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SOLUTIONSAu
un probl �eme n'est immuable. L' �editeur est toujours heureux d'en-visager la publi
ation de nouvelles solutions ou de nouvelles perspe
tivesportant sur des probl �emes ant �erieurs.We have re
eived a late bat
h of 
orre
t solutions to problems 3478,3479, 3480, 3481, 3482, 3483, and 3486 from Walther Janous, Ursulinengym-nasium, Innsbru
k, Austria.

3488. [2009 : 515, 517℄ Proposed by Pham Huu Du
, Ballajura, Australia.Let a, b, and c be positive real numbers. Prove that
a

2a2 + bc
+

b

2b2 + ca
+

c

2c2 + ab
≤
Ê

a−1 + b−1 + c−1

a + b + c
.Solution by Paolo Perfetti, Dipartimento di Matemati
a, Universit �a deglistudi di Tor Vergata Roma, Rome, Italy.Let t = (t1, t2, . . . , tn) and s = (s1, s2, . . . , sn) be arbitrary n-tuplesof nonnegative real numbers. We will write t ≻ s if(i) t1 ≥ · · · ≥ tn and s1 ≥ · · · ≥ sn,(ii) kP

i=1

ti ≥
kP

i=1

si for all k = 1, 2, . . . , n, with equality when k = n.Let R+ denote the set of positive real numbers, let P be the set of allpermutations of {1, 2, . . . , n}, and de�ne [t] : Rn
+ → R by

[t](x) =
X
σ∈P

xt1
σ(1)x

t2
σ(2) · · · xtn

σ(n) for all x = (x1, x2, . . . , xn) .Muirhead's inequality states that if t ≻ s, then [t] ≥ [s]. Here, asusual, [t] ≥ [s] means that [t](x) ≥ [s](x) for all x ∈ R
n
+. Now, by squaringand simplifying, the given inequality is equivalent to A ≥ B, where

A = 12[8, 5, 1] + 23[7, 4, 3] + 16[6, 6, 2] + 12[8, 4, 2] + 4[7, 6, 1]

+ 4[9, 3, 2] + 8[7, 7, 0] ,
B = 12[7, 5, 2] + 22[6, 5, 3] + 26[6, 4, 4] +

5

2
[8, 3, 3] +

33

2
[5, 5, 4] .But this last inequality holds by these appli
ations of Muirhead's inequality:

[8, 5, 1] ≥ [7, 5, 2] ,
[7, 4, 3] ≥ [6, 5, 3] and [7, 4, 3] ≥ [6, 4, 4] ,
[8, 4, 2] ≥ [8, 3, 3] and [8, 4, 2] ≥ [6, 4, 4] ,
[6, 6, 2] ≥ [6, 4, 4] and [6, 6, 2] ≥ [5, 5, 4] ,
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[7, 6, 1] ≥ [5, 5, 4] ,
[9, 3, 2] ≥ [5, 5, 4] ,
[7, 7, 0] ≥ [5, 5, 4] .Also solved by OLIVER GEUPEL, Br �uhl, NRW, Germany; WALTHER JANOUS, Ursulinen-gymnasium, Innsbru
k, Austria; ALBERT STADLER, Herrliberg, Switzerland; and the proposer.One in
omplete solution was submitted.

3489. [2009 : 515, 517℄ Proposed by Jos �e Luis D��az-Barrero, UniversitatPolit �e
ni
a de Catalunya, Bar
elona, Spain.Let n be a nonnegative integer. Prove that
1

2n−1

nX
k=0

√
k

�
2n

k

�
≤
Ê

n

�
22n +

�
2n

n

�� .
A 
omposite of similar solutions by George Apostolopoulos, Messolonghi,Gree
e; and Albert Stadler, Herrliberg, Switzerland.By using the elementary fa
ts that �2n

k

�
=
� 2n
2n−k

� for 0 ≤ k ≤ 2n and
k
�2n

k

�
= 2n

�2n−1
k−1

� for 1 ≤ k ≤ 2n, and also the Cau
hy{S
hwarz Inequality,we have that"
nX

k=0

√
k

�
2n

k

�#2

=

"
nX

k=0

Ê�
2n

k

�√
k

Ê�
2n

k

�#2

≤
"

nX
k=0

�
2n

k

�# " nX
k=0

k

�
2n

k

�#
=

1

2

"�
2n

n

�
+

2nX
k=0

�
2n

k

�# "
2n

nX
k=1

�
2n − 1

k − 1

�#
=

1

2

��
2n

n

�
+ 22n

� "
2n

n−1X
k=0

�
2n − 1

k

�#
=

1

2

��
2n

n

�
+ 22n

� "
2n · 1

2

2n−1X
k=0

�
2n − 1

k

�#
=

1

2

�
22n +

�
2n

n

��
(n · 22n−1)

