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SOLUTIONS

Aucun probléme n’est immuable. L’éditeur est toujours heureux d’en-
visager la publication de nouvelles solutions ou de nouvelles perspectives
portant sur des problémes antérieurs.

We have received a late batch of correct solutions to problems 3478,
3479, 3480, 3481, 3482, 3483, and 3486 from Walther Janous, Ursulinengym-
nasium, Innsbruck, Austria.

—_— O er—— —
3488. [2009 : 515, 517] Proposed by Pham Huu Duc, Ballajura, Australia.
Let a, b, and ¢ be positive real numbers. Prove that
a b c al4+b14c?
et |
2a2? + be 2b2 + ca 2c?2 + ab at+b+ec

Solution by Paolo Perfetti, Dipartimento di Matematica, Universita degli
studi di Tor Vergata Roma, Rome, Italy.

Lett = (t1,t2,...,t,) and s = (s1,82,...,8,) be arbitrary n-tuples
of nonnegative real numbers. We will write ¢ > s if

D t1>--2>t,and sy > -+ > sp,

k k
(i) > t; > > s;forallk =1, 2,..., n, with equality when k = n.
=1 i1=1
Let R4+ denote the set of positive real numbers, let P be the set of all
permutations of {1, 2, ..., n}, and define [t] : R} — R by

[t](x) = Z mf;(l)m?(z) .. scf’;zn) forall x = (z1,22,...,2n) .
occP
Muirhead’s inequality states that if ¢ > s, then [t] > [s]. Here, as
usual, [t] > [s] means that [t](z) > [s](z) for all z € R?. Now, by squaring
and simplifying, the given inequality is equivalent to A > B, where

A = 12[8,5,1] + 23[7, 4, 3] + 16[6, 6, 2] + 12[8, 4, 2] + 4[7, 6, 1]
+4[9,3,2] + 8[7,7,0],
B = 12[7,5,2] + 22[6,5,3] + 26[6,4,4] + 2[8,3,3] + 2[5,5,4] .

But this last inequality holds by these applications of Muirhead’s inequality:

[87 5, 1] > [7’ 5, 2] ,

[7,4,3] > [6,5,3] and [7,4,3] > [6,4,4],
[8,4,2] > [8,3,3] and [8,4,2] > [6,4,4],
[6,6,2] > [6,4,4] and [6,6,2] > [5,5,4],



554

[7,6,1] > [5,5,4],
[9,3,2] > [5,5,4],
[7,7,0] > [5,5,4].

Also solved by OLIVER GEUPEL, Briihl, NRW, Germany; WALTHER JANOUS, Ursulinen-
gymnasium, Innsbruck, Austria; ALBERT STADLER, Herrliberg, Switzerland; and the proposer.
One incomplete solution was submitted.

Y WSS L W

3489. [2009 : 515, 517] Proposed by José Luis Diaz-Barrero, Universitat
Politécnica de Catalunya, Barcelona, Spain.

Let n be a nonnegative integer. Prove that

EVA(E) < (= (),

A composite of similar solutions by George Apostolopoulos, Messolonghi,
Greece; and Albert Stadler, Herrliberg, Switzerland.

2n

n

1
2n—1

By using the elementary facts that (2,:) = (237_11@) foro < k < 2n and
k(%M = 2n(% ! for 1 < k < 2n, and also the Cauchy-Schwarz Inequality,
we have that

) -

IA

N | =

N | =

N = N

from which the claimed inequality follows immediately.
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Also solved by ARKADY ALT, San Jose, CA, USA; DIONNE CAMPBELL, ELSIE CAMP-
BELL, and CHARLES R. DIMINNIE, Angelo State University, San Angelo, TX, USA; MICHEL
BATAILLE, Rouen, France; CHIP CURTIS, Missouri Southern State University, Joplin, MO,
USA; OLIVER GEUPEL, Briihl, NRW, Germany; WALTHER JANOUS, Ursulinengymnasium,
Innsbruck, Austria; PAOLO PERFETTI, Dipartimento di Matematica, Universita degli studi di
Tor Vergata Roma, Rome, Italy; and the proposer.

