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In this paper we discuss probability operator measure and phase measurement in one
mode interacting Fock space.
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1. INTRODUCTION

Refractive index variations because of various environmental effects cause
phase shifts to optical beams which we can observe interferometrically. In a coher-
ent state (shot-noise limited) phase sensing interferometer, the root-mean-square
phase error is proportional to 1/

√
N, whereN is the average number of detected

photons. If we use squeezed states in a single-frequency Michelson interferometer
gravity-wave detector then root-mean-square phase error is proportional to 1/N.
This means that a squeezed state interferometer requires fewer photons than does
a conventional coherent-state interferometer to reach the standard quantum limit
on position measurement accuracy. But squeezed state interferometry does not
represent the ultimate quantum limit on the measurement of optical phase. Better
performance can be achieved in phase measurement problems by using quantum
estimation theory. As the statistics of a quantum measurement depends on both
the measurement operator and the input state, one studies the phase measurement
problem on a single-mode radiation field, optimizing both the quantum state and
the quantum measurement, and arrives at a local accuracyδφ ∼ 1/N2 which is
the reciprocal peak likelihood error and not the root-mean-square error.

In this direction Shapiro and others studied phase measurements on a single-
mode radiation field of the annihilation operatora on a Boson–Fock space. They
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further studied probability operator measures (POM) and showed that the POM
generated by the Susskind–Glogower operator yields the maximum-likelihood
phase estimation for an arbitrary input state.

Taking the view point of Shapiro and others we study here the same problem
in the interacting Fock space setting and observe that their result can be improved
further in the new setting.

The paper is organized as follows. In Section 2, we give preliminaries and
notations. In Section 3, we describe probability operator measure in0(CI ). In
Section 4, we discuss phase distribution in0(CI ). In Section 5, we study phase
estimation problem and in Section 6 we have given a conclusion.

2. PRELIMINARIES AND NOTATIONS

As a vector space one mode interacting Fock space0(CI ) is defined by

0(CI ) =
∞⊕

n=0

CI | n〉. (1)

whereCI | n〉 is called then-particle subspace. The differentn-particle subspaces
are orthogonal, that is, the sum in (1) is orthogonal. The norm of the vector| n〉 is
given by

〈n | n〉 = λn. (2)

where{λn} > 0. The norm introduced in (2) makes0(CI ) a Hilbert space.
An arbitrary vectorf in 0(CI ) is given by

f ≡ r0 | 0〉 + c1 | 1〉 + c2 | 2〉 + · · · + cn | n〉 + · · · (3)

with || f || = (
∑∞

n=0 | cn |2 λn)1/2 < ∞.

We now consider the following actions on0(CI ):

a+ | n〉 = | n+ 1〉

a | n+ 1〉 = λn+1

λn
| n〉 (4)

a+ is called thecreation operatorand its adjointa is called theannihilation op-
erator. To define the annihilation operator we have taken the convention 0/0= 0.

We observe that

〈n | n〉 = 〈a+(n− 1), n〉 = 〈(n− 1), an〉 = λn

λn−1
〈n− 1, n− 1〉 = . . . (5)

and

|||n〉||2 = λn

λn−1
· λn−1

λn−2
· · · λ1

λ0
= λn

λ0
(6)
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By (2) we observe from (6) thatλ0 = 1.
The commutation relation takes the form

[a, a+] = λN+1

λN
− λN

λN−1
(7)

whereN is the number operator defined byN | n〉 = n | n〉.
In a recent paper (Das, 2002), we have proved that the set{ fn ≡ |n〉√

λn
, n =

0, 1, 2, 3,. . .} forms a complete orthonormal set.
We have shown (Das, 2002) that the solution of the following eigenvalue

equation

a fα = α fα (8)

is given by

fα = ψ(|α|2)−1/2
∞∑

n=0

αn

λn
| n〉 (9)

whereψ(|α|2) ≡∑∞n=0
|α|2n

λn
.

We call fα acoherent vectorin 0(CI ).