= n

�
22n +

�
2n

n

��
· 22n−2 ,from whi
h the 
laimed inequality follows immediately.
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Also solved by ARKADY ALT, San Jose, CA, USA; DIONNE CAMPBELL, ELSIE CAMP-BELL, and CHARLES R. DIMINNIE, Angelo State University, San Angelo, TX, USA; MICHELBATAILLE, Rouen, Fran
e; CHIP CURTIS, Missouri Southern State University, Joplin, MO,USA; OLIVER GEUPEL, Br �uhl, NRW, Germany; WALTHER JANOUS, Ursulinengymnasium,Innsbru
k, Austria; PAOLO PERFETTI, Dipartimento di Matemati
a, Universit �a degli studi diTor Vergata Roma, Rome, Italy; and the proposer.

3490. [2009 : 515, 518℄ Proposed by Mi
hael Rozenberg, Tel-Aviv, Israel.Let a, b, and c be nonnegative real numbers su
h that a + b + c = 1.Prove that(a) √
9 − 32ab +

√
9 − 32ac +

√
9 − 32bc ≥ 7;(b) √

1 − 3ab +
√

1 − 3ac +
√

1 − 3bc ≥
√

6.Solution to part (a) by Oliver Geupel, Br �uhl, NRW, Germany; solution topart (b) by George Apostolopoulos, Messolonghi, Gree
e, modi�ed by theeditor.(a) For nonnegative integers ℓ, m, and n, let [ℓ, m, n] =
Psymm. aℓbmcn.The following inequality is a 
onsequen
e of Muirhead's Theorem,

27
Y
y
li
�9(a + b + c)2 − 32ab

�
−
�
11(a + b + c)2 + 16(ab + bc + ca)

�3
= 9176 [6, 0, 0] + 34320 [5, 1, 0] − 36336 [4, 2, 0] + 50184 [4, 1, 1]

− 54352 [3, 3, 0] + 100320 [3, 2, 1] − 103312 [2, 2, 2]

≥ 0 .We put a + b + c = 1 in the above, and we observe that by the AM-GMInequality P
y
li
È(9 − 32ab)(9 − 32bc) ≥ 3
� Q
y
li
(9 − 32ab)

�1/3. It followsthat P
y
li
È(9 − 32ab)(9 − 32bc) ≥ 11 + 16(ab + bc + ca), and we dedu
e�X
y
li
p9 − 32ab

�2

≥ 49 ,
from whi
h the inequality in (a) follows.(b) Let x = 3a, y = 3b, and z = 3c. Then x, y, and z are nonnegativereal numbers su
h that x + y + z = 3, and we are to show thatX
y
li
p3 − xy ≥ 3

√
2 . (1)
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Note �rst that P
y
li
É(3 + z)2

8
=

1√
8

P
y
li
(3 + z) =
1√
8
(9 + 3) = 3

√
2.Also,

(3 + z)2

8
−
�
3 − (x + y)2

4

�
=

(3 + z)2

8
− 3 +

(3 − z)2

4

=
1

8

�
9 + 6z + z2 − 24 + 18 − 12z + 2z2

�
=

3

8
(z − 1)2 . (2)Hen
e,

(3 + z)2

8
≥ 3 − (x + y)2

4
, (3)and (1) is equivalent toX
y
li
 p3 − xy −

Ê
3 − (x + y)2

4

!
≥
X
y
li
 Ê(3 + z)2

8
−
Ê

3 − (x + y)2

4

! . (4)
Let H and K denote the left and right side of (4), respe
tively. Then

H =
1

4

X
y
li
 (x − y)2

√
3 − xy +

È
3 − (x+y)2

4

≥ 1

4

X
y
li
 (x − y)2
√

3 +
√

3
=

1

8
√

3

X
y
li
(x − y)2 . (5)
On the other hand, using (2) and (3), we have

K =
X
y
li
 (3+z)2

8
− 3 + (x+y)2

4È
(3+z)2

8
+
È

3 − (x+y)2

4

=
3

8

X
y
li
 (z − 1)2È
(3+z)2

8
+
È

3 − (x+y)2

4

≤ 3

8

X
y
li
 (z − 1)2

2
È

3 − (x+y)2

4

≤ 3

8

X
y
li
 (z − 1)2

2
È

3 − 9
4

=

√
3

8

X
y
li
(z − 1)2 . (6)
Finally,X
y
li
(x − y)2 = 3

 X
y
li
 x2

!
−
 X
y
li
 x

!2

= 3

 X
y
li
 x2

!
− 9

= 3

 X
y
li
 x2

!
− 6

 X
y
li
 x

!
+ 9 = 3

 X
y
li
(z − 1)2

! . (7)
From (5), (6), and (7) we get H ≥ K, establishing (4), and hen
e (1).
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Part (b) was also solved by CHIP CURTIS, Missouri Southern State University, Joplin,MO, USA; OLIVER GEUPEL, Br �uhl, NRW, Germany; and the proposer. Two in
omplete solu-tions were submitted.The 
ase of equality was not requested, though Geupel 
laimed equality pre
isely when