B W D W

3490. [2009 : 515, 518] Proposed by Michael Rozenberg, Tel-Aviv, Israel.

Let a, b, and ¢ be nonnegative real numbers such thata + b + ¢ = 1.
Prove that

(@) v9 — 32ab + /9 — 32ac + v/9 — 32bc > T;
(b) /1 =3ab+ /1 — 3ac + +/1 — 3bc > /6.

Solution to part (a) by Oliver Geupel, Briihl, NRW, Germany; solution to
part (b) by George Apostolopoulos, Messolonghi, Greece, modified by the
editor.

(a) For nonnegative integers £, m, and n, let [¢,m,n] = ). a‘b™c".
symm.
The following inequality is a consequence of Muirhead's Theorem,

27H (9((1 + b4+ c)2 - 32ab) - (11(a + b+ c)2 + 16(ab + bc + ca))3

cyclic
= 9176 [6,0, 0] + 34320 [5,1, 0] — 36336 [4, 2,0] + 50184 [4,1,1]
— 543523, 3,0] + 100320 [3,2,1] — 103312 [2, 2, 2]
>0.

We put a + b + ¢ = 1 in the above, and we observe that by the AM-GM
1/3
Inequality 3" /(9 — 32ab)(9 — 32bc) > 3( I (9 — 32ab)) . 1t follows

cyclic cyclic

that 3> /(9 — 32ab)(9 — 32bc) > 11 + 16(ab + be + ca), and we deduce

cyclic

2

> V9—32ab | > 49,

cyclic
from which the inequality in (a) follows.

(b) Let x = 3a, y = 3b, and z = 3c. Then z, y, and z are nonnegative
real numbers such that x + y + z = 3, and we are to show that

Z\/3—:cy > 3v2. 1

cyclic
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Note first that 3 \/%: % > (B+2)= %(94—3):3\/5.

cyclic cyclic
Also,
3+2)? <3_ (az+y)2> _ Bt . B-2)7
8 4 8 4
1 2 2 3 2
= 3 (9462422 —244+18 — 12z + 22%) = sF-D7 Q@
Hence,

B+2? _ ,_ (@+y)?

8 = 4 ' 3

and (1) is equivalent to

(e o - )

cyclic
>Z<\/(3+z)2 \/3_@>. (4)

cyclic

Let H and K denote the left and right side of (4), respectively. Then

_ 1 Z (x —y)?
4 cyclic m + /3 — %
(x —y)? Z
Z (z (5)
cychc \/_ 3+ \/_ 8\/_ cyclic
On the other hand, using (2) and (3), we have
(3+z) -3 + ($+y) 3 (Z _ 1)2
e \/(3+z)2 + \/3 (mtly)2 8 L \/(3+z)2 + \/3 (ac+y)2

(z—1)2 3

(z —1)2 2
= = —— = =) (z=1)%. (6)
8 YZ /3 (m+y) cy%c 2./3 — % cy%c

Finally,
Z(w—y)2:3<2w2>—<2w> =3<Zw2>—9
cyclic cyclic cyclic cyclic
:3(2932) —6<Zm> +9 = 3<Z(z—1)2> . @
cyclic cyclic cyclic

From (5), (6), and (7) we get H > K, establishing (4), and hence (1).
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Part (b) was also solved by CHIP CURTIS, Missouri Southern State University, Joplin,
MO, USA; OLIVER GEUPEL, Briihl, NRW, Germany; and the proposer. Two incomplete solu-
tions were submitted.

The case of equality was not requested, though Geupel claimed equality precisely when
a = b = c = 1/3, but the proposer noted that equality also occurs whena = b=1/2, c = 0.