3. PROBABILITY OPERATOR MEASURE

A discrete spectrumProbability Operator Measure(POM) on0(CI ) consists
of a set of Hermitian, positive semidefinite operators{5n : n ∈ N}, which resolves
the identity

I =
∑
n∈N

5n. (10)

Measurement of this POM, by definition, gives a discrete, classical random
variable with probability distribution

P(n, g) = (g,5ng) for n ∈ N (11)

whereg is any vector of unit norm in0(CI ).
In order that the laws of classical probability be satisfied, it is necessary and

sufficient that

0≤ P(n, g) ≤ 1,
∞∑

n=0

P(n, g) = 1 (12)

are satisfied for arbitraryg of unit norm in0(CI ).
We know that the sequencefn = |n〉λn

forms a complete orthonormal sequence
in 0(CI ) and are eigenvectors of the operatorN ′ = a∗a such that

N ′ fn = λn

λn−1
fn. (13)
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Measurement ofN ′ for any arbitrary vectorg ∈ 0(CI ) of unit norm yields a
discrete-valued, classical random variable with probability distribution

P( fn, g) = |( fn, g)|2 for n = 0, 1, 2,. . . (14)

In order that the law of classical probability be satisfied it is necessary and sufficient
that

0≤ P( fn, g) ≤ 1,
∞∑

n=0

P( fn, g) = 1 (15)

for arbitraryg ∈ 0(CI ) of unit norm.
The completeness of{ fn} guarantees that the prescription in Eq. (14) obeys

Eq. (15). For, if we expand the arbitrary vectorg of unit norm in terms offn we have

g =
∞∑

n=0

( fn, g) fn =
∞∑

n=0

| fn〉〈 fn|g (16)

where we define the operator

| fn〉〈 fn| : 0(CI )→ 0(CI )

by

| fn〉〈 fn| = ( fn, g) fn.

Equation (15) is now easily verified from Eqs. (14) (16).
Thus,N ′ operator measurement is equivalent to the POM

{5n = | fn〉〈 fn| : n = 0, 1, 2,. . .} . (17)

Similarly, a continuous spectrum POM consists of a set of Hermitian, positive
semidefinite differential operators{d5(β) : β ∈CI }, which resolve the identity,

I =
∫
β∈CI

d5(β). (18)

The result of measuring this POM is, by definition, a continuous, classical
random variable whose probability density function is given by

p(β, g) = (g, d5(β)g)

dβ
for β ∈CI (19)

whereg is any vector of unit norm in0(CI ).
We know that the annihilation operatora has eigenvectors—the coherent

vectorsfα (Das, 2002). These vectors are not orthogonal but they form a resolution
of the identity

I =
∫
α∈CI

dµ(α)| fα〉〈 fα| (20)

where

dµ(α) = ψ(|α|2)σ (|α|2)r dr dθ



P1: JQX

International Journal of Theoretical Physics [ijtp] pp1009-ijtp-474209 November 12, 2003 0:52 Style file version May 30th, 2002

Phase Measurement in Interacting Fock Space 2725

with α = rei θ , which defines aa-POM

d5(α) ≡ | fα〉〈 fα|dµ(α) for α ∈CI . (21)

The outcome of thea-POM is a complex-valued, continuous classical random
variable with probability density function

p(α, g) = (g, d5(α)g)

dµ(α)
= |( fα, g)|2 for α ∈CI (22)

whereg is any vector of unit norm in0(CI )
Because of (20), it follows that

p(α, g) ≥ 0,
∫
α∈CI

dµ(α)p(α, g) = 1 (23)

hold for any vectorg of unit norm in0(CI ).

4. PHASE DISTRIBUTION

To obtain phase distribution we consider first the phase operator

P =
(
λN+1

λN
− λN

λN−1
+ a∗a

)−1/2

a

and try to find the solution of the following eigenvalue equation

P fβ = β fβ (24)

where fβ = 6an | n〉.
Now,

P fβ =
∞∑

n=0

an

(
λN+1

λN
− λN

λN−1
+ a∗a

)−1/2

a | n〉

=
∞∑

n=1

an

(
λN+1

λN
− λN

λN−1
+ a∗a

)−1/2
λn

λn−1
| n− 1〉

=
∞∑

n=1

an · λn

λn−1

(
λN+1

λN
− λN

λN−1
+ a∗a

)−1/2

| n− 1〉

=
∞∑

n=1

an · λn

λn−1

(
λn

λn−1
− λn−1

λn−2
+ λn−1

λn−2

)−1/2

| n− 1〉

=
∞∑

n=0

an+1 · λn+1

λn

(
λn+1

λn

)−1/2

| n〉

=
∞∑

n=0

an+1 ·
(
λn+1

λn

)1/2

| n〉 (25)
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β fβ =
∞∑

n=0

βan | n〉. (26)

From (24)–(26) we see thatan satisfies the following difference equation:

an+1

(
λn+1

λn

)1/2

= βan

That is

an+1 = β
(
λn+1

λn

)−1/2

an.