a = b = c = 1/3, but the proposer noted that equality also o

urs when a = b = 1/2, c = 0.
3491. [2009 : 515, 518℄ Proposed by Dorin M�arghidanu, Colegiul Nat�ional\A.I. Cuza", Corabia, Romania.Let a1, a2, . . . , an+1 be positive real numbers where an+1 = a1. Provethat

nX
i=1

a4
i

(ai + ai+1)(a
2
i + a2

i+1)
≥ 1

4

nX
i=1

ai .Solution by George Apostolopoulos, Messolonghi, Gree
e.Let
A =

nX
i=1

a4
i

(ai + ai+1)(a
2
i + a2

i+1)
,

B =
nX

i=1

a4
i+1

(ai + ai+1)(a
2
i + a2

i+1)
.Then

A − B =
nX

i=1

a4
i − a4

i+1

(ai + ai+1)(a
2
i + a2

i+1)
=

nX
i=1

ai − ai+1 = 0 ,and hen
e A = B.We now show that for all positive real numbers a and b we have
a4 + b4 ≥ (a + b)2(a2 + b2)

4
.Indeed, using the inequality (x + y)2 ≤ 2(x2 + y2) twi
e we obtain

(a + b)2(a2 + b2) ≤ 2(a2 + b2)2 ≤ 4(a4 + b4) .Hen
e,
2A = A + B =

nX
i=1

a4
i + a4

i+1

(ai + ai+1)(a
2
i + a2

i+1)

≥ 1

4

nX
i=1

(ai + ai+1) =
1

2

nX
i=1

ai .Equality holds if and only if a1 = a2 = · · · = an.Also solved by ARKADY ALT, San Jose, CA, USA; CHIP CURTIS, Missouri Southern StateUniversity, Joplin, MO, USA; OLIVER GEUPEL, Br �uhl, NRW, Germany; WALTHER JANOUS,Ursulinengymnasium, Innsbru
k, Austria; PAOLO PERFETTI, Dipartimento di Matemati
a,Universit �a degli studi di Tor Vergata Roma, Rome, Italy; and the proposer.
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3492⋆. [2009 : 515, 518℄ Proposed by Ovidiu Furdui, Campia Turzii,Cluj, Romania.Let P be a point in the interior of tetrahedron ABCD su
h that ea
hof ∠PAB, ∠PBC, ∠PCD, and ∠PDA is equal to arccos

È
2
3
. Prove that

ABCD is a regular tetrahedron and that P is its 
entroid.The problem remains open. The only submission, from Peter Y. Woo,Biola University, La Mirada, CA, USA, gave a 
ounterexample where ABCDis a degenerate tetrahedron. In parti
ular, he provided an elegant proof thatif P is the 
entre of a parallelogram ABCD with sides AD = BC = 3
√

2and AB = CD =
√

6, and diagonals AC = 2
√

3 and AC = 6, then
∠PAB = ∠PBC = ∠PCD = ∠PDA = arccos

r
2

3
.This 
ertainly addresses the question that was asked, and it suggests thatthere are in�nitely many tetrahedra with an interior point P that satis�esthe given angle requirement, but it fails to provide an expli
it nondegenerateexample.

3494. [2009 : 516, 518℄ Proposed by Mi
hel Bataille, Rouen, Fran
e.Let n > 1 be an integer and for ea
h k = 1, 2, . . . , n let
σ(n, k) =

X
1≤i1<···<ik≤n

i1i2 · · · ik .
Prove that

nX
k=1

ln n

n + 1 − k
· σ(n, k) ∼ (n + 1)! ∼

nX
k=1

n + 1 − k

ln n
· σ(n, k) ,

where f(n) ∼ g(n) means that f(n)

g(n)
→ 1 as n → ∞.Solution by the proposer.Let

Pn(x) = (x + 1)(x + 2) · · · (x + n)

= xn + σ(n, 1)xn−1 + · · · + σ(n, n − 1)x + σ(n, n) .If Un denotes nP
k=1

σ(n, k)

n + 1 − k
, then

Un =

�Z 1

0
Pn(x) dx

�
− 1

n + 1
.
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Clearly, P ′

n(x)

