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PROBLEM DEPARTMENT

ASHLEY AHLIN AND HAROLD REITER∗

DRAFT - SPRING 2011
This department welcomes problems believed to be new and at a level appropriate for the readers

of this journal. Old problems displaying novel and elegant methods of solution are also invited.

Proposals should be accompanied by solutions if available and by any information that will assist

the editor. An asterisk (*) preceding a problem number indicates that the proposer did not submit a

solution.

All correspondence should be addressed to Harold Reiter, Department of Mathematics, Univer-

sity of North Carolina Charlotte, 9201 University City Boulevard, Charlotte, NC 28223-0001 or

sent by email to hbreiter@uncc.edu. Electronic submissions using LATEX are encouraged. Other

electronic submissions are also encouraged. Please submit each proposal and solution preferably

typed or clearly written on a separate sheet (one side only) properly identified with name, affiliation,

and address. Solutions to problems in this issue should be mailed to arrive by October 1, 2011.

Solutions identified as by students are given preference.

Problems for Solution.

1235. Proposed by Parviz Khalili, Christopher Newport University, Newport News,
VA.

Let x, y, and z are positive real numbers and x + y + z = 1. Show that

1
x

+
1
y

+
1
z
≥ 3 + 2

√
xx yy zz

x y z
.

1236. Proposed by Mohsen Soltanifar, University of Saskatchewan, Saskatoon,
Canada.

Prove or give a counterexample:Let Ui(1 ≤ i ≤ n), be finite dimensional subspaces
of a vector space V . Then, the dimension of

∑n
i=1 Ui is given by :

dim(
∑n

i=1 Ui) =
∑n

r=1(−1)r+1
∑

i1<i2<...<ir :n dim(Ui1 ∩ Ui2 ∩ ... ∩ Uir ),
where the summation

∑
i1<i2<...<ir :n dim(Ui1 ∩Ui2 ∩ ...∩Uir ) is taken over all of the(

n
r

)
possible subsets of the set 1, 2, ..., n.

1237. Proposed by Thomas Dence, Ashland University, Ashland, OH and Joseph
Dence, St. Louis, MO.

For each integer n ≥ 2, determine the values of the integrals

In,3 =
∫ π

0

sin3 x sin(nx) dx and In,5 =
∫ π

0

sin5 x sin(nx) dx.

1238. Proposed by Tuan Le, student, Fairmont High School, Fairmont, CA.

Given a, b, c, d ∈ [0, 1] such that no two of them are simultaneously equal to 0.
Prove that:

1
a2 + b2

+
1

b2 + c2
+

1
c2 + d2

+
1

d2 + a2
≥ 8

3 + abcd

∗University of North Carolina Charlotte
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1239. Proposed by Matthew McMullen, Otterbein College, Westerville, OH.

For i ∈ {1, 2, . . . , 9}, define Di to be the set of all positive integers that begin
with i. For all positive integers n, define

an,i =
1
n
·
∣∣∣∣Di ∩ {1, 2, . . . , n}

∣∣∣∣.

Find lim supn→∞ an,i and lim infn→∞ an,i.

1240. Perfetti Paolo, Dipartimento di Matematica, Università degli studi di Tor
Vergata Roma, via della ricerca scientifica, Rome, Italy.

Let x, y be positive real numbers. Prove that

2xy

x + y
+

√
x2 + y2

2
≤ √

xy +
x + y

2
+

(L(x, y)−√xy)2
2xy
x+y

where L(x, y) = (x− y)/(ln(x)− ln(y)) if x 6= y and L(x, x) = x.

1241. Proposed by Arthur Holshouser, Charlotte, NC. and Johannas Winterink,
Albuquerque, NM.

For each i = 0, 1, 2, 3, . . . , 8, does a set {A,B,C} of three circles in the plane exist
such that there are exactly i circles in the plane that are tangent to each of A,B, and
C?

