
553
SOLUTIONSAuun probl �eme n'est immuable. L' �editeur est toujours heureux d'en-visager la publiation de nouvelles solutions ou de nouvelles perspetivesportant sur des probl �emes ant �erieurs.We have reeived a late bath of orret solutions to problems 3478,3479, 3480, 3481, 3482, 3483, and 3486 from Walther Janous, Ursulinengym-nasium, Innsbruk, Austria.

3488. [2009 : 515, 517℄ Proposed by Pham Huu Du, Ballajura, Australia.Let a, b, and c be positive real numbers. Prove that
a

2a2 + bc
+

b

2b2 + ca
+

c

2c2 + ab
≤
Ê

a−1 + b−1 + c−1

a + b + c
.Solution by Paolo Perfetti, Dipartimento di Matematia, Universit �a deglistudi di Tor Vergata Roma, Rome, Italy.Let t = (t1, t2, . . . , tn) and s = (s1, s2, . . . , sn) be arbitrary n-tuplesof nonnegative real numbers. We will write t ≻ s if(i) t1 ≥ · · · ≥ tn and s1 ≥ · · · ≥ sn,(ii) kP

i=1

ti ≥
kP

i=1

si for all k = 1, 2, . . . , n, with equality when k = n.Let R+ denote the set of positive real numbers, let P be the set of allpermutations of {1, 2, . . . , n}, and de�ne [t] : Rn
+ → R by

[t](x) =
X
σ∈P

xt1
σ(1)x

t2
σ(2) · · · xtn

σ(n) for all x = (x1, x2, . . . , xn) .Muirhead's inequality states that if t ≻ s, then [t] ≥ [s]. Here, asusual, [t] ≥ [s] means that [t](x) ≥ [s](x) for all x ∈ R
n
+. Now, by squaringand simplifying, the given inequality is equivalent to A ≥ B, where

A = 12[8, 5, 1] + 23[7, 4, 3] + 16[6, 6, 2] + 12[8, 4, 2] + 4[7, 6, 1]

+ 4[9, 3, 2] + 8[7, 7, 0] ,
B = 12[7, 5, 2] + 22[6, 5, 3] + 26[6, 4, 4] +

5

2
[8, 3, 3] +

33

2
[5, 5, 4] .But this last inequality holds by these appliations of Muirhead's inequality:

[8, 5, 1] ≥ [7, 5, 2] ,
[7, 4, 3] ≥ [6, 5, 3] and [7, 4, 3] ≥ [6, 4, 4] ,
[8, 4, 2] ≥ [8, 3, 3] and [8, 4, 2] ≥ [6, 4, 4] ,
[6, 6, 2] ≥ [6, 4, 4] and [6, 6, 2] ≥ [5, 5, 4] ,
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[7, 6, 1] ≥ [5, 5, 4] ,
[9, 3, 2] ≥ [5, 5, 4] ,
[7, 7, 0] ≥ [5, 5, 4] .Also solved by OLIVER GEUPEL, Br �uhl, NRW, Germany; WALTHER JANOUS, Ursulinen-gymnasium, Innsbruk, Austria; ALBERT STADLER, Herrliberg, Switzerland; and the proposer.One inomplete solution was submitted.

3489. [2009 : 515, 517℄ Proposed by Jos �e Luis D��az-Barrero, UniversitatPolit �enia de Catalunya, Barelona, Spain.Let n be a nonnegative integer. Prove that
1

2n−1

nX
k=0

√
k

�
2n

k

�
≤
Ê

n

�
22n +

�
2n

n

�� .
A omposite of similar solutions by George Apostolopoulos, Messolonghi,Greee; and Albert Stadler, Herrliberg, Switzerland.By using the elementary fats that �2n

k

�
=
� 2n
2n−k

� for 0 ≤ k ≤ 2n and
k
�2n

k

�
= 2n

�2n−1
k−1

� for 1 ≤ k ≤ 2n, and also the Cauhy{Shwarz Inequality,we have that"
nX

k=0

√
k

�
2n

k

�#2

=

"
nX

k=0

Ê�
2n

k

�√
k

Ê�
2n

k

�#2

≤
"

nX
k=0

�
2n

k

�# " nX
k=0

k

�
2n

k

�#
=

1

2

"�
2n

n

�
+

2nX
k=0

�
2n

k

�# "
2n

nX
k=1

�
2n − 1

k − 1

�#
=

1

2

��
2n

n

�
+ 22n

� "
2n

n−1X
k=0

�
2n − 1

k

�#
=

1

2

��
2n

n

�
+ 22n

� "
2n · 1

2

2n−1X
k=0

�
2n − 1

k

�#
=

1

2

�
22n +

�
2n

n

��
(n · 22n−1)