Pn(x)
=

1

x + 1
+

1

x + 2
+ · · · +

1

x + n
, so that for all x ∈ [0, 1],

1

2
+

1

3
+ · · · +

1

n + 1
≤ P ′

n(x)

Pn(x)
≤ 1 +

1

2
+ · · · +

1

n
. (1)Multiplying by Pn(x) and integrating over [0, 1] leads to

(Hn+1 − 1)

�
Un +

1

n + 1

�
≤ Pn(1) − Pn(0) ≤ Hn

�
Un +

1

n + 1

� ,where Hn = 1 +
1

2
+ · · · +

1

n
denotes the nth harmoni
 number. Sin
e wealso have Pn(1) − Pn(0) = (n + 1)! − n! =

n

n + 1
· (n + 1)!, we obtain

n

n + 1
· (n + 1)!

Hn

− 1

n + 1
≤ Un ≤ n

n + 1
· (n + 1)!

Hn+1 − 1
− 1

n + 1for all positive integers n. Re
alling that Hn ∼ ln(n), the Squeeze Theoremfor limits yields lim
n→∞

Un ln(n)

(n + 1)!
= 1, that is,

nX
k=1

ln(n)

n + 1 − k
· σ(n, k) ∼ (n + 1)! .

Let Vn =
nP

k=1

(n+1− k)σ(n, k). From (1) and Pn(1) = (n+1)!, we dedu
ethat
(Hn+1 − 1)(n + 1)! ≤ P ′

n(1) ≤ Hn(n + 1)! .Also, for n > 1,
Vn =

nX
k=1

(n − k)σ(n, k) +
nX

k=1

σ(n, k)

= P ′
n(1) − n + (n + 1)! − 1

= P ′
n(1) + (n + 1)! − (n + 1) ,so that

Hn+1 − 1

ln(n)
+

1

ln(n)
− 1

n! ln(n)
≤ Vn

(n + 1)! ln(n)

≤ Hn

ln(n)
+

1

ln(n)
− 1

n! ln(n)
.

Again, the Squeeze Theorem yields (n + 1)! ∼
nP

k=1

n + 1 − k

ln(n)
· σ(n, k), andthe proof is 
omplete.Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Gree
e; and ALBERTSTADLER, Herrliberg, Switzerland.
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3495. [2009 : 516, 518℄ Proposed by Cosmin Pohoat� �a, Tudor Vianu Na-tional College, Bu
harest, Romania.Let a, b, c be positive real numbers with a + b + c = 2. Prove that

1

2
+
X
y
li
 a

b + c
≤

X
y
li

�
a2 + bc

�
b + c

≤ 1

2
+
X
y
li
 a2

b2 + c2
.

A 
ombination of solutions by George Apostolopoulos, Messolonghi, Gree
eand Paolo Perfetti, Dipartimento di Matemati
a, Universit �a degli studi diTor Vergata Roma, Rome, Italy, modi�ed by the editor.For ve
tors a = (a1, a2, . . . , an) and (b1, b2, . . . , bn) with real entries,the notation a ≺ b means that a1 + a2 + · · · + an = b1 + b2 + · · · + bn and
a1 + a2 + · · · + aj ≤ b1 + b2 + · · · + bj holds for ea
h j = 1, 2, . . . , n − 1.Sin
e a + b + c = 2, the inequality on the left is equivalent to�

1

2
+
X
y
li
 a

b + c

�
a + b + c

2
≤
X
y
li
 a2 + bc

b + cor Xsymmetri
(a4 + a2bc) ≥
Xsymmetri
(a4 + a2bc) .S
hur's Inequality yieldsXsymmetri
(a4 + a2bc) ≥ 2

Xsymmetri
(a3b) .
Now using Muirhead's inequality for (2, 2, 0) ≺ (3, 1, 0) we obtainXsymmetri
(a3b) ≥

Xsymmetri
(a2b2) ,
whi
h proves the inequality on the left.Now the inequality on the right is equivalent toX
y
li
 a2 + bc

b + c
≤

�
1

2
+
X
y
li
 a2

b2 + c2

�
a + b + c

2
,

orXsymmetri
(2a9b + 4a8bc + 7a7b2c + a7b3 + 2a4b4c2)

≥
Xsymmetri
(2a6b4 + a5b5 + 5a5b3c2 + a4b3c3 + 5a5b4c + 2a6b3c) .
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Using Muirhead's inequality repeatedly we obtain:

(6, 4, 0) ≺ (9, 1, 0) =⇒
Xsymmetri
 2a9b ≥

Xsymmetri
 2a6b4

(6, 2, 2) ≺ (7, 2, 1) =⇒
Xsymmetri
 2a7b2c ≥

Xsymmetri
 2a6b2c2

(6, 3, 1) ≺ (8, 1, 1) =⇒
Xsymmetri
 2a8bc ≥

Xsymmetri
 2a6b3c

(5, 4, 1) ≺ (8, 1, 1) =⇒
Xsymmetri
 2a8bc ≥

Xsymmetri
 2a5b4c

(5, 5, 0) ≺ (7, 3, 0) =⇒
Xsymmetri
 a7b3 ≥

Xsymmetri
 a5b5

(5, 3, 2) ≺ (7, 2, 1) =⇒
Xsymmetri
 a7b2c ≥

Xsymmetri
 a5b3c2

(4, 3, 3) ≺ (7, 2, 1) =⇒
Xsymmetri
 a7b2c ≥

Xsymmetri
 a4b3c3

(5, 4, 1) ≺ (7, 2, 1) =⇒
Xsymmetri
 a7b2c ≥

Xsymmetri
 a5b4c

Also, by the AM-GM Inequality, we haveXsymmetri
(2a6b2c2 + 2a4b4c2) ≥
Xsymmetri
 4a5b3c2 .

We add all these inequalities, and we are done.Also solved by �SEFKET ARSLANAGI �C, University of Sarajevo, Sarajevo, Bosnia andHerzegovina; OLIVER GEUPEL, Br �uhl, NRW, Germany; WALTHER JANOUS, Ursulinen-gymnasium, Innsbru
k, Austria; TITU ZVONARU, Com�ane�sti, Romania; and the proposer. Onein
omplete solution was submitted.Zvonaru observed that this problem appeared in the book Old And New Inequalities,Vol. 2, by Vo Quo
 Ba Can and Cosmin Pohoata, Gil Publishing House, 2008.
3496. [2009 : 516, 519℄ Proposed by Elias C. Buissant des Amorie, Cas-tri
um, the Netherlands.Prove the following equations:(a) tan 72◦ = tan 66◦ + tan 36◦ + tan 6◦.(b)⋆ tan 84◦ = tan 78◦ + tan 72◦ + tan 60◦;[Ed.: The proposer gave six more relations of the form f(θ)=

4P
i=1

tan kiθ=0for ki ∈ Z and θ = 2π/n with n|360, not in
luded here for la
k of spa
e.℄
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Composite of solutions by Kee-Wai Lau, Hong Kong, China and D.J. Smeenk,Zaltbommel, the Netherlands.With the help of appropriate trigonometri
 identities, both equations
an be redu
ed to properties of the golden se
tion τ =

1 +
√

5

2
, whi
h is thepositive root of the quadrati
 equation

τ2 = τ + 1 . (1)Be
ause τ is the ratio of a diagonal to a side of a regular pentagon, it satis�es
cos 36◦ =

τ

2
and cos 72◦ =

1

2τ
. (2)(a) The following equations are equivalent.

tan 72◦ = tan 66◦ + tan 36◦ + tan 6◦ ,
tan 72◦ − tan 36◦ = tan 66◦ + tan 6◦ ,

sin(72◦ − 36◦)

cos 72◦ cos 36◦
=

sin(66◦ + 6◦)

cos 66◦ cos 6◦
,

2 sin 36◦ cos 66◦ cos 6◦ = 2 sin 72◦ cos 72◦ cos 36◦ = sin 144◦ cos 36◦ ,
2 sin 36◦ cos 66◦ cos 6◦ = sin 36◦ cos 36◦ ,

2 cos 66◦ cos 6◦ = cos 36◦ ,
cos 72◦ + cos 60◦ = cos 36◦ ,

cos 72◦ − cos 36◦ +
1

2
= 0 ,and the last equality follows immediately from equations (1) and (2).(b) The following equations are equivalent.

tan 84◦ = tan 78◦ + tan 72◦ + tan 60◦ ,
tan 84◦ − tan 60◦ = tan 78◦ + tan 72◦ ,

sin(84◦ − 60◦)

cos 84◦ cos 60◦
=

sin(78◦ + 72◦)

cos 78◦ cos 72◦
=

1

2 cos 78◦ cos 72◦
,

cos 84◦ = 4 sin 24◦ cos 72◦ cos 78◦ ,
sin 6◦ = 2(sin 96◦ − sin 48◦) cos 78◦ ,
sin 6◦ = (sin 174◦ + sin 18◦) − (sin 126◦ − sin 30◦) ,
sin 6◦ = sin 6◦ + cos 72◦ − cos 36◦ +