NN ——

3491. [2009 : 515, 518] Proposed by Dorin Marghidanu, Colegiul National
“A.l. Cuza”, Corabia, Romania.

Letaq, az, ..., any1 be positive real numbers where a,,+1 = a1. Prove
that " . "
a; 1
Z - a; .
; (a; + ait1)(af + a’z?—i—l) 4 ;
Solution by George Apostolopoulos, Messolonghi, Greece.
Let
n 4
a’
A = ¢ ,
i; (ai + aiy1)(af + af )
n CL‘-I
B = i+1 .
i:zl (ai + aiy1)(af + af )
Then

n
A— B = : i+l = a'—a-_,_l:O,
2:1 (a; + ait1)(af +a?, ;) ; v

and hence A = B.
We now show that for all positive real numbers a and b we have

(a +b)%(a® +b?)
2 )
Indeed, using the inequality (z + y)? < 2(x? + y?) twice we obtain

(a +b)%(a® +b?) < 2(a®+b%)? < 4(a* +b%).

a* + bt >

Hence,
= ai +aj,
i=1 (ai + aiy1)(af + azg+1)

13 1&
Z(ai+ai+1) = Ezai-
=1 =1

Equality holds if and only if a; = az = --- = a,,.

Also solved by ARKADY ALT, San Jose, CA, USA; CHIP CURTIS, Missouri Southern State
University, Joplin, MO, USA; OLIVER GEUPEL, Briihl, NRW, Germany; WALTHER JANOUS,
Ursulinengymnasium, Innsbruck, Austria; PAOLO PERFETTI, Dipartimento di Matematica,
Universita degli studi di Tor Vergata Roma, Rome, Italy; and the proposer.

>

N
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3492*. [2009 : 515, 518] Proposed by Ovidiu Furdui, Campia Turzii,
Cluj, Romania.

Let P be a point in the interior of tetrahedron ABC D such that each
of /PAB, /PBC, Z/PCD, and ZPDA is equal to arccos \/g Prove that
ABCD is a regular tetrahedron and that P is its centroid.

The problem remains open. The only submission, from Peter Y. Woo,
Biola University, La Mirada, CA, USA, gave a counterexample where ABC D
is a degenerate tetrahedron. In particular, he provided an elegant proof that
if P is the centre of a parallelogram ABCD with sides AD = BC = 32
and AB = CD = /6, and diagonals AC = 2v/3 and AC = 6, then

2
/PAB = /PBC = /PCD = /PDA = arccos \/;

This certainly addresses the question that was asked, and it suggests that
there are infinitely many tetrahedra with an interior point P that satisfies
the given angle requirement, but it fails to provide an explicit nondegenerate
example.

3494 [2009 : 516, 518] Proposed by Michel Bataille, Rouen, France.

Let n > 1 be an integer and foreach k =1, 2, ..., nlet
o(n, k) = > AR T
1<i < <ip<n
Prove that
ki Inn " n4+1—k
Zﬁ-o‘(n,kz) ~ (n+1)! ~ Zli-a(n,k),
1l k=1 nmn
f(n)
where f(n) ~ g(n) means that o) lasn — oo.
Solution by the proposer.
Let
Po(z) = (z+1)(x+2)---(v+n)
= 2"4+o(n,)z" ' +..-+o(n,n—1x+o(n,n).
i a(n, k)
If U,, denotes g::l 1% then

U, = <A1Pn(w)dw> _nil.
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Po(z) _ 1 Loy 1
Pn(:c)_:c—|—1+:c—|—2+ —|—w+n,sothatf0rallme[0,1],

! B 1] 1)
n+1 = P,(x) — 2 n’