= n

�
22n +

�
2n

n

��
· 22n−2 ,from whih the laimed inequality follows immediately.
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Also solved by ARKADY ALT, San Jose, CA, USA; DIONNE CAMPBELL, ELSIE CAMP-BELL, and CHARLES R. DIMINNIE, Angelo State University, San Angelo, TX, USA; MICHELBATAILLE, Rouen, Frane; CHIP CURTIS, Missouri Southern State University, Joplin, MO,USA; OLIVER GEUPEL, Br �uhl, NRW, Germany; WALTHER JANOUS, Ursulinengymnasium,Innsbruk, Austria; PAOLO PERFETTI, Dipartimento di Matematia, Universit �a degli studi diTor Vergata Roma, Rome, Italy; and the proposer.

3490. [2009 : 515, 518℄ Proposed by Mihael Rozenberg, Tel-Aviv, Israel.Let a, b, and c be nonnegative real numbers suh that a + b + c = 1.Prove that(a) √
9 − 32ab +

√
9 − 32ac +

√
9 − 32bc ≥ 7;(b) √

1 − 3ab +
√

1 − 3ac +
√

1 − 3bc ≥
√

6.Solution to part (a) by Oliver Geupel, Br �uhl, NRW, Germany; solution topart (b) by George Apostolopoulos, Messolonghi, Greee, modi�ed by theeditor.(a) For nonnegative integers ℓ, m, and n, let [ℓ, m, n] =
Psymm. aℓbmcn.The following inequality is a onsequene of Muirhead's Theorem,

27
Yyli�9(a + b + c)2 − 32ab

�
−
�
11(a + b + c)2 + 16(ab + bc + ca)

�3
= 9176 [6, 0, 0] + 34320 [5, 1, 0] − 36336 [4, 2, 0] + 50184 [4, 1, 1]

− 54352 [3, 3, 0] + 100320 [3, 2, 1] − 103312 [2, 2, 2]

≥ 0 .We put a + b + c = 1 in the above, and we observe that by the AM-GMInequality PyliÈ(9 − 32ab)(9 − 32bc) ≥ 3
� Qyli(9 − 32ab)

�1/3. It followsthat PyliÈ(9 − 32ab)(9 − 32bc) ≥ 11 + 16(ab + bc + ca), and we dedue�Xylip9 − 32ab

�2

≥ 49 ,
from whih the inequality in (a) follows.(b) Let x = 3a, y = 3b, and z = 3c. Then x, y, and z are nonnegativereal numbers suh that x + y + z = 3, and we are to show thatXylip3 − xy ≥ 3

√
2 . (1)
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Note �rst that PyliÉ(3 + z)2

8
=

1√
8

Pyli(3 + z) =
1√
8
(9 + 3) = 3

√
2.Also,

(3 + z)2

8
−
�
3 − (x + y)2

4

�
=

(3 + z)2

8
− 3 +

(3 − z)2

4

=
1

8

�
9 + 6z + z2 − 24 + 18 − 12z + 2z2

�
=

3

8
(z − 1)2 . (2)Hene,

(3 + z)2

8
≥ 3 − (x + y)2

4
, (3)and (1) is equivalent toXyli p3 − xy −

Ê
3 − (x + y)2

4

!
≥
Xyli Ê(3 + z)2

8
−
Ê

3 − (x + y)2

4

! . (4)
Let H and K denote the left and right side of (4), respetively. Then

H =
1

4

Xyli (x − y)2

√
3 − xy +

È
3 − (x+y)2

4

≥ 1

4

Xyli (x − y)2
√

3 +
√

3
=

1

8
√

3

Xyli(x − y)2 . (5)
On the other hand, using (2) and (3), we have

K =
Xyli (3+z)2

8
− 3 + (x+y)2

4È
(3+z)2

8
+
È

3 − (x+y)2

4

=
3

8

Xyli (z − 1)2È
(3+z)2

8
+
È

3 − (x+y)2

4

≤ 3

8

Xyli (z − 1)2

2
È

3 − (x+y)2

4

≤ 3

8

Xyli (z − 1)2

2
È

3 − 9
4

=

√
3

8

Xyli(z − 1)2 . (6)
Finally,Xyli(x − y)2 = 3

 Xyli x2

!
−
 Xyli x

!2

= 3

 Xyli x2

!
− 9

= 3

 Xyli x2

!
− 6

 Xyli x

!
+ 9 = 3

 Xyli(z − 1)2

! . (7)
From (5), (6), and (7) we get H ≥ K, establishing (4), and hene (1).
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Part (b) was also solved by CHIP CURTIS, Missouri Southern State University, Joplin,MO, USA; OLIVER GEUPEL, Br �uhl, NRW, Germany; and the proposer. Two inomplete solu-tions were submitted.The ase of equality was not requested, though Geupel laimed equality preisely when

