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Abstract. Classical dynamical entropy is an important tool to analyze communication processes.
For instance, it may represent a transmission capacity for one letter. In this paper, we formulate
the notion of dynamical entropy through a quantum Markov chain and calculate it for some
simple models.

1. Introduction

Classical dynamical (or Kolmogorov-Sinai) entropy was introduced in [10, 11, 16],
and relates to classical coding theorems of Shannon [5, 9, 13]. Quantum dynamical
(QD) entropy has been studied by Emch [8], Connes, Stgrmer [7], Connes, Narn-
hofer, Thirring [6] and many others. Recently, the quantum dynamical entropy and
the quantum dynamical mutual entropy were defined by Ohya in terms of com-
plexity [12, 14, 15]. Classical Markov chain is a fundamental concept in stochastic
processes. The notion of quantum Markov chain (QMC) was formulated by means
of the transition expectation introduced by Accardi [1, 2].

In Section 1, we review the notion of dynamical entropy through a classical
Markov chain. In Section 2, we define dynamical entropy through a quantum
Markov chain, and, in Section 3, we calculate it for some simple models.

2. Formulation of Dynamical Entropy in Classical Markov Chain

Let (2, F,u) be a probability measure space, T be a measure preserving (i.e.,
poT = p) automorphism on © and C = {C}} be a finite partition of 2. Let L>°(£2)
be the set of all functions f on 2 satisfying || f|lco = inf{e; |f] < o, p—a.e.} < +o0.
We denote the set of all n x n diagonal matrices by D,,. Then there exists a one
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to one correspondence between L*°({1,...,n}) and D,, that is, a characteristic
function xqzy € L*({1,...,n}) relates to a diagonal matrix exx € D,, where e;;
is the matrix unit (i.e., (¢,7)-element = 1 and other elements = 0). The transition
expectation & from L*({1,...,n}) ® L*°() to L*°(1?) is defined by

Ee(Xky ® f) = xc - f (2.1)
for any xn ® f € L({L,...,n}) ® L®(Q) and k € {1,2,...,n}. Let 6 be a
x-automorphism on L>°(Q) defined by

0f)(z) = f(Tz) (2.2)

for any f € L*°(Q2) and any = € Q. A classical transition expectation with respect
to 6 from L>®({1,...,n}) ® L*(Q2) to L>(2) is

5@19 = 0o 5@ . (2.3)

The classical Markov chain on @ vL>®({1,...,n}) is given by a pair ¢ = {u, &}
The Markov chain ¢ = {u,&c} is stationary and its joint correlation is character-
ized by the following property:
@b(Ckl NTCg,N...N T"_ICkn)

= 1ok} © Eco(Xiry ® (- X,y @ 1)) (24)

for any n € N and ky,...,k, € {1,2,...,n}.
The entropy for the stationary Markov chain ¢ = {u, ¢} is given by

5(C,0) = 1 -1 > Y(Cp, NTCy, N ...NT" 1O )

n—oo n,
k1,k2,...kn€{1,2,...,n}
x logp(Cp, NTCr, N...NT" C} ). (2.5)

DEFINITION 2.1. The dynamical entropy of the system (2, F, u, 6) is defined by

S(0) = sgpg(C,O), (2.6)

where the supremum is taken over all finite partitions C of Q.

3. Construction of Dynamical Entropy Through
Quantum Markov Chain

Let (A, %(A)) be a von Neumann algebraic system, that is, A is a von Neumann
algebra with an identity operator I acting on a Hilbert space H and X(A) is the
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set of all normal states on .A. We denote a finite partition of 7 € A by v = {v,};
> Vi =1 vivj = v;0i5. Let My be the set of all d x d matrices. For a finite partition
7, a transition expectation £, from My ® A to A introduced in [1, 2] is given by

g’y(fi) = Ee(pi;,e;lp'y,e) ) Ae M;® A, (3.1)

where p, . = Zj ej; ® 7v; with the matrix unit e;; € My, and E, is a transition
expectation from My ® A to A defined by