Hence,

a1 = β
(
λ1

λ0

)−1/2

a0.

a2 = β
(
λ2

λ1

)−1/2

a1 = β2

(
λ2

λ1

)−1/2(
λ1

λ0

)−1/2

a0 = β2

(
λ2

λ0

)−1/2

a0.

a3 = β
(
λ3

λ2

)−1/2

a2 = β3

(
λ3

λ2

)−1/2(
λ2

λ0

)−1/2

a0 = β3

(
λ3

λ0

)−1/2

a0

and so on.
Thus,

an = βn ·
(
λn

λ0

)−1/2

a0 = βn · (λn)−1/2a0.

Hence

fβ =
∞∑

n=0

an | n〉 = a0

∞∑
n=0

βn · (λn)−1/2 | n〉.

We takea0 = 1 andβ = |β|ei θ .
Then

fβ =
∞∑

n=0

einθ (λn)−1/2|β|n | n〉.

Henceforth, we shall denote this vector as

fθ =
∞∑

n=0

einθ (λn)−1/2|β|n | n〉.

where 0≤ θ ≤ 2π and call fθ a phase vector in0(CI ).
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Norm of the phase vector is given by

|| fθ ||2 =
∞∑

m,n=0

einθ eimθ (λn)−1/2(λm)1/2|β|n+m〈n | m〉

=
∞∑

n=0

1

λn
|β|2nλn

=
∞∑

n=0

|β|2n

< ∞
(if |β| < 1).

The phase vectors are complete. We can show that

I = 1

2π

∫
X

∫ 2π

0
dν(x, θ )| fθ 〉〈 fθ | (27)

where

dν(x, θ ) = dµ(x) dθ. (28)

Here we consider the setX consisting of the pointsx = 0, 1, 2,. . . andµ(x) is the
measure onX which equals

µn = 1

|β|2n

at the pointx = n andθ is the Lebesgue measure on the circle.
Define the operator

| fθ 〉〈 fθ | : 0(CI )→ 0(CI ) (29)

by

| fθ 〉〈 fθ | f = ( fθ , f ) fθ (30)

with f =∑∞n=0 an | n〉
Now,

( fθ , f ) =
∞∑

n=0

e−inθ (λn)−1/2|β|nan

and

( fθ , f ) fθ =
∞∑

m,n=0

ei (m−n)θ (λm)−1/2|β|m(λn)1/2|β|nan | m〉.
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Hence

1

2π

∫
X

∫ 2π

0
dν(x, θ )| fθ 〉〈 fθ | f =

∫
X

dµ(x)
∑
m,n

(λm)−1/2|β|m(λn)1/2|β|nan | m〉

× 1

2π

∫ 2π

0
e−i (m−n)θ dθ

=
∫

X
dµ(x)

∞∑
n=0

|β|2n | n〉

=
∞∑

n=0

an | n〉|β|2n 1

|β|2n

=
∞∑

n=0

an | n〉

= f. (31)

We use the vectorsfθ to associate, to a given density operatorρ, a phase
distribution as follows:

P(θ ) = 1

2π
( fθ , ρ fθ )

= 1

2π

∞∑
m,n=0

|β|m · |β|n · ei (n−m) ·
( | m〉√

λm
, ρ
| n〉√
λn

)
. (32)

The P(θ ) as defined in (32) is positive, owing to the positivity ofρ, and is
normalized ∫

X

∫ 2π

0
P(θ ) dν(x, θ ) = 1 (33)

where

dν(x, θ ) = dµ(x) dθ. (34)

for,∫
X

∫ 2π

0
P(θ ) dν(x, θ ) =

∫
X

dµ(x)
∞∑

m,n=0

|β|m · |β|n · 1

2π
ei (n−m)dθ ·

( | m〉√
λm

, ρ
| n〉√
λn

)

=
∫

X
dµ(x)

∞∑
n=0

|β|2n ·
( | n〉√

λn
, ρ
| n〉√
λn

)

=
∞∑

n=0

( | n〉√
λn

, ρ
| n〉√
λn

)
= 1 (35)
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Thephase distributionover the window 0≤ θ ≤ 2π for any vectorf is then
defined by

P(θ ) = 1

2π
|( fθ , f )|2.