a = b = c = 1/3, but the proposer noted that equality also ours when a = b = 1/2, c = 0.
3491. [2009 : 515, 518℄ Proposed by Dorin M�arghidanu, Colegiul Nat�ional\A.I. Cuza", Corabia, Romania.Let a1, a2, . . . , an+1 be positive real numbers where an+1 = a1. Provethat

nX
i=1

a4
i

(ai + ai+1)(a
2
i + a2

i+1)
≥ 1

4

nX
i=1

ai .Solution by George Apostolopoulos, Messolonghi, Greee.Let
A =

nX
i=1

a4
i

(ai + ai+1)(a
2
i + a2

i+1)
,

B =
nX

i=1

a4
i+1

(ai + ai+1)(a
2
i + a2

i+1)
.Then

A − B =
nX

i=1

a4
i − a4

i+1

(ai + ai+1)(a
2
i + a2

i+1)
=

nX
i=1

ai − ai+1 = 0 ,and hene A = B.We now show that for all positive real numbers a and b we have
a4 + b4 ≥ (a + b)2(a2 + b2)

4
.Indeed, using the inequality (x + y)2 ≤ 2(x2 + y2) twie we obtain

(a + b)2(a2 + b2) ≤ 2(a2 + b2)2 ≤ 4(a4 + b4) .Hene,
2A = A + B =

nX
i=1

a4
i + a4

i+1

(ai + ai+1)(a
2
i + a2

i+1)

≥ 1

4

nX
i=1

(ai + ai+1) =
1

2

nX
i=1

ai .Equality holds if and only if a1 = a2 = · · · = an.Also solved by ARKADY ALT, San Jose, CA, USA; CHIP CURTIS, Missouri Southern StateUniversity, Joplin, MO, USA; OLIVER GEUPEL, Br �uhl, NRW, Germany; WALTHER JANOUS,Ursulinengymnasium, Innsbruk, Austria; PAOLO PERFETTI, Dipartimento di Matematia,Universit �a degli studi di Tor Vergata Roma, Rome, Italy; and the proposer.
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3492⋆. [2009 : 515, 518℄ Proposed by Ovidiu Furdui, Campia Turzii,Cluj, Romania.Let P be a point in the interior of tetrahedron ABCD suh that eahof ∠PAB, ∠PBC, ∠PCD, and ∠PDA is equal to arccos

È
2
3
. Prove that

ABCD is a regular tetrahedron and that P is its entroid.The problem remains open. The only submission, from Peter Y. Woo,Biola University, La Mirada, CA, USA, gave a ounterexample where ABCDis a degenerate tetrahedron. In partiular, he provided an elegant proof thatif P is the entre of a parallelogram ABCD with sides AD = BC = 3
√

2and AB = CD =
√

6, and diagonals AC = 2
√

3 and AC = 6, then
∠PAB = ∠PBC = ∠PCD = ∠PDA = arccos

r
2

3
.This ertainly addresses the question that was asked, and it suggests thatthere are in�nitely many tetrahedra with an interior point P that satis�esthe given angle requirement, but it fails to provide an expliit nondegenerateexample.

3494. [2009 : 516, 518℄ Proposed by Mihel Bataille, Rouen, Frane.Let n > 1 be an integer and for eah k = 1, 2, . . . , n let
σ(n, k) =

X
1≤i1<···<ik≤n

i1i2 · · · ik .
Prove that

nX
k=1

ln n

n + 1 − k
· σ(n, k) ∼ (n + 1)! ∼

nX
k=1

n + 1 − k

ln n
· σ(n, k) ,

where f(n) ∼ g(n) means that f(n)

g(n)
→ 1 as n → ∞.Solution by the proposer.Let

Pn(x) = (x + 1)(x + 2) · · · (x + n)

= xn + σ(n, 1)xn−1 + · · · + σ(n, n − 1)x + σ(n, n) .If Un denotes nP
k=1

σ(n, k)

n + 1 − k
, then

Un =

�Z 1

0
Pn(x) dx

�
− 1

n + 1
.
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Clearly, P ′

n(x)