Ee(zeij@)Aij) = ZA”
1,5 i

Let 0 be a s-automorphism on A and ¢ be a state on A. The transition expectation
&,,9 with respect to 6 is given by

E,0 = 00&,. (3.2)

A quantum Markov chain on ® My is defined by ¢ = {, &, 4} € (®"My), where
¢ is called the initial distribution of ¢. The quantum Markov chain ¢ = {¢,&, 4}
is characterized by the following joint correlation

$(j1(01)72(a2) - - ju (an))
= (€001 ®E (a2 ... ®Ep(an®T)..))  (33)

for each n € N and each ay, ..., a, € My, where ji is an embedding map from My
into the k-th factor of the tensor product @M, such that

Jra) = I®..01RaRI®...

Let P,y be a forward Markovian operator from A to A given by
Pro(d) = £,40I04) = 003 74y, (3.4
J

for any A € A. When ¢ is a stationary state on A, ¢ 0 = ¢, we have p(P, gA) =
> p(v;Av;). Only when v; is an element of the centralizer Ay, of ¢, p(P,gA) =
©(A) holds. Suppose that for ¢ with stationarity there exists unique density oper-
ator p such that ¢(A) = trpA for any A € A, For any a1 ® I € My ® A, we
have

P(ji(ar)) = @(€yp(a1 1))
= trapEyp(a ®1I)
= trgp€y(a1 ®I)

= trgpEe (pj;’e (a1 ® I)p%e)
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= try pEe((Z eii ® i) (a1 ® I)(Z ek ® ’)’k))
i k

= ter®A(Z exkeii ® YipYk) (a1 ® I)
i,k

= traea(d ek © vepk) (a1 ® 1)
k

= toy(a1 ® I)

= trar, (O (tra pyk)err)ar
!

= th1(a1),

where tr, 0.4 is the trace on My ® A. The state 1pp,1] on My® A is constructed by
a lifting &7 5 from ¥(A) to (Mg ® A) in the sense of [3], and the density operator
Plo,1] of o,1] is obtained by

P = D i @70 (p)vi = D ei ®0(7:)pb(yi) -
i i
Hence the density operator p; of 4)g 11| My is given by

p1 = trappa] = (64 p0(vk))exk - (3.5)
p

Similarly we have

Y(j1(a1)g2(az) - .. jnlan))
= <p(5%g(a1 ® 5%9(612 ... 5%9(an ® [) .. )))

= trayea 5:;(,0)(a1 X 5%9(0,2 X... 5%9(0% X I) .. ))

= 040 €ivis ®7i07i) (01 ® Exglaz ® ... 00 Eyglan, ®1)...))

i1
= tra,eA Z €iri a1 ® Vi, pYi Evp(a2 ® ... 00 E p(an ®I)...)

i1
= traem,eA Z Z €iyi 01

ih s
® (€iziy ® Vin 0" (Viy iy )Vin) (a2 ® Eyplaz ... 00E, g(an ®I)...))

- ter®Md®.A Z Z eililal ® eiQiQ ag

i1 12
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® (Vi 0" (Vi pYi )Yiz) Ex0 (a3 .. .00 Eyplan @) ...

= ®A Z Z Z 61’11’1@1 ® ® einflinflan—l ® eininan

In—1 in

® Yin O (Vip—y -+ O (Vi PYir) -+ - Vin—1)Vin

= ®A Z Z Z 67'17'1 - ® Cin_1in_1 ® Cinin

In—1 in

® Vin0" (Yin—r -+ - 0" (Vir PYir) - - - Vino1)Vin (@1 @ -1 @ an ® I)

= tr(% Md)®Ap[0’n] (1 ®...0p-1®a, I)
Z YD AV 0 (Vi - O (Vi PYir) -+ - Vs ) Vi)
Zn 1 in

X €i1i1 ... Q€ 15, 1 D €iniy (a1 R..p—1 @ an)

= tr(é Md)pn(al ® .. lp1 ® ap) .