Clearly,

1 1
gty

Multiplying by P, (x) and integrating over [0, 1] leads to

1 1
H, . .-V U, +—| < P,(1)-P,(0) < H, U, ,
( +1 )< +n+1)_ () ()_ ( +n—|—1)

where H,, = 1 + % + oo+ % denotes the nt" harmonic number. Since we
also have P, (1) — P,(0) = (n + 1)! —n! = —~ . (n + 1)!, we obtain

n—+1
n .(n—i-l)!_ 1 < U, < n (n+ 1)! o1
n+1 H,, n+1 — “ n4+1 H,y—1 n+1
for all positive integers . Recalling that H,, ~ In(n), the Squeeze Theorem
o . Unln(n) _ .
for limits yields nler;o e 1, that is,
" 1
Z Ln) co(n,k) ~ (n+1)!.
—ntl-— k

LetV,, = i (n+1—k)o(n,k). From (1) and P, (1) = (n+1)!, we deduce
k=1
that
(Hp41 —1D(n+1)! < P/(1) < Hy(n+1)!.

Also, forn > 1,
Vo = Y (n—k)o(n,k)+ > o(n,k)
k=1 k=1

= Pr'l(l)—n—l—(n—l—l)!—l
= P+ n+1)!—-(n+1),
so that
Hppl—1 11 - v,
In(n) In(n) n!ln(n) — (n+1)!In(n)
H, 1 1
~ In(n) In(n) B n!ln(n)

Again, the Squeeze Theorem yields (n + 1)! ~ %1”;’9 -o(n, k), and
k=1
the proof is complete.

Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greece; and ALBERT
STADLER, Herrliberg, Switzerland.
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3495. [2009 : 516, 518] Proposed by Cosmin Pohoats, Tudor Vianu Na-
tional College, Bucharest, Romania.

Let a, b, ¢ be positive real numbers with a + b + ¢ = 2. Prove that

1 a
§+Zb—|—c = Z

cyclic cyclic

(a2+b6) 1 a2
b+c S§+Zb2—|—02'

cyclic

A combination of solutions by George Apostolopoulos, Messolonghi, Greece
and Paolo Perfetti, Dipartimento di Matematica, Universita degli studi di
Tor Vergata Roma, Rome, Italy, modified by the editor.

For vectors a = (a1,az2,...,a,) and (b1, ba, ..., b,) with real entries,
the notation a < b means thata; +as +---+a, = by +bz+---+b,, and
ai+az+---+a; <by+by+---+bjholdsforeachj=1,2,..., n—1.

Since a + b + ¢ = 2, the inequality on the left is equivalent to

2
1+Z a a+b+csza + be
2 b+ec 2 b+ec

cyclic cyclic

or

Z (a* + a®bc) > Z (a* + a®bc) .

symmetric symmetric

Schur’s Inequality yields

Z (a* 4+ a®bc) > 2 Z (a®b) .

symmetric symmetric

Now using Muirhead'’s inequality for (2, 2,0) < (3, 1,0) we obtain

Y. @) > Y (a®?),

symmetric symmetric

which proves the inequality on the left.
Now the inequality on the right is equivalent to

a? + be 1 a? a+b+c
Z T e =
Z b+ec — 2+Zb2+62 2 !

cyclic cyclic

or

Z (2a9b + 4a8bc + 7a"b%c + a"b® + 2a4b4c2)

symmetric

> Z (2a6b4 + a®b® + 5a°b3c? + a*b3c® + 5a’bic + 2a6b3c) .

symmetric
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Using Muirhead’s inequality repeatedly we obtain:

(6,4,0) < (9,1,0) = >  2a°b> > 2a°p*

symmetric symmetric
(6,2,2) < (7,2,1) = Y  2a"b%c> Y 24>
symmetric symmetric
(6,3,1) < (8,1,1) = > 2abc> )  2a%’c
symmetric symmetric
(5,4,1) < (8,1,1) = Y 2a®bc> >  2a°bc
symmetric symmetric
(5,5,0) < (7,3,0) = Y  ad®> Y a®®
symmetric symmetric
(5,3,2) < (7,2,1) = >  a"b’c> Y abc?
symmetric symmetric
4,3,3) <(7,2,1) = Z a"b’*c > Z a*b*c?
symmetric symmetric
(5,4,1) < (7,2,1) = Z a’b?c > Z a’bc
symmetric symmetric

Also, by the AM-GM Inequality, we have

Z (2a®b*c? + 2a*b*c?) > Z 4a°b3c? .

symmetric symmetric

We add all these inequalities, and we are done.