Pn(x)
=

1

x + 1
+

1

x + 2
+ · · · +

1

x + n
, so that for all x ∈ [0, 1],

1

2
+

1

3
+ · · · +

1

n + 1
≤ P ′

n(x)

Pn(x)
≤ 1 +

1

2
+ · · · +

1

n
. (1)Multiplying by Pn(x) and integrating over [0, 1] leads to

(Hn+1 − 1)

�
Un +

1

n + 1

�
≤ Pn(1) − Pn(0) ≤ Hn

�
Un +

1

n + 1

� ,where Hn = 1 +
1

2
+ · · · +

1

n
denotes the nth harmoni number. Sine wealso have Pn(1) − Pn(0) = (n + 1)! − n! =

n

n + 1
· (n + 1)!, we obtain

n

n + 1
· (n + 1)!

Hn

− 1

n + 1
≤ Un ≤ n

n + 1
· (n + 1)!

Hn+1 − 1
− 1

n + 1for all positive integers n. Realling that Hn ∼ ln(n), the Squeeze Theoremfor limits yields lim
n→∞

Un ln(n)

(n + 1)!
= 1, that is,

nX
k=1

ln(n)

n + 1 − k
· σ(n, k) ∼ (n + 1)! .

Let Vn =
nP

k=1

(n+1− k)σ(n, k). From (1) and Pn(1) = (n+1)!, we deduethat
(Hn+1 − 1)(n + 1)! ≤ P ′

n(1) ≤ Hn(n + 1)! .Also, for n > 1,
Vn =

nX
k=1

(n − k)σ(n, k) +
nX

k=1

σ(n, k)

= P ′
n(1) − n + (n + 1)! − 1

= P ′
n(1) + (n + 1)! − (n + 1) ,so that

Hn+1 − 1

ln(n)
+

1

ln(n)
− 1

n! ln(n)
≤ Vn

(n + 1)! ln(n)

≤ Hn

ln(n)
+

1

ln(n)
− 1

n! ln(n)
.

Again, the Squeeze Theorem yields (n + 1)! ∼
nP

k=1

n + 1 − k

ln(n)
· σ(n, k), andthe proof is omplete.Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greee; and ALBERTSTADLER, Herrliberg, Switzerland.
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3495. [2009 : 516, 518℄ Proposed by Cosmin Pohoat� �a, Tudor Vianu Na-tional College, Buharest, Romania.Let a, b, c be positive real numbers with a + b + c = 2. Prove that

1

2
+
Xyli a

b + c
≤

Xyli
�
a2 + bc

�
b + c

≤ 1

2
+
Xyli a2

b2 + c2
.

A ombination of solutions by George Apostolopoulos, Messolonghi, Greeeand Paolo Perfetti, Dipartimento di Matematia, Universit �a degli studi diTor Vergata Roma, Rome, Italy, modi�ed by the editor.For vetors a = (a1, a2, . . . , an) and (b1, b2, . . . , bn) with real entries,the notation a ≺ b means that a1 + a2 + · · · + an = b1 + b2 + · · · + bn and
a1 + a2 + · · · + aj ≤ b1 + b2 + · · · + bj holds for eah j = 1, 2, . . . , n − 1.Sine a + b + c = 2, the inequality on the left is equivalent to�

1

2
+
Xyli a

b + c

�
a + b + c

2
≤
Xyli a2 + bc

b + cor Xsymmetri(a4 + a2bc) ≥
Xsymmetri(a4 + a2bc) .Shur's Inequality yieldsXsymmetri(a4 + a2bc) ≥ 2

Xsymmetri(a3b) .
Now using Muirhead's inequality for (2, 2, 0) ≺ (3, 1, 0) we obtainXsymmetri(a3b) ≥

Xsymmetri(a2b2) ,
whih proves the inequality on the left.Now the inequality on the right is equivalent toXyli a2 + bc

b + c
≤

�
1

2
+
Xyli a2

b2 + c2

�
a + b + c

2
,

orXsymmetri(2a9b + 4a8bc + 7a7b2c + a7b3 + 2a4b4c2)

≥
Xsymmetri(2a6b4 + a5b5 + 5a5b3c2 + a4b3c3 + 5a5b4c + 2a6b3c) .
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Using Muirhead's inequality repeatedly we obtain:

(6, 4, 0) ≺ (9, 1, 0) =⇒
Xsymmetri 2a9b ≥

Xsymmetri 2a6b4

(6, 2, 2) ≺ (7, 2, 1) =⇒
Xsymmetri 2a7b2c ≥

Xsymmetri 2a6b2c2

(6, 3, 1) ≺ (8, 1, 1) =⇒
Xsymmetri 2a8bc ≥

Xsymmetri 2a6b3c

(5, 4, 1) ≺ (8, 1, 1) =⇒
Xsymmetri 2a8bc ≥

Xsymmetri 2a5b4c

(5, 5, 0) ≺ (7, 3, 0) =⇒
Xsymmetri a7b3 ≥

Xsymmetri a5b5

(5, 3, 2) ≺ (7, 2, 1) =⇒
Xsymmetri a7b2c ≥

Xsymmetri a5b3c2

(4, 3, 3) ≺ (7, 2, 1) =⇒
Xsymmetri a7b2c ≥

Xsymmetri a4b3c3

(5, 4, 1) ≺ (7, 2, 1) =⇒
Xsymmetri a7b2c ≥

Xsymmetri a5b4c

Also, by the AM-GM Inequality, we haveXsymmetri(2a6b2c2 + 2a4b4c2) ≥
Xsymmetri 4a5b3c2 .

We add all these inequalities, and we are done.Also solved by �SEFKET ARSLANAGI �C, University of Sarajevo, Sarajevo, Bosnia andHerzegovina; OLIVER GEUPEL, Br �uhl, NRW, Germany; WALTHER JANOUS, Ursulinen-gymnasium, Innsbruk, Austria; TITU ZVONARU, Com�ane�sti, Romania; and the proposer. Oneinomplete solution was submitted.Zvonaru observed that this problem appeared in the book Old And New Inequalities,Vol. 2, by Vo Quo Ba Can and Cosmin Pohoata, Gil Publishing House, 2008.
3496. [2009 : 516, 519℄ Proposed by Elias C. Buissant des Amorie, Cas-trium, the Netherlands.Prove the following equations:(a) tan 72◦ = tan 66◦ + tan 36◦ + tan 6◦.(b)⋆ tan 84◦ = tan 78◦ + tan 72◦ + tan 60◦;[Ed.: The proposer gave six more relations of the form f(θ)=

4P
i=1

tan kiθ=0for ki ∈ Z and θ = 2π/n with n|360, not inluded here for lak of spae.℄
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Composite of solutions by Kee-Wai Lau, Hong Kong, China and D.J. Smeenk,Zaltbommel, the Netherlands.With the help of appropriate trigonometri identities, both equationsan be redued to properties of the golden setion τ =

1 +
√

5

2
, whih is thepositive root of the quadrati equation

τ2 = τ + 1 . (1)Beause τ is the ratio of a diagonal to a side of a regular pentagon, it satis�es
cos 36◦ =

τ

2
and cos 72◦ =

1

2τ
. (2)(a) The following equations are equivalent.

tan 72◦ = tan 66◦ + tan 36◦ + tan 6◦ ,
tan 72◦ − tan 36◦ = tan 66◦ + tan 6◦ ,

sin(72◦ − 36◦)

cos 72◦ cos 36◦
=

sin(66◦ + 6◦)

cos 66◦ cos 6◦
,

2 sin 36◦ cos 66◦ cos 6◦ = 2 sin 72◦ cos 72◦ cos 36◦ = sin 144◦ cos 36◦ ,
2 sin 36◦ cos 66◦ cos 6◦ = sin 36◦ cos 36◦ ,

2 cos 66◦ cos 6◦ = cos 36◦ ,
cos 72◦ + cos 60◦ = cos 36◦ ,

cos 72◦ − cos 36◦ +
1

2
= 0 ,and the last equality follows immediately from equations (1) and (2).(b) The following equations are equivalent.

tan 84◦ = tan 78◦ + tan 72◦ + tan 60◦ ,
tan 84◦ − tan 60◦ = tan 78◦ + tan 72◦ ,

sin(84◦ − 60◦)

cos 84◦ cos 60◦
=

sin(78◦ + 72◦)

cos 78◦ cos 72◦
=

1

2 cos 78◦ cos 72◦
,

cos 84◦ = 4 sin 24◦ cos 72◦ cos 78◦ ,
sin 6◦ = 2(sin 96◦ − sin 48◦) cos 78◦ ,
sin 6◦ = (sin 174◦ + sin 18◦) − (sin 126◦ − sin 30◦) ,
sin 6◦ = sin 6◦ + cos 72◦ − cos 36◦ +