1

n

Thus, we obtain the density operator pg ] of 4y, on (® Md) as

1
Plon] = Z Z Z €iriy @ - B €iy_yiyy B Cipiy

in—1 ftn

® Yip O (Yipy -+ - O (Vir 2%ir) -+ Vi1 ) Vim

=L D i B iy @ iy

in—1 in

® 0" ()0 (Vint) - Yir PYir - 0" 2 (Vi )0 (i) -
Put,;, i, = 9”’1(%”) ... 0(%i,)vi,- Then

Plo,n] = E : Z E :62111 - @€, _tin_1 B Cinin @ inin_1..01P ipip_1..i1 >

In—1 fin

Pn = tTAP0n Z ZtI'A, in...i1 P zn G @ - @ €y
= Z R Z PZnZI €irip @ ... O €y s (36)
i1 in

where Py i = tral, i,..i|*p-
Under the above settings, we define the entropy with respect to -y, § and n as

Sn(770) = _trpnlogpn = - Z ‘F)in---il log‘F)in~~~il7 (37)

01 ,eemin
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and, subsequantly, the dynamical entropy through a quantum Markov chain with
respect to vy and 0 is given by

~ 1
S(v;0) = l1msup Sn(7,6)

n—oo
= limsu log P ;.). 3.8
n_)oopn th;ln i i 108 Py iy) (3.8)

If the joint probability P;, . ;, satisfies the Markov property, then the above equal-
ity is written as

= Z 22|21 lOg P('Lg|’Ll) (39)

11,02

where P(iy]i1) is the conditional probability from i; to io. S(7y; 6) has the additivity
property in the following sense.

PROPOSITION 3.1. For two pairs (v, 60,) and (y?,0), we have

S @ 7;0,®605) = S(YV;01) +S(v?;65).

Proof. Since

onteot () o)) = 0t (n)) e ().

s (imskn)n (i) = 077 ® 9371(%%) ® vlﬁi)) 0 ® 92(%(21) ® vl(ﬂ?)vff) ® vl(f)
=, Ei)zl ®, gci)...kl ;
we have
Pli kn)o(in k) = LA @Azs (in k). (i1 k1)PL ® P25 (i Jon)oo(in 1)
= tral, (P Por b, 2 Pes.
The additivity of S(7;6) follows. O

DEFINITION 3.1. The dynamical entropy through a quantum Markov chain with
respect to 6 and a subalgebra B of A is

Ss(0) = sup{S(v;0); v C B},

where the supremum is taken over all finite partitions of identity I € B. When

B = A, we simply write S4(8) = S(@), which is called the dynamical entropy
through a quantum Markov chain with respect to 6.
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When we take the transition expectation from My ® A to A such that
1
Be(Y eij @ Aij) = p > A,
0, 0]
Pn 18 given by

Pn = trappon = Z Z (6T A5 inois P Fooy) Cithy @+ @ €iky, -

i1,k1 in,kn

In this case, although the joint distribution P; . ; is not directly induced, the
dynamical entropy through a quantum Markov chain with respect to 6 and a
subalgebra A; of A can be defined in the same way as above. We will discuss this
general case elsewhere.

Our setting for the dynamical entropy through a quantum Markov chain can
be further generalized as follows.

Let A be a x-algebra, ¢ be a state on A and € be an endomorphism of 4. The
triple (A, 6, ) is called a *-dynamical system with a stationary state @ if pof = ¢
holds.

Two such systems (Aj,01,¢1) and (Asg, 02, ¢2) are called isomorphic if there
exists an isomorphism v: Ay — As such that

P20V = Q1,
vof; = By0w.

Let (A, 6, ) be a discrete C*-dynamical system. For each d € N and (ny,...,nq) €
N¢, we define the map
Winy,omg) P AT X AT = C

by

Winy,..ng) (A1 -+ Ag; B1,..., Bg) =
P1(07" (A1)" ... 074 (Ag)"07¢(Ba) - 07" (B1)) (3.10)

for any (Ai,...,Aq), (Bi,...,B;) € A% Tt is clear that the family of the maps
(3.10) is a projective family of correlation kernels in the sense of [2], hence, by the
reconstruction theorem, there exists a stochastic process {@VA, (jn)nen} over A
indexed by N whose family of correlation kernels is given by (3.10). This process is
unique up to stochastic equivalence. When ¢ is stationary, the process is stationary,
that is, there exists an endomorphism v € End (A) such that

Uo gy = jn+1-

In the commutative case, this construction gives the usual stationary process
associated to a dynamical system [2].