Also solved by SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo, Bosnia and
Herzegovina; OLIVER GEUPEL, Briihl, NRW, Germany; WALTHER JANOUS, Ursulinen-
gymnasium, Innsbruck, Austria; TITU ZVONARU, Comanesti, Romania; and the proposer. One
incomplete solution was submitted.

Zvonaru observed that this problem appeared in the book Old And New Inequalities,
Vol. 2, by Vo Quoc Ba Can and Cosmin Pohoata, Gil Publishing House, 2008.

—— | NS

3496. [2009 : 516, 519] Proposed by Elias C. Buissant des Amorie, Cas-
tricum, the Netherlands.

Prove the following equations:
(a) tan 72° = tan 66° 4+ tan 36° + tan 6°.
(b) X tan 84° = tan 78° + tan 72° + tan 60°;

4
[Ed.: The proposer gave six more relations of the form f(6)= ) tank;0=0
=1
for k; € Z and 6 = 2w /n with n|360, not included here for lack of space.]
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Composite of solutions by Kee-Wai Lau, Hong Kong, China and D.]. Smeenk,
Zaltbommel, the Netherlands.

With the help of appropriate trigonometric identities, both equations

can be reduced to properties of the golden section 7 = #3, which is the
positive root of the quadratic equation
2 =741. 1)

Because 7 is the ratio of a diagonal to a side of a regular pentagon, it satisfies

1
cos 36° = % and cos72° = or (2)
T

(a) The following equations are equivalent.

tan72° = tan66° 4+ tan36° 4+ tan6°,
tan 72° — tan 36° = tan66° 4+ tan6°,
sin(72° — 36°) sin(66° 4+ 6°)
cos72°c0s36°  cos66° cos6° '
25sin 36° cos 66° cos 6° = 2sin72° cos 72° cos 36° = sin 144° cos 36°,

2 sin 36° cos 66° cos 6° sin 36° cos 36° ,

2c0s66° cos6° = cos36°,
cos72° 4+ cos60° = cos36°,
cos72°—cos36°—|—% = 0,

and the last equality follows immediately from equations (1) and (2).

(b) The following equations are equivalent.

tan 84° = tan78° 4 tan 72° 4 tan 60°,
tan84° — tan60° = tan78° 4 tan72°,
sin(84° — 60°)  sin(78° 4 72°) 1
cos84° cos60° cosT8°cosT2°  2cosT8° cosT72°’
cos84° = 45sin24°cos72° cos78°,
sin6° = 2(sin96° — sin 48°) cos 78°,
sin6° = (sin174° 4 sin18°) — (sin 126° — sin 30°),
sin6° = sin6° 4 cos72° — cos 36° + % ,

and the last equality follows immediately from the equations (1) and (2) just
as in part (a).

Both parts were also solved by GEORGE APOSTOLOPOULOQOS, Messolonghi, Greece; ROY
BARBARA, Lebanese University, Fanar, Lebanon; MICHEL BATAILLE, Rouen, France; DIONNE
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CAMPBELL, ELSIE CAMPBELL, and CHARLES R. DIMINNIE, Angelo State University, San An-
gelo, TX, USA; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; OLIVER
GEUPEL, Briihl, NRW, Germany; JOHN G. HEUVER, Grande Prairie, AB; JOE HOWARD,
Portales, NM, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruck, Austria; ALBERT
STADLER, Herrliberg, Switzerland; EDMUND SWYLAN, Riga, Latvia; JAN VERSTER, Kwantlen
University College, BC; and TITU ZVONARU, Comanesti, Romania. STAN WAGON, Macalester
College, St. Paul, MN, USA gave a computer verification.