5. PHASE MEASUREMENT

Once we have the POM information we are ready to discuss the phase estima-
tion problem. Without loss of generality, we assume that 0≤ θ ≤ 2π . The class
of POMs we must optimize over in order to find the best phase estimate is taken
to be

{d5̂(θ ) : 0≤ θ ≤ 2π},
where

d5̂(θ ) = d[5̂(θ )]† and I =
∫ 2π

0
d5̂(θ ). (36)

The conditional probability density, given the phase operator

P =
(
λN+1

λN
− λN

λN−1
+ a∗a

)−1/2

a

for obtaining a phase valueθ from this POM is

p(θ , P) = (g, d5̂(θ )g)

dν(x, θ )
, for 0≤ θ ≤ 2π, x an integer (37)

whereg is a vector of unit norm in0(CI ).
We choose the POM,d5̂(θ ), and the input vectorg to optimize our estimate

of the phase shiftP. For a given POM and the input vector, Eq. (37) supplies the
PDF needed to perform classical maximal likelihood estimation. The observed
phase valueθ is our estimate ofP. In order for this estimate to be one of maximum
likelihood, we restrict our attention to the POMs satisfying

PM L (θ ) = arg max
θ

p(θ , P), for 0≤ θ ≤ 2π (38)

and optimize our estimate overd5̂ andg by maximizing the peak likelihood—
minimizing δθ ≡ 1

p(θ , P) .
For the input vector

g =
∞∑

n=0

( fn, g) fn

where

( fn, g) = |( fn, g)| eikn , n = 0, 1, 2,. . . , (39)
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δθ is minimized by the following POM

d5̂(θ ) = | f g
θ 〉〈 f g

θ | dν(x, θ ) (40)

where

dν(x, θ ) = dµ(x) dθ , 0≤ θ ≤ 2π

as in (34) and

f g
θ ≡

∞∑
n=0

einθ+ikn (λn)1/2|β|n fn. (41)

To calculate reciprocal peak likelihoodδθ with this optimum POM to estimate
P we observe first

p(θ , P) = (g, d5̂(θ )g)

dν(x, θ )

= ∣∣( f g
θ , g

)∣∣2
=
∣∣∣∣∣ ∞∑

n=0

e−inθ−ikn(λn)1/2|β|n( fn, g)

∣∣∣∣∣
2

=
∣∣∣∣∣ ∞∑

n=0

e−inθ (λn)1/2|β|n|( fn, g)|
∣∣∣∣∣
2

(42)

Hence a suitable peak likelihoodδθ for maximum p(θ , P) can be (Helstrom,
1976),

δθ = ∣∣( f g
θ , g

)∣∣−2

=
∣∣∣∣∣ ∞∑

n=0

(λn)1/2|β|n|( fn, g)|
∣∣∣∣∣
−2

(43)

which is independent of the phases{kn}. In fact, p(θ , P) is independent of the
phases{kn}.

As peak likelihoodδθ is independent of{kn} we can assume, without loss of
generality, that the input vectorg =∑∞n=0( fn, g) fn has positive real coefficient
( fn, g). Equation (41) then reduces to

f g
θ = fθ =

∞∑
n=0

einθ · (λn)1/2|β|n fn (44)

for 0≤ θ ≤ 2π which is the solution of the eigenvalue equation (24)

P fθ = ei θ fθ .
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Now we consider the operator

U =
∞∑

n=0

e−ikn | fn〉〈 fn|. (45)

Observe that

UU ∗ = U ∗U = I .

Thus,U is a unitary transformation.
Now, for an arbitrary input vector,g, the optimum POM from Eq. (40) is

equivalent to performing the unitary transformationU followed by the POM

d5(θ ) = | fθ 〉〈 fθ | dν(x, θ ) (46)

where

dν (x, θ ) = dµ(x) dθ , 0≤ θ ≤ 2π

as in (27) and (28) for,

U f g
θ =

∞∑
n=0

einθ+ikn · e−ikn(λn)1/2|β|n fn

=
∞∑

n=0

einθ · (λn)1/2|β|n fn

= fθ (47)

where f g
θ is given by (41).