78 Luigi Accardi et al.

DEFINITION 3.2. Let A;, As be two C*-algebras and let w(® be a projective
family of correlation kernels over A; (i = 1,2) indexed by N. The two families of
correlation kernels w®), w2 are called equivalent if there exists an isomorphism

v: A — Ay

which intertwines them, that is, for each d € N, (ny,...,nq) € N and A;,... Ay,
By,...,Bq € A; one has

wlt (A Ag B, By) = wl) (A, u(Ag)so(Br), . v(By)) -

(n1y..0ngq) (n1yeyng)

We shall use the notion of equivalence also for families wy,, indexed by a

yeensTld)
proper subset of N¢. Now we introduce the time ordered correlation kernels. They
are the kernels wy,y with (n) of the form

(n)y=1(1,2,...,n)
for some n € N and we shall use the notation
W(1,2,..n) = Wn) -
Thus, by definition
Wiy (At Aps Br, o, Bp) = @1(A101(A5 ... 01(A},_101(A;,B)Bn_1) ... B2)B1).

If the state ¢ is regular enough (e.g., faithful) then the time ordered correlation
kernels, even if it is not enough to specify uniquely up to stochastic equivalence the
stochastic process associated to the dynamical system, are sufficient to determine
the isomorphism class of the dynamical system.

PROPOSITION 3.2. Two dynamical systems (A;, 0;, ;) with faithful state p; (i =
1,2) are isomorphic if and only if the associated time-ordered correlation kernels
are equivalent.

Proof. The necessity is obvious. Assume that the two given processes are iso-
morphic and let v: A; — Ay be an isomorphism such that

Y20V = 1, v lofyov = 6.
Then, one has vo 0y =60y 0v

©®1 (AT91(A§ e 91 (Azflgl(A:Bn)Bn—l) e Bg)Bl)
= ¢2(v(A1)*0a2(v(A2)" ... 01 (A} _101(A;Bn)Bn-1) -..))v(B1))

= (pg(U(Al)*QQ(’U(Ag)* e 02(’U(Anfl)*GQ(’U(An)*v(Bn))U(Bn,1) e ’U(BQ))U(BI)) ,
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hence the correlation kernels are equivalent. Conversely, if there exists an isomor-
phism v: A; — Ay which intertwines the time-ordered correlation kernels, then, in
particular, for every Ay, B; € A one has

wiy) (A1, A1; B1,B1) = @1(A61(A1B1)By)

= wiy) (v(A1), v(A1);0(B1), v(B1))
= p2(v(A1)"02(v(A1)"v(B1))v(B1))) - (3.11)
Letting A} = B; = B in (3.11) we deduce
¢1(B) = pa2(v(B)), Be A,
so that ¢1 = @9 o v. Using this identity, we can write (3.11) as
p1(A701(ATB1)B1) = @1(A]-v™" -0y - v(A1B1)B)

and since Ay, By are arbitrary in A;, this implies #; = v~' 06, ov which shows the
isomorphism of the two dynamical systems because of the faithfulness of 1, ©s.
O

The relevance of the above proposition is that, as long as we are interested
only in the isomorphism class of the dynamical system (A4, 8, ), we need only to
consider its time ordered correlation kernels.

To every family of time ordered correlation kernels, one can naturally associate
an entropy.