Part (a) was also solved by ARKADY ALT, San Jose, CA, USA; PANOS E. TSAOUSSOGLOU,
Athens, Greece; PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.

Wagon used Mathematica to confirm that there are seven 4-tuples (a, b, ¢, d) of distinct
integers between 0 and 90 (other than the pair featured in our problem) that satisfy the relation
tan a® = tan b® 4 tan c® + tan d°, namely

(60;42,36,6), (72;60,42,24), (78;66,60,36), (78;72,42,36)
(60; 50,20,10), (70;60,40,10), (80;70,60,50).
The first four are clearly related to the golden section as in our featured pair, while the final
three seem to be related to the regular enneagon (or nonagon, if you prefer) as discussed in
“Trigonometry and the Nonagon” by Andrew Jobbings (see www.arbelos.co.uk/papers. html).
It is amusing to note that the proposer thought that he had found one that fails to fit either of
the two patterns, but it turns out that tan 62° differs from tan 48° + tan 24° + tan 18° by

about 10~ 5. Wagon further produced a list of 49 such equations allowing repeated angles, and
determined that there were no such 3-term equations and no such 5-term equations.

—— | NS

3497 . [2009 : 516, 519] Proposed by Salem Maliki¢, student, Sarajevo
College, Sarajevo, Bosnia and Herzegovina.

Let P be a point in the interior of triangle ABC, and let » be the
inradius of ABC'. Prove that max{AP, BP, CP} > 2r.

I. Solution by Roy Barbara, Lebanese University, Fanar, Lebanon.

Recall that the convex hull of a triangle T is the union of its interior and
boundary. If C is a circle with radius r in the convex hull of a triangle Ty with
inradius rq, then » < r;. (Here is a proof of this simple fact: Consider the
three tangents to C that are parallel to the sides of T} and separate the centre
of C from the corresponding sides; they form a triangle that is similar to T}
for which C is the incircle. Since all points of C are inside or on T}, the ratio of
the sides of the new triangle to the sides of T;—which is also the ratio of the
inradii—could be at most 1; thatis, » < r;.) Let T = AABC be an arbitrary
triangle with incircle C' and inradius », and let P be a point in the convex
hull of T. Without loss of generality, we may assume that max{ AP, BP,
CP} = AP and show that AP > 2r. Extend (if necessary) the segments
PB to PB; and PC to PC, such that PB; = PC, = PA. Then P is
the circumcentre of triangle Ty = AAB;C;, and PA its circumradius; let 7,
denote its inradius. Note that because P is assumed to lie in the convex hull
of T', T must lie in the convex hull of Ty; consequently the incircle of T also
lies in that convex hull, so that (from our simple fact)

LT,

By Euler’s inequality, AP > 2r;, whence AP > 2r, as desired.



564

I1. Solution by Michel Bataille, Rouen, France.

Generalization: The following result holds for any point P in the plane
of AABC. Let R, O, a, b, and ¢ be the circumradius, circumcentre, and
sides of AABC, and let M = max{AP, BP, CP}, then

(a) if AABC is acute, M > R > 2r, with M = 2r if and only if P = O
and the triangle is equilateral,

(b) if AABC is not acute, M > % > 2r, with M = 2r if and
only if P is the midpoint of the longest side.

Let A’, B’, and C’ be the midpoints of the sides opposite vertices A,
B, and C, respectively. For part (a) we fix points D, E, and F on the per-
pendicular bisectors of the sides so that the rays [OD), [OE), and [OF) are
opposite the rays [OA’), [OB’), and [OC"), respectively. The whole plane is
the union of the nonoverlapping angles ZEOF, /ZFOD, and ZDOE. With-
out loss of generality we can assume that P is in or on the sides of angle
ZEOF (bounded by the rays [OF) and [OF)) so that M = PA. Let E; on
AB and F, on AC be such that OF||AC and OF,||AB. Note that because
O is in the interior of AABC, E, and Fy belong to the rays [AB) and [AC),
while OE, L. OF and OF, L OF'. Since A is in the interior of ZEyOF,, the
angle ZPOA is obtuse, hence M = PA > OA = R, with equality exactly
when P = O. The inequality R > 2r is Euler’s inequality, with R = 2r
exactly when AABC is equilateral, so the proof of part (a) is complete.