Shifting the input vector’s phase by the phase operatorP amounts to

( fn, g)→ einθ0( fn, g) for n = 0, 1, 2,. . . (48)

By rotating out the input phaseskn with the U transformation we get the
transformed input as

einθ0( fn, g)
U→ einθ0|( fn, g)| (49)

The effect of POM in Eq. (46) to this transformed vector

g′ =
∞∑

n=0

einθ0|( fn, g)| fn (50)

gives the classical phase with PDF

p(θ , P) = (g′, d5(θ )g′)
dν(x, θ )

= (g′, | fθ 〉〈 fθ |g′)
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= ∣∣( fθ , g′)
∣∣2

=
∣∣∣∣∣ ∞∑

n=0

ein(θ0−θ )(λn)1/2|β|n|( fn, g)|
∣∣∣∣∣
2

(51)

From the above equation it is clear that ML estimate obeysPM L (θ ) = θ .
Thus, the POM in Eq. (27) leads to the ML phase estimate for all vectors in

0(CI ). Thus, to achieve our goal of jointly optimizing phase estimate performance
over both the measurement and the input vector, it remains for us to minimizeδθ

from Eq. (43), by appropriate choice of input vector. Specifically, the coefficients
{( fn, g)} for the input vector must minimize the right side of the Eq. (43) subject
to the normalization constraint

∞∑
n=0

|( fn, g)|2 = 1 (52)

and the average number constraint

∞∑
n=0

λn

λn−1
|( fn, g)|2 = N0 (53)

whereN0 = (g, a∗ag).
Without loss of generality, we shall assume that (fn, g) are positive real.
Now, Maximize

L(g, µ1, µ2) ≡
[ ∞∑

n=0

( fn, g)

]2

+ µ1

[ ∞∑
n=0

( fn, g)2− 1

]

+µ2

[ ∞∑
n=0

λn

λn−1
( fn, g)2− N0

]
, (54)

whereµ1 andµ2 are Lagrange’s multipliers.
It is straight forward to show that

( fn, g) = c

k+ λn
λn−1

for n = 0, 1, 2,. . . (55)

achieves the required stationary point forL, wherec andk are positive constants
depending on the Lagrange’s multipliers. For brevity we shall chosek = 1.

Now we choose{λn} such that λn
λn−1
≥ n. Then we have

c/
(
1+ λn

λn−1

)
1/n

≤ c

1/n+ 1
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Hence we see that

lim
n→∞

c/
(
1+ λn

λn−1

)
1/n

≤ c.

Thus, the series6∞n=0
c

1+ λn
λn−1

and6∞n=0
1
n converge or diverge together. But6∞n=0

1
n

diverges. Hence, we must introduce a truncation parameter in Eq. (55). That is, we
have

( fn, g) = c

1+ λn
λn−1

for n = 0, 1, 2,. . . s

= 0 for n > s (56)

Now, we have

N0 =
s∑

n=0

λn

λn− 1
· |( fn, g(α))|2

=
s∑

n=0

λn

λn− 1
· c2(

1+ λn
λn−1

)2

=
s∑

n=0

c2

1+ λn
λn−1

− 1 (57)

where we have used Eqs. (52), (53), (54), and (56) with the truncation points.
Then,

δθ =
∣∣∣∣∣ s∑

n=0

(λn)1/2|β|n( fn, g)

∣∣∣∣∣
−2

= c2 ·
∣∣∣∣∣ s∑

n=0

(λn)1/2|β|n c2

1+ λn
λn−1

∣∣∣∣∣
−2

= c2A ·
∣∣∣∣∣ s∑

n=0

c2

1+ λn
λn−1

∣∣∣∣∣
−2

= c2A

(N0+ 1)2

≈ c2A(
N2

0

) (58)

for N0À 1. HereA is a constant.
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6. CONCLUSION

We know (Shapiro and Shepard, 1991) that ML phase estimation with opti-
mized state leads toδθ ∼ 1

N2
0

reciprocal peak likelihood performance where we
are interested in the behavior at high average photon number, namelyN0À 1. In
this paper we show that in the interacting Fock space caseδθ can even be less
than 1

N2
0
.
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