fix f = g in (5.1). defining δ := ‖f‖ and

(5.4) b† =
a†f

δ1/2
, b =

af

δ1/2
.

Then b, b+ satisfy (4.1) hence (4.2) holds with b replacing a because of Proposition 4.2.
By polarization and passing to white noise notations, we obtain (5.3). �

Corollary 2. For all t, s ∈ R+ and n ≥ 1 the rule

at a†s − q a†s at = δ(t− s)(5.5)

implies that
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an
t (a†s)

k − qnk (a†s)
k an

t =
n∑

λ=1

φλ(n, k; q) (a†s)
k−λ an−λ

t δλ(t− s).(5.6)

Proof. The proof of (5.6) is similar to that of Corollary 1 by applying Proposition 2 to
b† and b defined by (5.4). �

Proposition 4. For any complex-valued Schwartz function f define the symbols

Bn
k (f) :=

∫
R

f(s) a†s
n

ak
s ds(5.7)

with involution

(Bn
k (f))∗ = Bk

n(f̄)(5.8)

and

B0
0(f) =

∫
R

f(s) ds · 1(5.9)

where 1 is the identity operator. Then, using for λ ≥ 1 the renormalization rule

δλ(t− s) := cλ−1δ(t− s)(5.10)

where c > 0 is a constant, for any n, k,N, K ∈ {0, 1, 2, . . .}, one has

Bn
k (f) BN

K (g)− qkN−nK BN
K (g) Bn

k (f)

=
k∑

λ=1

cλ−1 φλ(k, N ; q) Bn+N−λ
k+K−λ (f g)

− qkN−nK
K∑

λ=1

cλ−1 φλ(K, n; q) Bn+N−λ
k+K−λ (f g)

(5.11)

where for k = 0 and/or K = 0 the corresponding sums on the right hand side of (5.11)
are interpreted as zero.

Proof. The proof follows by replacing a and a† by at

δ(t−s)1/2 and a†
s

δ(t−s)1/2 and then mul-
tiplying both sides of (4.7) by f(t) g(s) followed by a formal integration of the resulting
identity (i.e. taking

∫ ∫
· · · ds dt). �

6. The no–go theorem

Theorem 1. Let q ∈ (−1, 1), q 6= 0 and for a fixed interval I ⊂ R and n, k ≥ 0 let

Bn
k := Bn

k (χI)

with B0
0 = µ(I) · 1 the Lebesgue measure of I. Let also the “vacuum vector” Φ be such

that Bn
k Φ = 0 whenever k 6= 0 and let 〈x 〉 := 〈Φ, x Φ〉 denote the ”vacuum expectation”

of an operator x. We assume that 〈Φ,Φ〉 = 1. Define

A(n, q; I) :=

 〈B0
2nB2n

0 〉 〈B0
2n(Bn

0 )2〉

〈B0
2n(Bn

0 )2〉 〈(B0
n)2(Bn

0 )2〉

 .

Then, for any choice of n and q, the matrix A(n, q; I) is not positive semi-definite when-
ever c µ(I) ≤ 1 where c is the renormalization constant.
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Proof. Using Proposition 4 we have

B0
2n B2n

0 Φ = q4n2
B0

2n B2n
0 Φ +

2n∑
λ=1

cλ−1 φλ(2n, 2n; q) B2n−λ
2n−λ Φ

= c2n−1 φ2n(2n, 2n; q) B0
0 Φ = µ(I) c2n−1

2n−1∏
ρ=0

q2n−ρ − 1
q − 1

Φ.

Thus

〈B0
2nB2n

0 〉 = µ(I) c2n−1
2n−1∏
ρ=0

q2n−ρ − 1
q − 1

.(6.1)

Similarly,

B0
n B2n

0 Φ = q2n2
B2n

0 B0
n Φ +

n∑
λ=1

cλ−1 φλ(n, 2n; q) B2n−λ
n−λ Φ

= cn−1 φn(n, 2n; q) Bn
0 Φ = cn−1

n−1∏
ρ=0

q2n−ρ − 1
q − 1

Bn
0 Φ.

Thus

B0
n B0

n B2n
0 Φ = cn−1

n−1∏
ρ=0

q2n−ρ − 1
q − 1

B0
n Bn

0 Φ

= c2n−2 µ(I)
n−1∏
ρ=0

q2n−ρ − 1
q − 1

n−1∏
ρ=0

qn−ρ − 1
q − 1

Φ

and so

〈B0
2n(Bn

0 )2〉 = c2n−2µ(I)
n−1∏
ρ=0

q2n−ρ − 1
q − 1

n−1∏
ρ=0

qn−ρ − 1
q − 1

.(6.2)

Finally,

B0
n Bn

0 = qn2
Bn

0 B0
n +

n∑
λ=1

cλ−1 φλ(n, n; q) Bn−λ
n−λ(6.3)

implies

B0
n (Bn

0 )2 = qn2
Bn

0 B0
n Bn

0 +
n∑

λ=1

cλ−1 φλ(n, n; q) Bn−λ
n−λ Bn

0

= qn2
Bn

0

(
qn2

Bn
0 B0

n +
n∑

λ=1

cλ−1 φλ(n, n; q) Bn−λ
n−λ

)

+
n∑

λ=1

cλ−1 φλ(n, n; q)

×
(

q(n−λ) n Bn
0 Bn−λ

n−λ +
n−λ∑
λ′=1

cλ′−1 φλ′(n− λ, n; q) B2n−λ−λ′

n−λ−λ′

)
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and so

B0
n (Bn

0 )2 Φ = (qn2
µ(I) cn−1 φn(n, n; q) + µ(I) cn−1 φn(n, n; q)

+ cn−2
∑

λ+λ′=n

φλ(n, n; q) φλ′(n− λ, n; q))Bn
0 Φ.