1242. Proposed by Stas Molchanov, University of North Carolina Charlotte.

This problem has an interesting history. It is mentioned in the book Mathe-
maticians Also Like Jokes, by A. Fonin, Moskow, ‘Nauka’ 2010. The problem
appeared on the admissions test for Moskow State University. The exams were very
hard, given that there was one place for every 700 applicants. The applicant took the
problem to physicist E. Lefshitz, who himself was unable to solve. Lefshitz asked his
friend Lev Landau, nobel prize winning physicist about the problem. Landau rightly
considered himself an expert in elementary mathematics and the same evening called
Lefshitz back to say he’d solved it in an hour, and that nobody, ‘except possibly Yakov
Zelodovich could solve it faster’. Landau sent the problem to Zeldovich, and indeed
he solved the problem in 45 minutes.

Given pyramid ABCD with bottom face triangle ABC with BC = a,AC =
b, AB = c. Let the lateral faces BCD,ACD,ABD form with the bottom angles
α, β, γ, in radians, all acute angles. Find the radius r of the sphere inscribed in the
pyramid.

Solutions. The editors regret that the fall 2010 issue of the Journal, we failed
to acknowledge solutions of problems 1218, 1221, and 1223 by M. Parvez Shaikh,
Albany Medical Center, Albany, NY.

1226. Proposed by Jonathan Hulgan and Cecil Rousseau, University of Memphis,
Memphis, TN.

In part two of his justly famous Textbook of Algebra, G. Chrystal poses two in-
triguing problems of a similar nature. Suitably generalized, problem 2 on page 33
reads
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Segments of length 1, 2, . . . , n are given. The number of triangles that
can be built using three of these segments as edges is .

Problem 9 on page 34 reads
Out of n straight lines 1, 2, . . . , n inches long respectively, four can
be chosen to form a pericyclic quadrilateral in ways.

The answers have been excised. Without solving either of these two problems, prove
that the answers are the same. A pericyclic quadrilateral is one that has an inscribed
circle.

Solution by the Proposers.

Consider the set of all triples (a, b, c) of positive integers satisfying 1 < c <
b < a ≤ n. There is a triangle with sides a, b, c if and only if the triangle inequality
b+c > a holds. Consider the same triple (a, b, c) as three sides of a would-be pericyclic
quadrilateral. Then a, b, c, d are the sides of such a quadrilateral if and only if a+d =
b + c. In other words, set d := b + c− a; then {a, b, c, d} is a good choice in problem
9 if and only if d ∈ Z+. To see that the two answers are the same, just observe that

b + c > a ⇔ d := b + c− a ∈ Z+

¥

For the record,

f(n) =





1
24 n(n− 2)(2n− 5), n even,

1
24 (n− 1)(n− 3)(2n− 1), n odd

is the answer to both problem 2 and problem 9. .2in] The following proofs are intended
as an aid for the editors, and not as part of the published solution.
1. Proposition. Convex quadrilateral ABCD has an inscribed circle if and only if

AB + CD = AD + BC.
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Proof. Suppose ABCD has an inscribed circle. Then AB + CD = AD + BC
follows easily using equal tangents. Conversely, suppose AB + CD = AD + BC.
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There exists a circle that is tangent to DA,AB, and BC. The center of this circle
is the common point of the angle bisectors of ∠DAB and ∠ABC. If this circle is
tangent to CD, we are done. Otherwise, draw from C a line tangent to the circle and
intersecting AD at E 6= D.

................
................
................
................
................
................
................
................
................
..........

.......................................................................................................................................................................................................................................................................................................................
................
................
................
................
................
................
................
.............

................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
................
..............................................

...................................................................................................
...............................................................................................................................................................................................................................................................................................................................................................................................................

...............................
...............................

...............................
...............................

...............................
...............................

...............................
....................

.............................................................................................................................................................................................................
............................

......................
...................
..................
.................
................
................
................
................
................
.................
...................

.....................
.........................

......................................
........................................................................................................................................................................................................................................................................................................
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Assume that E is between A and D; the other case is similar. Because ABCE
has an inscribed circle,

AB + CE = AE + BC.