1

2
,and the last equality follows immediately from the equations (1) and (2) justas in part (a).Both parts were also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greee; ROYBARBARA, Lebanese University, Fanar, Lebanon; MICHEL BATAILLE, Rouen, Frane; DIONNE
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CAMPBELL, ELSIE CAMPBELL, and CHARLES R. DIMINNIE, Angelo State University, San An-gelo, TX, USA; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; OLIVERGEUPEL, Br �uhl, NRW, Germany; JOHN G. HEUVER, Grande Prairie, AB; JOE HOWARD,Portales, NM, USA; WALTHER JANOUS, Ursulinengymnasium, Innsbruk, Austria; ALBERTSTADLER, Herrliberg, Switzerland; EDMUND SWYLAN, Riga, Latvia; JAN VERSTER, KwantlenUniversity College, BC; and TITU ZVONARU, Com�ane�sti, Romania. STAN WAGON, MaalesterCollege, St. Paul, MN, USA gave a omputer veri�ation.Part (a) was also solved by ARKADY ALT, San Jose, CA, USA; PANOS E. TSAOUSSOGLOU,Athens, Greee; PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.Wagon usedMathematia to on�rm that there are seven 4-tuples (a, b, c,d) of distintintegers between 0 and 90 (other than the pair featured in our problem) that satisfy the relation
tan a◦ = tan b◦ + tan c◦ + tan d◦ , namely

(60; 42,36,6), (72; 60,42,24), (78; 66,60,36), (78; 72,42,36)

(60; 50, 20,10), (70; 60,40,10), (80; 70,60,50).The �rst four are learly related to the golden setion as in our featured pair, while the �nalthree seem to be related to the regular enneagon (or nonagon, if you prefer) as disussed in\Trigonometry and the Nonagon" by Andrew Jobbings (see www.arbelos.o.uk/papers.html).It is amusing to note that the proposer thought that he had found one that fails to �t either ofthe two patterns, but it turns out that tan 62◦ di�ers from tan 48◦ + tan 24◦ + tan 18◦ byabout 10−5. Wagon further produed a list of 49 suh equations allowing repeated angles, anddetermined that there were no suh 3-term equations and no suh 5-term equations.
3497. [2009 : 516, 519℄ Proposed by Salem Maliki�, student, SarajevoCollege, Sarajevo, Bosnia and Herzegovina.Let P be a point in the interior of triangle ABC, and let r be theinradius of ABC. Prove that max{AP , BP , CP} ≥ 2r.I. Solution by Roy Barbara, Lebanese University, Fanar, Lebanon.Reall that the onvex hull of a triangle T is the union of its interior andboundary. If C is a irle with radius r in the onvex hull of a triangle T1 withinradius r1, then r ≤ r1. (Here is a proof of this simple fat: Consider thethree tangents toC that are parallel to the sides of T1 and separate the entreof C from the orresponding sides; they form a triangle that is similar to T1for whihC is the inirle. Sine all points ofC are inside or on T1, the ratio ofthe sides of the new triangle to the sides of T1|whih is also the ratio of theinradii|ould be at most 1; that is, r ≤ r1.) Let T = △ABC be an arbitrarytriangle with inirle C and inradius r, and let P be a point in the onvexhull of T . Without loss of generality, we may assume that max{AP , BP ,
CP} = AP and show that AP ≥ 2r. Extend (if neessary) the segments
PB to PB1 and PC to PC1 suh that PB1 = PC1 = PA. Then P isthe irumentre of triangle T1 = △AB1C1, and PA its irumradius; let r1denote its inradius. Note that beause P is assumed to lie in the onvex hullof T , T must lie in the onvex hull of T1; onsequently the inirle of T alsolies in that onvex hull, so that (from our simple fat)

r1 ≥ r .By Euler's inequality, AP ≥ 2r1, whene AP ≥ 2r, as desired.
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II. Solution by Mihel Bataille, Rouen, Frane.Generalization: The following result holds for any point P in the planeof △ABC. Let R, O, a, b, and c be the irumradius, irumentre, andsides of △ABC, and let M = max{AP , BP , CP}; then(a) if △ABC is aute, M ≥ R ≥ 2r, with M = 2r if and only if P = Oand the triangle is equilateral;(b) if △ABC is not aute, M ≥ max{a, b, c}

2
≥ 2r, with M = 2r if andonly if P is the midpoint of the longest side.Let A′, B′, and C′ be the midpoints of the sides opposite verties A,