Let v = {v;}; € I(7), where I(7y) is a finite or countable set of discrete partitions
of the identity with projections in A. We shall denote

Pi v = Wy (Yirs -y Yins Yins -+ 5 Vin) -

The entropy of the probability measure P;, . ; on the space I(y)" is defined in
the usual way
Sn('y; w(n)) = - Z Pin,...,il logf)in,...,il-
B yeenylin
Because of the projective property of the correlation kernels w,, it follows that
the family of probability measures is projective in the sense that

Pz'n,...,il = P(ln|ln—1)ljz

nfla“-ﬂ;l’

hence it defines a unique probability measure P on the space of sequences (7).
Since the family of correlation kernels is stationary, it follows that the probability
measure P will also be stationary. Therefore the limit

o1
S(y;w) = lm —S,(y;wp)

exists. Let P(B) be a family of partitions of the identity in a subalgebra B of A.
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DEFINITION 3.3. The dynamical scattering entropy of the correlation kernel w =
{wey :n € N} is

Sp(w) = sup{S(y;w); v € P(B)},
where the supremum is taken over all finite or countable partitions of the identity
in P(B) with projections in B. When B = A, we simply write S 4(w) = S(w), which
is called the dynamical scattering entropy of the correlation kernel w = {w, :
n € N}.

When A is a von Neumann algebra acting on a Hilbert space H and ¢ is
a faithful normal state on A with an automorphism 6 such that ¢ o 6§ = ¢, the
dynamical scattering entropy is exactly the same as the dynamical entropy through
a quantum Markov chain discussed before. That is, in this case, the correlation
kernel becomes

Wiy (Vi -+ s Yin3 Vi - -2 Yin) = 0 0Vin) - 0" (i) 0" (Vi) - ¥i) = Pry i -

The example 2 suggests the term dynamical scattering entropy.

4. Calculation of Dynamical Entropy Through QMC
For Some Simple Models

In this section, we compute the dynamical entropy through a QMC for several
simple models.

4.1. MobDEL 1

Let My be a matrix algebra induced by the set of all d X d matrices acting on
d-dimensional Hilbert space Hg, and A (resp. H) be the infinite tensor product
space of My (resp. H) expressed by

A= ®Z]\4d )
H = @"Hy.
We denote a finite partition of identity I € My by vy = {'y](-o) = |z(0))(z£0) |}, where

)

{zZ(O)} is a CONS (complete orthonormal system) of #Hg. Let 7, be an embedding
map from My into the k-th factor of the tensor product ®”M,; = A. For any finite

partitions of ®”I given by v = {v; = 70(71(0))}, let # be a Berunoulli shift on .4
defined by
0(7:)

By iteration, #* is a map given by

0" (i) = (7).

71 (i) -
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Let py be an arbitrary state on Hy and p be ®”py € L(H), the set of all density
operators on H. Then , ; . ; is obtained by

vinis = 0" (i) - 0% ) Vi -
For any p = ®”%py € %(H), we have

— . . . . . . *
Plo,n] — E : €iriy ® ... Q€ini, &, ininPs 4y iy
Tl yeenyln

Pn = traAppon]-

The entropy with respect to 7,0 and n is

Sn(v,0) = —trpylogpp, .

Therefore the dynamical entropy through a quantum Markov chain with respect
to v and € becomes

. 1
S(7,0) = lim —~Sy(v,0)
= = (zi, pozi) log(zi, pozi)
:
= S(IOO)a

which is exactly the von Neumann entropy of pg.
4.2. MODEL 2

Let A be a matrix algebra M, acting on a Hibert space Hg. For unitary operator
U, 0 is given by 0(A) = UAU* for any A € A. Let {z;} be a CONS in H; and ;
be |z;)(z;|. Since the following equations

0k_17jk = |Uk_lzjk><Uk_lzjk|

—1
» Jn-di T " Vig - - 9'73'2'7]'1

n—1

= [T U2jursr 2 MU 25, )2
k=1

hold for any p € 3(Hy), the set of all density operators on Hy, we have

’O[Oan] = Z eznzn ® tet ® eilil

©1yeensin
n—1

® [T KUz 201 (zirs p2i U i, (U™ 2 |
k=1

Pn = trapjon)
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n—1
Z Z H |<Uzjk+17zjk>|2<zj1apzj1> X €y @ ... D €iygy
il)'-'ain jl:"':jn k=1