1

2
,and the last equality follows immediately from the equations (1) and (2) justas in part (a).Both parts were also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Gree
e; ROYBARBARA, Lebanese University, Fanar, Lebanon; MICHEL BATAILLE, Rouen, Fran
e; DIONNE
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CAMPBELL, ELSIE CAMPBELL, and CHARLES R. DIMINNIE, Angelo State University, San An-gelo, TX, USA; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; OLIVERGEUPEL, Br �uhl, NRW, Germany; JOHN G. HEUVER, Grande Prairie, AB; JOE HOWARD,Portales, NM, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbru
k, Austria; ALBERTSTADLER, Herrliberg, Switzerland; EDMUND SWYLAN, Riga, Latvia; JAN VERSTER, KwantlenUniversity College, BC; and TITU ZVONARU, Com�ane�sti, Romania. STAN WAGON, Ma
alesterCollege, St. Paul, MN, USA gave a 
omputer veri�
ation.Part (a) was also solved by ARKADY ALT, San Jose, CA, USA; PANOS E. TSAOUSSOGLOU,Athens, Gree
e; PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.Wagon usedMathemati
a to 
on�rm that there are seven 4-tuples (a, b, c,d) of distin
tintegers between 0 and 90 (other than the pair featured in our problem) that satisfy the relation
tan a◦ = tan b◦ + tan c◦ + tan d◦ , namely

(60; 42,36,6), (72; 60,42,24), (78; 66,60,36), (78; 72,42,36)

(60; 50, 20,10), (70; 60,40,10), (80; 70,60,50).The �rst four are 
learly related to the golden se
tion as in our featured pair, while the �nalthree seem to be related to the regular enneagon (or nonagon, if you prefer) as dis
ussed in\Trigonometry and the Nonagon" by Andrew Jobbings (see www.arbelos.
o.uk/papers.html).It is amusing to note that the proposer thought that he had found one that fails to �t either ofthe two patterns, but it turns out that tan 62◦ di�ers from tan 48◦ + tan 24◦ + tan 18◦ byabout 10−5. Wagon further produ
ed a list of 49 su
h equations allowing repeated angles, anddetermined that there were no su
h 3-term equations and no su
h 5-term equations.
3497. [2009 : 516, 519℄ Proposed by Salem Maliki�
, student, SarajevoCollege, Sarajevo, Bosnia and Herzegovina.Let P be a point in the interior of triangle ABC, and let r be theinradius of ABC. Prove that max{AP , BP , CP} ≥ 2r.I. Solution by Roy Barbara, Lebanese University, Fanar, Lebanon.Re
all that the 
onvex hull of a triangle T is the union of its interior andboundary. If C is a 
ir
le with radius r in the 
onvex hull of a triangle T1 withinradius r1, then r ≤ r1. (Here is a proof of this simple fa
t: Consider thethree tangents toC that are parallel to the sides of T1 and separate the 
entreof C from the 
orresponding sides; they form a triangle that is similar to T1for whi
hC is the in
ir
le. Sin
e all points ofC are inside or on T1, the ratio ofthe sides of the new triangle to the sides of T1|whi
h is also the ratio of theinradii|
ould be at most 1; that is, r ≤ r1.) Let T = △ABC be an arbitrarytriangle with in
ir
le C and inradius r, and let P be a point in the 
onvexhull of T . Without loss of generality, we may assume that max{AP , BP ,
CP} = AP and show that AP ≥ 2r. Extend (if ne
essary) the segments
PB to PB1 and PC to PC1 su
h that PB1 = PC1 = PA. Then P isthe 
ir
um
entre of triangle T1 = △AB1C1, and PA its 
ir
umradius; let r1denote its inradius. Note that be
ause P is assumed to lie in the 
onvex hullof T , T must lie in the 
onvex hull of T1; 
onsequently the in
ir
le of T alsolies in that 
onvex hull, so that (from our simple fa
t)

r1 ≥ r .By Euler's inequality, AP ≥ 2r1, when
e AP ≥ 2r, as desired.
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II. Solution by Mi
hel Bataille, Rouen, Fran
e.Generalization: The following result holds for any point P in the planeof △ABC. Let R, O, a, b, and c be the 
ir
umradius, 
ir
um
entre, andsides of △ABC, and let M = max{AP , BP , CP}; then(a) if △ABC is a
ute, M ≥ R ≥ 2r, with M = 2r if and only if P = Oand the triangle is equilateral;(b) if △ABC is not a
ute, M ≥ max{a, b, c}

2
≥ 2r, with M = 2r if andonly if P is the midpoint of the longest side.Let A′, B′, and C′ be the midpoints of the sides opposite verti
es A,