Thus

(B0
n)2(Bn

0 )2Φ = (qn2
µ(I) cn−1 φn(n, n; q) + µ(I) cn−1 φn(n, n; q)

+ cn−2
∑

λ+λ′=n

φλ(n, n; q) φλ′(n− λ, n; q))B0
n Bn

0 Φ

which using (6.3) implies

〈(B0
n)2(Bn

0 )2〉 = µ(I)2 c2n−2 (1 + qn2
)
( n−1∏

ρ=0

qn−ρ − 1
q − 1

)2

+ µ(I) c2n−3
n−1∏
ρ=0

qn−ρ − 1
q − 1

n−1∑
λ=1

φλ(n, n; q) φn−λ(n− λ, n; q).

(6.4)

Thus, by (6.1)–(6.4),

A(n, q; I) =


µ(I) c2n−1 [2n]q! c2n−2µ(I) [2n]q!

c2n−2µ(I) [2n]q! µ(I)2 c2n−2 (1 + qn2
) ([n]q!)

2

+µ(I) c2n−3 ([n]q!)
2 ∑n−1

λ=1 q(n−λ)2
(
n
λ

)2

q


since

n−1∑
λ=1

φλ(n, n; q) φn−λ(n− λ, n; q) =
n−1∑
λ=1

q(n−λ)2 [n]q!
[n− λ]q!

(
n

λ

)
q

[n]q!
[λ]q!

=
n−1∑
λ=1

q(n−λ)2
(

n

λ

)2

q

[n]q! .

A(n, q; I) is a symmetric matrix, so it is positive semi-definite if and only if its minors
are non-negative. The minor determinants of A(n, q; I) are

d1 = µ(I) c2n−1 [2n]q!

which is non-negative for all I and

d2 = µ(I)2 c4n−4 [2n]q!
(

c µ(I) (1 + qn2
) ([n]q!)2 + ([n]q!)2

n−1∑
λ=1

q(n−λ)2
(

n

λ

)2

q

− [2n]q!
)

which is bigger or equal to zero if and only if

c µ(I) (1 + qn2
) ([n]q!)2 + ([n]q!)2

n−1∑
λ=1

q(n−λ)2
(

n

λ

)2

q

− [2n]q! ≥ 0

or equivalently

c µ(I) ≥
[2n]q!− ([n]q!)2

∑n−1
λ=1 q(n−λ)2

(
n
λ

)2

q

(1 + qn2) ([n]q!)2
= 1
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since by Lemma 1

[2n]q!− ([n]q!)2
n−1∑
λ=1

q(n−λ)2
(

n

λ

)2

q

= [2n]q!− ([n]q!)2
( n∑

λ=0

qλ2
(

n

λ

)2

q

− 1− qn2
)

= [2n]q!− ([n]q!)2
((

2n

n

)
q

− 1− qn2
)

= [2n]q!− ([n]q!)2
(

[2n]q!
([n]q!)2

− 1− qn2
)

= (1 + qn2
) ([n]q!)2.

Thus

d2 ≥ 0 ⇔ µ(I) ≥ 1
c

(6.5)

which cannot be true for arbitrarily small I. �

7. The Fermion case q = −1

The commutation relations for the renormalized powers of Fermion white noise can be
obtained either directly in analogy to Section 2 , or as a limiting case of the commutation
relations obtained in Section 2. If the second approach is used we find that

φλ(n, k;−1) := lim
q→−1

φλ(n, k; q) =

{
0, if λ > 1
(1−(−1)n) (1−(−1)k)

4 , if λ = 1

where φλ(n, k; q) is as in Proposition 2, and (5.6), (5.11) become

an
t (a†s)

k − (−1)nk (a†s)
k an

t

=
(1− (−1)n)

(
1− (−1)k

)
4

(a†s)
k−1 an−1

t δ(t− s)
(7.1)

and

Bn
k (f) BN

K (g)− (−1)kN−nK BN
K (g) Bn

k (f) = x(n, k;N,K) Bn+N−1
k+K−1 (f g)(7.2)

where

x(n, k;N,K) :=
((

1− (−1)k
) (

1− (−1)N
)

4
+ (−1)kN−nK+1 (1− (−1)n)

(
1− (−1)K

)
4

)
.

Notice that (7.1) and (7.2) do not contain the renormalization constant c > 0 and no
higher powers of the delta function appear. In fact, the need for renormalization does
not arise in the Fermion case. Moreover

A(n,−1; I) = lim
q→−1

A(n, q; I) = 0

which is trivially positive semi-definite for all I.
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