For part (b) we first suppose that /BAC, say, is obtuse. Then O is
exterior to AABC with line BC separating O from A, and the plane is the
union of the three angles /ZEOF, /ZEOA’, and /ZFOA’. 1If P is in ZEOF
then M = PA > R > % (much as in part (a)). Otherwise, without loss of

generality, we can suppose that P is in ZEOA’, in which case M = PC >
A'C = g. To check that the minimum value of M, namely 2, occurs when

P = A’, note that A and A’ are on the same side of the perpendicular
bisector of the segment AC, so that A’A < A’C; that is, if P = A’, then
M = A'C = A'B = g. If /Z/BAC = 90°, this argument can easily be

adapted to show that M > % = R. To complete the proof we show that in

the present case we have g > 2r. Let h = AH be the altitude from A, and
let Ap be the point on the ray [H A) such that ZBAoC = 90°. We want to
show that ah > 4rh; thatis, that a+ b+ c > 4h (since a2—h = W =

area(AABC)). But

HB+ HC a

h< HAo=VHB-HC < =3

’

whence a > 2h; moreover, b, ¢ > h, so that a + b + ¢ > 4h, as desired.

Also solved by ARKADY ALT, San Jose, CA, USA; GEORGE APOSTOLOPOULOS,
Messolonghi, Greece (2 solutions); SEFKET ARSLANAGIC, University of Sarajevo, Sarajevo,
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Bosnia and Herzegovina;, JOE HOWARD, Portales, NM, USA; WALTHER JANOUS, Ursulinen-
gymnasium, Innsbruck, Austria; VACLAV KONECNY, Big Rapids, MI, USA; KEE-WAI LAU,
Hong Kong, China; VICTOR PAMBUCCIAN, Arizona State University West, Phoenix, AZ, USA;
ALBERT STADLER, Herrliberg, Switzerland;, EDMUND SWYLAN, Riga, Latvia, GEORGE
TSINTSIFAS, Thessaloniki, Greece; PETER Y. WOO, Biola University, La Mirada, CA, USA; and
the proposer. There were two incomplete submissions.

Tsintsifas extended the result to n-dimensional Euclidean space: For a point P in the
interior of the simplex A1 Az ... Ap 1, max{A1 P, A2P, ..., A1 P} > nr.

Janous pointed out that the inequality follows from the more general assertion that
AP + BP + CP > 6r, which is item 12.14 of O. Bottema et al., Geometric Inequalities,
Wolters-Noordhoff Publ., Groningen, 1969.

—— | NS

3498. [2009 : 517, 519] Proposed by José Luis Diaz-Barrero, Universitat
Politécnica de Catalunya, Barcelona, Spain.

Let F,, be the nt" Fibonacci number, that is, F;, = 0, F; = 1, and
F, =F,_, + F,,_, forn > 2. For each positive integer n, prove that

n+3 Fn+Fn+2 > 1+2<\/ Fn + \/ Fn—|—1 ) )
V Fn+1 Fn+3 Fn + Fn+2

Solution by Chip Curtis, Missouri Southern State University, Joplin, MO,
USA.

Let x = 1/M and y = /I FF+2  The laimed inequality is
Fn Fn+1

successively equivalent to

1 1
Tty > 1+2(—+—),
(Y Yy

(1—5) (x+y) > 1.