‘F)in~~~i17 P(Zk+1|7’k) and PZl are H |<Uzlk+17zlk>|2<zi17pzi1>7 |<Uzik+17zik>|2 (k =
1,...,n) and (z;,,pz,). Since the JOlnt probability P; . ;, satisfies the Markov
property, the dynamical entropy gp(q/; ) through a QMC with respect to v and 6
is given by

Sp(v;0) = = P, Pis]iy) log P(iz]i1)
11,82
= - Z(zilvpzi1>|<Uzi2vzi1>|210g|<Uzi27zi1>|2 :
11,12

We have the following result.
PROPOSITION 4.1.

(1) For any p € 3(Ho) and any v = {v;},
0 < Sp(y;0) < logd.

(2) There ezists p) € %(Ho) and v = {fy } such that

gp(u) (’)/(u); 0) = logd.

(3) There ezists p) € B(Ho) and vV = {fyj } such that
S,0(";0) = 0.

Moreover, all intermediate values between 0 and log d are assumed for some choice

of U.

Proof.

(1) Since —log P(i2]i1) > 0 and P(iz|i1)P;, > 0 hold for any i1,i2 = 1,...,d,

Sp(u) (v,6) > 0.
Moreover the following inequality

ZP 22|21 lOg P(22|21 < Z lOg—

12

holds for any P, € [0,1], hence we have

—ZZ P(iz]ir) log P(i2|i1) < logd.

i1 d2
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(2) When p(“) =1 gp(u) (7v,0) = logd.
(3) When p = |z;)(z], S0 (7,60) = 0. 0

By taking the eigenvectors of U as z;, one finds the deterministic chain with
minimum entropy. This rules out the use of the dynamical scattering entropy as
a dynamical invariant for finite dimensional deterministic systems (they have all
the same dynamical scattering entropy).

4.3. MODEL 3
Let A be @M, = B(®“VHo) and 6 be a cyclic shift; that is, (1) 8 0 jr = jrr1

for k E {1 2,...,N —1} and (2) o jy = ji. Let 75, be |2,)(2j,|, where z;, =

Zil 11 |l‘“ 1H®...8 xh(N))a ik = (ig(1),...,ix(N)), and {J?Zl(k)} be a CONS of
Hp. Since the following equations
ARRTE AP

Yir = |ij Jk

k—1
Z;k ) — Z)\ |l‘zk_(k mod N) ® - ® $ik(N—k+1 mod N)>7

S medi = 9”11 o 095,75
o
k k— 1 1
=TI 200 el
k=1

hold for any p = ®"py € @Y% (H,), we have

] = Z ejnjn®...®ej1j1
J1se- a]n

-1 -1
® H| ]k+17 Jk >|2(Zjnpzj1>|z?n Mz
Pn = tr.A p[O,n}
Z ejnjn®...®ej1j1

Jise- a]n

X H| Jk+1’ Jk >|2<Zj1,ij1>,

. . k—1 k
Pj,..ju» P(jk+11jk) and P; aren YR gy )2 g

1,...,n—1) and (zj,, pzj,), respectlvely Since the joint probability P;, . ;, satisfies

the Markov property, the dynamical entropy S p(7;0) through a QMC with respect
to v and € is given by

Sp(y; )N = —— Z P(j2]41) log P(j2|51)
.71,.72
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= T Z ‘Z Z]lapzjl >\ II )ZIII(N)III(I)Ai(«[i[I

31,32 o

(i1))2
ZA L (Nl 1)>‘z'1f1 e

) 2

x log

The above coefficients A; satisfy the following conditions:

ny]l_‘[izk H521 21 )

Ji
Vi1 Vi = Oj1jaVir = Z)‘ ) = 5]1]%
7

V= = AU )&( i) _ ;Zg DAGY

i

from the properties of the partition v = {v;}. We have the same result of the
model 2. Its proof is essentially the same, so that we omit it here.