B, and C, respetively. For part (a) we �x points D, E, and F on the per-pendiular bisetors of the sides so that the rays [OD), [OE), and [OF ) areopposite the rays [OA′), [OB′), and [OC′), respetively. The whole plane isthe union of the nonoverlapping angles ∠EOF , ∠FOD, and ∠DOE. With-out loss of generality we an assume that P is in or on the sides of angle
∠EOF (bounded by the rays [OE) and [OF )) so that M = PA. Let E0 on
AB and F0 on AC be suh that OE0||AC and OF0||AB. Note that beause
O is in the interior of △ABC, E0 and F0 belong to the rays [AB) and [AC),while OE0 ⊥ OE and OF0 ⊥ OF . Sine A is in the interior of ∠E0OF0, theangle ∠POA is obtuse, hene M = PA ≥ OA = R, with equality exatlywhen P = O. The inequality R ≥ 2r is Euler's inequality, with R = 2rexatly when △ABC is equilateral, so the proof of part (a) is omplete.For part (b) we �rst suppose that ∠BAC, say, is obtuse. Then O isexterior to △ABC with line BC separating O from A, and the plane is theunion of the three angles ∠EOF , ∠EOA′, and ∠FOA′. If P is in ∠EOFthen M = PA ≥ R >

a

2
(muh as in part (a)). Otherwise, without loss ofgenerality, we an suppose that P is in ∠EOA′, in whih ase M = PC ≥

A′C =
a

2
. To hek that the minimum value of M , namely a

2
, ours when

P = A′, note that A and A′ are on the same side of the perpendiularbisetor of the segment AC, so that A′A < A′C; that is, if P = A′, then
M = A′C = A′B =

a

2
. If ∠BAC = 90◦, this argument an easily beadapted to show that M ≥ a

2
= R. To omplete the proof we show that inthe present ase we have a

2
≥ 2r. Let h = AH be the altitude from A, andlet A0 be the point on the ray [HA) suh that ∠BA0C = 90◦. We want toshow that ah ≥ 4rh; that is, that a+b+c ≥ 4h (sine ah

2
=

r(a + b + c)

2
=area(△ABC)). But

h ≤ HA0 =
√

HB · HC ≤ HB + HC

2
=

a

2
,whene a ≥ 2h; moreover, b, c ≥ h, so that a + b + c ≥ 4h, as desired.Also solved by ARKADY ALT, San Jose, CA, USA; GEORGE APOSTOLOPOULOS,Messolonghi, Greee (2 solutions); �SEFKET ARSLANAGI �C, University of Sarajevo, Sarajevo,
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Bosnia and Herzegovina; JOE HOWARD, Portales, NM, USA; WALTHER JANOUS, Ursulinen-gymnasium, Innsbruk, Austria; V �ACLAV KONE �CN �Y, Big Rapids, MI, USA; KEE-WAI LAU,Hong Kong, China; VICTOR PAMBUCCIAN, Arizona State University West, Phoenix, AZ, USA;ALBERT STADLER, Herrliberg, Switzerland; EDMUND SWYLAN, Riga, Latvia; GEORGETSINTSIFAS, Thessaloniki, Greee; PETER Y. WOO, Biola University, La Mirada, CA, USA; andthe proposer. There were two inomplete submissions.Tsintsifas extended the result to n-dimensional Eulidean spae: For a point P in theinterior of the simplex A1A2 . . . An+1, max{A1P , A2P , . . . , An+1P} ≥ nr.Janous pointed out that the inequality follows from the more general assertion that
AP + BP + CP ≥ 6r, whih is item 12.14 of O. Bottema et al., Geometri Inequalities,Wolters-Noordho� Publ., Groningen, 1969.
3498. [2009 : 517, 519℄ Proposed by Jos �e Luis D��az-Barrero, UniversitatPolit �enia de Catalunya, Barelona, Spain.Let Fn be the nth Fibonai number, that is, F0 = 0, F1 = 1, and
Fn = Fn−1 + Fn−2 for n ≥ 2. For eah positive integer n, prove thatÊ

Fn+3

Fn

+

Ê
Fn + Fn+2

Fn+1

> 1 + 2

�Ê
Fn

Fn+3

+

Ê
Fn+1

Fn + Fn+2

� .
Solution by Chip Curtis, Missouri Southern State University, Joplin, MO,USA. Let x =

É
Fn+3

Fn
and y =

É
Fn + Fn+2

Fn+1

. The laimed inequality issuessively equivalent to
x + y > 1 + 2

�
1

x
+

1

y

� ,�
1 − 2

xy

�
(x + y) > 1 .It thus suÆes to show that the following two inequalities hold:

1 − 2

xy
≥ 1

3
, (1)

x + y > 3 . (2)Set λ =
Fn+1

Fn
. Then

xy =

Ê
Fn+3

Fn

· Fn+2 + Fn

Fn+1

=

s
(2Fn+1 + Fn) (Fn+1 + 2Fn)

FnFn+1

=

Ê
(2λ + 1)

�
1 +

2

λ

� .
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Hene, (1) is equivalent to eah ofÊ

(2λ + 1)

�
1 +

2

λ

�
≥ 3 ,

2 (λ − 1)2

λ
≥ 0 ,and the latter is learly true.By the AM{GM Inequality,

x + y > 2 · 4

s
Fn+3 (Fn + Fn+2)

FnFn+1

= 2 · 4

Ê
(2λ + 1)

�
1 +

2

λ

� .For (2), it thus suÆes to show that
(2λ + 1)

�
1 +

2

λ

�
>

81

16
,whih is equivalent to

32λ2 − λ + 32

16λ
> 0 ,whih is learly true.Also solved by ARKADY ALT, San Jose, CA, USA; GEORGE APOSTOLOPOULOS,Messolonghi, Greee; MICHEL BATAILLE, Rouen, Frane; BRIAN D. BEASLEY, PresbyterianCollege, Clinton, SC, USA; CHARLES R. DIMINNIE, Angelo State University, San Angelo,TX, USA; OLIVER GEUPEL, Br �uhl, NRW, Germany; WALTHER JANOUS, Ursulinengymnasium,Innsbruk, Austria; ALBERT STADLER, Herrliberg, Switzerland; and the proposer. Two inom-plete solutions were submitted.

3499⋆. [2009 : 517, 519℄ Proposed by Bernardo Ream�an, InstitutoAlberto Merani, Bogot �a, Colombia.A building has n oors numbered 1 to n and a number of elevators allof whih stop at both oors 1 and n, and possibly other oors. For eah n,�nd the least number of elevators needed in this building if between any twooors there is at least one elevator that onnets them non-stop.For example, if n = 6, nine elevators suÆe: (1, 6), (1, 5, 6), (1, 4, 6),
(1, 3, 4, 6), (1, 2, 4, 5, 6), (1, 2, 5, 6), (1, 2, 6), (1, 3, 5, 6), and (1, 2, 3, 6).Solution by George Apostolopoulos, Messolonghi, Greee.The answer is �n2

4

�.



567
To see that at least this many elevators are needed, onsider the set

P =
n
(x, y) ∈ Z

2 : 1 ≤ x, y ≤ n, x ≤ n

2
, y >

n

2

o .Any elevator an onnet at most one pair of oors in the set P , and theardinality of P is �n2

4

�, so at least this many elevators are needed.To show that �n2

4

� elevators suÆe, we give a onstrution in two ases.Case 1: n = 2k. Here k2 elevators are needed. Let integers i and j berestrited so that 1 ≤ i ≤ k and k + 1 ≤ j ≤ 2k, and desribe eah elevatorby the tuple of oors it stops at. The elevators are then8<: (1, i, j, 2k) , if i + j = 2k + 1 ,
(1, 2k + 1 − j, i, j, 2k) , if i + j > 2k + 1 ,
(1, i, j, 2k + 1 − j, 2k) , if i + j < 2k + 1 .Case 2: n = 2k + 1. Here k2 + k elevators are needed. Let integers i and jbe restrited so that 1 ≤ i ≤ k and k + 1 ≤ j ≤ 2k + 1, and desribe eahelevator by the tuple of oors it stops at. The elevators are then8<: (1, i, j, 2k + 1) , if i + j = 2k + 2 ,

(1, 2k + 2 − j, i, j, 2k + 1) , if i + j > 2k + 2 ,
(1, i, j, 2k + 2 − j, 2k + 1) , if i + j < 2k + 2 .This ompletes the proof.Also solved by OLIVER GEUPEL, Br �uhl, NRW, Germany; D.P. MEHENDALE (Dept. ofEletronis) and M.R. MODAK, (formerly of Dept. Mathematis), S. P. College, Pune, India;MISSOURI STATE UNIVERSITY PROBLEM SOLVING GROUP, Spring�eld, MO, USA; MORTENH. NIELSEN, University of Winnipeg, Winnipeg, MB; and PETER Y. WOO, Biola University, LaMirada, CA, USA. Two inomplete solutions were submitted.