It thus suffices to show that the following two inequalities hold:

2 1
1—-— Z P (1)
Ty 3
r+y > 3. (2)
Set A = ;7:1 Then
\/Fn+3 Fn—|—2 + Fn
Ty = .
n+1
. (2Fnt1 + Fp) (Frg1 +2F,)
F, Fn+1

- \/(2A+1) (1+§).
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Hence, (1) is equivalent to each of

\/(2,\+1) (1+§>

2(A—1)2
A

v
w

v
<)

and the latter is clearly true.
By the AM—-GM Inequality,

Fnois(F,+ F,
ety > 2.4 nts(Fnt Frio)
FnFn—|—1

= 2-(‘/(2A+1)(1+§).

For (2), it thus suffices to show that

(2A+1) <1+ 2) > i
A 16’
which is equivalent to
3222 — A+ 32
_—_— > 0’
16\

which is clearly true.

Also solved by ARKADY ALT, San Jose, CA, USA; GEORGE APOSTOLOPOULOS,
Messolonghi, Greece; MICHEL BATAILLE, Rouen, France; BRIAN D. BEASLEY, Presbyterian
College, Clinton, SC, USA; CHARLES R. DIMINNIE, Angelo State University, San Angelo,
TX, USA; OLIVER GEUPEL, Briihl, NRW, Germany; WALTHER JANOUS, Ursulinengymnasium,
Innsbruck, Austria; ALBERT STADLER, Herrliberg, Switzerland; and the proposer. Two incom-
plete solutions were submitted.

—— | NS

3499% . [2009 : 517, 519] Proposed by Bernardo Recaman, Instituto
Alberto Merani, Bogota, Colombia.

A building has n floors numbered 1 to n and a number of elevators all
of which stop at both floors 1 and =, and possibly other floors. For each n,
find the least number of elevators needed in this building if between any two
floors there is at least one elevator that connects them non-stop.

For example, if n = 6, nine elevators suffice: (1,6), (1,5,6), (1,4,6),
(17 3,4, 6)r (19 2,4,5, 6)r (1? 2,5, 6)7 (17 2, 6)7 (17 3,5, 6): and (19 2,3, 6)'

Solution by George Apostolopoulos, Messolonghi, Greece.

2
The answer is L%J .
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To see that at least this many elevators are needed, consider the set
P = {(w,y)€Z2:1§w,y§n,x§%, y>%}

Any elevator can connect at most one pair of floors in the set P, and the

2
cardinality of P is {%J , so at least this many elevators are needed.

2
To show that L%J elevators suffice, we give a construction in two cases.

Case 1: n = 2k. Here k2 elevators are needed. Let integers ¢ and j be
restricted sothat 1 <7 < kand k + 1 < j < 2k, and describe each elevator
by the tuple of floors it stops at. The elevators are then

( 1,i,7,2k), ifi+j=2k+1,
1,2k +1—73,4,5,2k), ifi+7>2k+1,
(1,4,5,2k +1 —j4,2k), ifi+j<2k+1.

Case 2: n = 2k + 1. Here k2 + k elevators are needed. Let integers ¢ and j
be restricted sothat 1 < i< kand k£ + 1 < j < 2k + 1, and describe each
elevator by the tuple of floors it stops at. The elevators are then

( (1,i,4,2k +1), ifi+j=2k+2,
(1,2k+2—j,i,j,2k+1), 1f’L—|—]>2k—|—2,
(1,%,5,2k+2— 3,2k +1), ifi+j5<2k+2.

This completes the proof.

Also solved by OLIVER GEUPEL, Briihl, NRW, Germany; D.P. MEHENDALE (Dept. of
Electronics) and M.R. MODAK, (formerly of Dept. Mathematics), S. P. College, Pune, India;
MISSOURI STATE UNIVERSITY PROBLEM SOLVING GROUP, Springfield, MO, USA; MORTEN
H. NIELSEN, University of Winnipeg, Winnipeg, MB; and PETER Y. WOO, Biola University, La
Mirada, CA, USA. Two incomplete solutions were submitted.
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