PROPOSITION 4.2. (1) For any p € ®"%(Ho) and any v = {v;},
0 < Sy(1;0) < logd
holds.
(2) There exists p*) € @S (Hy) and v = {fy] } such that

S p(w) (’Y(u) 0) = logd.

(3) There ezists p) € @V¥(Hg) and v = {7] } such that

S,0(";0) = 0.

4.4. MODEL 4

Let A be ®%(My® M,) and 6 be a shift defined by (4, ® A3) = I® A; ® A, for any
A; € My (i =1,2) and I € My. Let v;, be |z, )(zj, |, where z;, =3, 1 )\Ef}c)lle ®
zg, and {z;, } be a CONS in H,. Since the following equations

Oy, = T1®...01®7,,

dneds = "M, 9%2%1

= Z)\llkl i k (H )‘w ky kl lk) Enk) A(i’,‘%
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n—2
x |xi1><mi;|®(® [,y ) wag ) @, ) (|

hold for any p = @, po € R, X(Ho ® Ho), we have

Plo,n] = Z ejnjn ®631]1 ‘Z H Azlkl kl lk’

jl:"':jn
n—2

X H (Tkss poTar Y241, P2j—1) (® i Tk | )7
r=1

Pn = trA;O[O,n]

= Z e]n]n ®e]1]1 ‘Z H Azlk( k( 1k’
jl:---:jn
n—2
[ (@rs pomrr) (21, pzj-1) 5
r=1

Z}\ Jl >\(]2) )\(]2) (xk’

-F)jn...jlv P(]2|Jl) and P are ‘Z H Allk[ ko lk,) llkl Zlk”’ kil K k!

poty) and (zj,, pz;,). Since the Jomt probability Pj, . ;, satisfies the Markov prop-

erty, the dynamical entropy Sp(q/, 0) through a QMC with respect to vy and 6
becomes

Sp(v;0)® = —= Z P(j2|51) log P(j2[j1)
]17]2
= =5 Z Z Azlkl z]lapz]l)AEZ}C)’I”XIE:?IC)’QAIE:]’I’Q’)I@’Q’ <xk’27poxk,2,>
]17]2

]1 J2
x IOgZ )\Zlkl uk”’ k: k)’ )\l(c’”)k” <xk, ,,OOZU]g”> ’

4.5. MODEL 5

Let Ay, Ao be two von Neumann algebras acting on Hilbert spaces H1, Hs, respec-
tively. Let Uy be a partial isometry operator from H; to Ho (k = 1,...,d). We
define a transition expectation £ from As ® A; to A; by

d
EB®A) = 3 Ui BUpo(,2 46,7,
k=1

where ¢( is a stationary state on A;, and & € A; satisfies: (1) & > 0; (2)
Yor €k = I. Put pr = po(&k). Then

EB®1) = Y UiBUwprE(vj, 1 @&, ® 1)) = > EOju s @ Ups V5 Uk, )Pk »
k kn
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Pj.ji = 001y ®E(j ® ... @ E(v5, ®T)...)))

=Y 00(Evj ®EM), ® ... Ejuy ®UZE Y, Uky) - - 2))Pr
kn

= Y @l ®EH @ €y OUp, Vjn1Ukn_r)---)))
kn—l,kn

X ©0(Ekn_1 U, Vin Uk ) Pky,

= Z ()DO(UicklfYJI Ukl)goo(gkl UI’C’(QfY]?UkQ) e ()Do(gkn—QU]:n_ll}/jnflUkn—l)

E1,yeonkin
Hence we have
- . 1
J1seee5dn

) 1 *
=l fn 2 (2 el

Jlseensdn ki1,eenskn
X 00 (& Uiy 132 Uks) - -+ 00(Ek 2T, Vi1 Uk )20(Ek 2 Ui i U )P, )

x log( " wo(Uf,v;U,) (42)
k1y.okn

X 00 (&, Uiy 132 Uks) - -~ 002U, Vs Uk 1)20(Ek Uiy ¥ Uk, )P )| -

The relation between the dynamical entropies by complexity and by QMC is dis-
cussed in [4].
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