But

AB + CD = AD + BC

as well, so CD − CE = AD − AE = ED and thus CD = CE + ED, which violates
the triangle inequality. Hence ABCD has an inscribed circle. ¥
2. Calculation of the Number of Triples that Yield Pericyclic Quadrilat-
erals.

Let f(n) count the triples (a, b, c) of positive integers that satisfy 1 < c < b <
a ≤ n where d = b + c− a ∈ Z+ and let g(k) count those for which a = k. Then

f(n) = f(n− 1) + g(n) and f(n) =
n∑

k=1

g(k).

To determine g(k), count solutions of k = a > b > c > d ≥ 1 and a + d = b + c. Fix
d ≥ 1 and let |C| be the number of possible values of c. For each choice of b, the
corresponding value of c is determined by c = k + d− b. Now 2c + 1 ≤ b + c = k + d
implies d + 1 ≤ c ≤ (k + d− 1)/2. Hence |C| = b(k + d− 1)/2c − d.

Case (i). k is even. Set k = 2m. Then

|C| = m +
⌊

d− 1
2

⌋
− d.

This gives |C| = m− 1,m− 2,m− 2, . . . , 1, 1 for d = 1, 2, . . . , 2m− 1, respectively.
Case (ii). k is odd. Set k = 2m + 1. Now

|C| = m +
⌊

d

2

⌋
− d.
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This gives |C| = m−1,m−1,m−2, m−2, . . . , 1, 1 for d = 1, 2, . . . , 2m−2, respectively.
Putting these two results together gives

g(k) =





(m− 1) + 2(m− 2) + · · ·+ 2 = (m− 1)2 if k = 2m,

2(m− 1) + 2(m− 2) + · · ·+ 2 = m(m− 1) if k = 2m + 1.

It is evident that “pericyclic quadrilaterals” can be replaced by “non-degenerate trian-
gles” with no additional change. In the quadrilateral problem, d is the side opposite a;
in the triangle problem, d is a “slack variable” used to convert the triangle inequality
b + c > a into the equation a + d = b + c. It follows that exactly the same function g
applies in both problems 2 and 9, and therefore so does the same f .

3. Calculation of f .

If n = 2m then

f(n) = f(2m) =
m∑

k=1

g(2k) +
m∑

k=1

g(2k − 1)

=
m∑

k=1

(k − 1)2 +
m∑

k=1

(k − 1)(k − 2)

=
m∑

k=1

(2k2 − 5k + 3) =
m(m + 1)(2m + 1)

3
− 5

m(m + 1)
2

+ 3m

= m
2(m + 1)(2m + 1)− 15(m + 1) + 18

6
= m

4m2 − 9m + 5
6

= m
(m− 1)(4m− 5)

6
=

1
24

n(n− 2)(2n− 5).

If n = 2m + 1 then

f(n) = f(2m + 1) = f(2m) + g(2m + 1) =
1
6

m(m− 1)(4m− 5) + m(m− 1)

=
1
6

m(m− 1)(4m + 1) =
1
6

(
n− 1

2

)(
n− 3

2

)
(2n− 1)

=
1
24

(n− 1)(n− 3)(2n− 1).

¥
Solution by Michael Cheung, student, Elizabethtown College, Elizabethtown,

PA.

Also solved by Paul S. Bruckman, Nanaimo, BC.

1227. Proposed by Stanislav Molchanov, Department of Mathematics and Statis-
tics, University of North Carolina Charlotte

1. Let A be a four-digit positive integer. For what k is it always possible to
append to A a k-digit integer N such that A · 10k + N is a perfect square?
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2. Again let A be a four-digit positive integer. For what k is it always possible
to append to A a k-digit integer N such that A · 10k + N is a perfect cube?

3. Prove that for any positive integers A and n, it is possible to find a t-digit
integer N such that A · 10t + N is an nth power.

Solution by Michael Cheung, student, Elizabethtown College, Elizabethtown,
PA.