B, and C, respe
tively. For part (a) we �x points D, E, and F on the per-pendi
ular bise
tors of the sides so that the rays [OD), [OE), and [OF ) areopposite the rays [OA′), [OB′), and [OC′), respe
tively. The whole plane isthe union of the nonoverlapping angles ∠EOF , ∠FOD, and ∠DOE. With-out loss of generality we 
an assume that P is in or on the sides of angle
∠EOF (bounded by the rays [OE) and [OF )) so that M = PA. Let E0 on
AB and F0 on AC be su
h that OE0||AC and OF0||AB. Note that be
ause
O is in the interior of △ABC, E0 and F0 belong to the rays [AB) and [AC),while OE0 ⊥ OE and OF0 ⊥ OF . Sin
e A is in the interior of ∠E0OF0, theangle ∠POA is obtuse, hen
e M = PA ≥ OA = R, with equality exa
tlywhen P = O. The inequality R ≥ 2r is Euler's inequality, with R = 2rexa
tly when △ABC is equilateral, so the proof of part (a) is 
omplete.For part (b) we �rst suppose that ∠BAC, say, is obtuse. Then O isexterior to △ABC with line BC separating O from A, and the plane is theunion of the three angles ∠EOF , ∠EOA′, and ∠FOA′. If P is in ∠EOFthen M = PA ≥ R >

a

2
(mu
h as in part (a)). Otherwise, without loss ofgenerality, we 
an suppose that P is in ∠EOA′, in whi
h 
ase M = PC ≥

A′C =
a

2
. To 
he
k that the minimum value of M , namely a

2
, o

urs when

P = A′, note that A and A′ are on the same side of the perpendi
ularbise
tor of the segment AC, so that A′A < A′C; that is, if P = A′, then
M = A′C = A′B =

a

2
. If ∠BAC = 90◦, this argument 
an easily beadapted to show that M ≥ a

2
= R. To 
omplete the proof we show that inthe present 
ase we have a

2
≥ 2r. Let h = AH be the altitude from A, andlet A0 be the point on the ray [HA) su
h that ∠BA0C = 90◦. We want toshow that ah ≥ 4rh; that is, that a+b+c ≥ 4h (sin
e ah

2
=

r(a + b + c)

2
=area(△ABC)). But

h ≤ HA0 =
√

HB · HC ≤ HB + HC

2
=

a

2
,when
e a ≥ 2h; moreover, b, c ≥ h, so that a + b + c ≥ 4h, as desired.Also solved by ARKADY ALT, San Jose, CA, USA; GEORGE APOSTOLOPOULOS,Messolonghi, Gree
e (2 solutions); �SEFKET ARSLANAGI �C, University of Sarajevo, Sarajevo,



565
Bosnia and Herzegovina; JOE HOWARD, Portales, NM, USA; WALTHER JANOUS, Ursulinen-gymnasium, Innsbru
k, Austria; V �ACLAV KONE �CN �Y, Big Rapids, MI, USA; KEE-WAI LAU,Hong Kong, China; VICTOR PAMBUCCIAN, Arizona State University West, Phoenix, AZ, USA;ALBERT STADLER, Herrliberg, Switzerland; EDMUND SWYLAN, Riga, Latvia; GEORGETSINTSIFAS, Thessaloniki, Gree
e; PETER Y. WOO, Biola University, La Mirada, CA, USA; andthe proposer. There were two in
omplete submissions.Tsintsifas extended the result to n-dimensional Eu
lidean spa
e: For a point P in theinterior of the simplex A1A2 . . . An+1, max{A1P , A2P , . . . , An+1P} ≥ nr.Janous pointed out that the inequality follows from the more general assertion that
AP + BP + CP ≥ 6r, whi
h is item 12.14 of O. Bottema et al., Geometri
 Inequalities,Wolters-Noordho� Publ., Groningen, 1969.
3498. [2009 : 517, 519℄ Proposed by Jos �e Luis D��az-Barrero, UniversitatPolit �e
ni
a de Catalunya, Bar
elona, Spain.Let Fn be the nth Fibona

i number, that is, F0 = 0, F1 = 1, and
Fn = Fn−1 + Fn−2 for n ≥ 2. For ea
h positive integer n, prove thatÊ

Fn+3

Fn

+

Ê
Fn + Fn+2

Fn+1

> 1 + 2

�Ê
Fn

Fn+3

+

Ê
Fn+1

Fn + Fn+2

� .
Solution by Chip Curtis, Missouri Southern State University, Joplin, MO,USA. Let x =

É
Fn+3

Fn
and y =

É
Fn + Fn+2

Fn+1

. The 
laimed inequality issu

essively equivalent to
x + y > 1 + 2

�
1

x
+

1

y

� ,�
1 − 2

xy

�
(x + y) > 1 .It thus suÆ
es to show that the following two inequalities hold:

1 − 2

xy
≥ 1

3
, (1)

x + y > 3 . (2)Set λ =
Fn+1

Fn
. Then

xy =

Ê
Fn+3

Fn

· Fn+2 + Fn

Fn+1

=

s
(2Fn+1 + Fn) (Fn+1 + 2Fn)

FnFn+1

=

Ê
(2λ + 1)

�
1 +

2

λ

� .
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Hen
e, (1) is equivalent to ea
h ofÊ

(2λ + 1)

�
1 +

2

λ

�
≥ 3 ,

2 (λ − 1)2

λ
≥ 0 ,and the latter is 
learly true.By the AM{GM Inequality,

x + y > 2 · 4

s
Fn+3 (Fn + Fn+2)

FnFn+1

= 2 · 4

Ê
(2λ + 1)

�
1 +

2

λ

� .For (2), it thus suÆ
es to show that
(2λ + 1)

�
1 +

2

λ

�
>

81

16
,whi
h is equivalent to

32λ2 − λ + 32

16λ
> 0 ,whi
h is 
learly true.Also solved by ARKADY ALT, San Jose, CA, USA; GEORGE APOSTOLOPOULOS,Messolonghi, Gree
e; MICHEL BATAILLE, Rouen, Fran
e; BRIAN D. BEASLEY, PresbyterianCollege, Clinton, SC, USA; CHARLES R. DIMINNIE, Angelo State University, San Angelo,TX, USA; OLIVER GEUPEL, Br �uhl, NRW, Germany; WALTHER JANOUS, Ursulinengymnasium,Innsbru
k, Austria; ALBERT STADLER, Herrliberg, Switzerland; and the proposer. Two in
om-plete solutions were submitted.

3499⋆. [2009 : 517, 519℄ Proposed by Bernardo Re
am�an, InstitutoAlberto Merani, Bogot �a, Colombia.A building has n 
oors numbered 1 to n and a number of elevators allof whi
h stop at both 
oors 1 and n, and possibly other 
oors. For ea
h n,�nd the least number of elevators needed in this building if between any two
oors there is at least one elevator that 
onne
ts them non-stop.For example, if n = 6, nine elevators suÆ
e: (1, 6), (1, 5, 6), (1, 4, 6),
(1, 3, 4, 6), (1, 2, 4, 5, 6), (1, 2, 5, 6), (1, 2, 6), (1, 3, 5, 6), and (1, 2, 3, 6).Solution by George Apostolopoulos, Messolonghi, Gree
e.The answer is �n2

4

�.
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To see that at least this many elevators are needed, 
onsider the set

P =
n
(x, y) ∈ Z

2 : 1 ≤ x, y ≤ n, x ≤ n

2
, y >

n

2

o .Any elevator 
an 
onne
t at most one pair of 
oors in the set P , and the
ardinality of P is �n2

4

�, so at least this many elevators are needed.To show that �n2

4

� elevators suÆ
e, we give a 
onstru
tion in two 
ases.Case 1: n = 2k. Here k2 elevators are needed. Let integers i and j berestri
ted so that 1 ≤ i ≤ k and k + 1 ≤ j ≤ 2k, and des
ribe ea
h elevatorby the tuple of 
oors it stops at. The elevators are then8<: (1, i, j, 2k) , if i + j = 2k + 1 ,
(1, 2k + 1 − j, i, j, 2k) , if i + j > 2k + 1 ,
(1, i, j, 2k + 1 − j, 2k) , if i + j < 2k + 1 .Case 2: n = 2k + 1. Here k2 + k elevators are needed. Let integers i and jbe restri
ted so that 1 ≤ i ≤ k and k + 1 ≤ j ≤ 2k + 1, and des
ribe ea
helevator by the tuple of 
oors it stops at. The elevators are then8<: (1, i, j, 2k + 1) , if i + j = 2k + 2 ,

(1, 2k + 2 − j, i, j, 2k + 1) , if i + j > 2k + 2 ,
(1, i, j, 2k + 2 − j, 2k + 1) , if i + j < 2k + 2 .This 
ompletes the proof.Also solved by OLIVER GEUPEL, Br �uhl, NRW, Germany; D.P. MEHENDALE (Dept. ofEle
troni
s) and M.R. MODAK, (formerly of Dept. Mathemati
s), S. P. College, Pune, India;MISSOURI STATE UNIVERSITY PROBLEM SOLVING GROUP, Spring�eld, MO, USA; MORTENH. NIELSEN, University of Winnipeg, Winnipeg, MB; and PETER Y. WOO, Biola University, LaMirada, CA, USA. Two in
omplete solutions were submitted.