We are given integers A and n, from which we must find a t-digit integer N such
that S(N) = A · 10t + N is a perfect nth power.

We will prove the stronger statement that given any two integers a and n, we
can find an integer t such that for all a-digit integers A, it is always possible to find
a t-digit integer N such that S(N) = A · 10t + N is a perfect nth power. Note
that for any given a, 10a+t < S ≤ 10a+t−1 (t has yet to be chosen). The greatest
difference between two consecutive nth powers pn and (p + 1)n occurs when (p + 1)n

is maximized. This maximum value cannot exceed 10a+t, so the difference between
pn and (p + 1)n cannot exceed E =

(
(10(a+t)/n

)n − (
10(a+t)/n − 1

)n
. To ensure that

one can always append a t-digit integer N to any given a-digit integer A such that
S(N) is an nth power, we must have E ≤ 9 · 10t−1 for some integer t. Using basic
algebra solving for t,

10t+a−
[
10(t+a)/n − 1

]n

≤ 9·10t−1 ⇐⇒ t ≥ 1−n log10

[
10(a+1)/n − (10a+1 − 9)1/n

]
.

Since 1 − n log10

[
10(a+1)/n − (10a+1 − 9)1/n

]
converges given any finite a and n, we

can always find a finite lower bound for t such that a t-digit integer N can always be
appended to any a-digit integer A to make a perfect nth power.

Specifically, for a = 4 and n = 2, we must have:

t ≥ 1− 2 log10

[
105/2 − (105 − 9)1/2

]
⇐⇒ t ≥ 4.6936,

or t ≥ 5 since t must be an integer. Similarly, for a = 4 and n = 3, we must have:

t ≥ 1− 3 log10

[
105/3 − (105 − 9)1/3

]
⇐⇒ t ≥ 9.5686,

or t ≥ 10 since t must be an integer.
Also solved by Mark Evans, Louisville, KY; and the Proposer.

1228. Proposed by Hongwei Chen, Christopher Newport University, Newport
News, VA.

Let a0 = 0 and ak > 0 for all 1 ≤ k ≤ n with
∑n

k=1 ak = 1. Prove that

1 ≤
n∑

k=1

ak√
1 + a0 + · · ·+ ak−1

√
ak + · · ·+ an

≤ π

2
.

Solution by Henry Ricardo, Tappan, NY.
We have, for 1 ≤ k ≤ n,

Ak =
ak√

1 + a0 + · · ·+ ak−1
√

ak + · · ·+ an

=
ak√

1 + a0 + · · ·+ ak−1

√
1− (a0 + · · ·+ ak−1)

=
(a0 + · · ·+ ak)− (a0 + · · ·+ ak−1)√

1− (a0 + a1 + · · ·+ ak−1)2
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If we partition the interval [0, 1] into the subintervals
[∑m

k=0 ak,
∑m+1

k=0 ak

]
for

m = 0, 1, . . . , n− 1, then

n∑

k=1

Ak =
n∑

k=1

(a0 + · · ·+ ak)− (a0 + · · ·+ ak−1)√
1− (a0 + a1 + · · ·+ ak−1)2

is a left Riemann sum of the increasing convex function 1√
1−x2 over [0, 1]. Thus

1 · (1− 0) ≤ ∑n
k=1 Ak ≤

∫ 1

0
1√

1−x2 dx = π
2 .

Let

bk :=
ak√

1 + a0 + · · ·+ ak−1
√

ak + · · ·+ an
.

Observe that

bk =
ak√

1− (a0 + a1 + · · ·+ ak−1)2
=

(a0 + · · ·+ ak)− (a0 + · · ·+ ak−1)√
1− (a0 + a1 + · · ·+ ak−1)2

.

The proposed sum can be viewed as a Riemann sum for the function 1/
√

1− x2 on
the interval [0, 1] when the partition is

{0 = a0, a0 + a1, a0 + a1 + a2, . . . , a0 + a1 + · · ·+ an = 1}

It follows at once that

1 · (1− 0) ≤
n∑

k=1

bk ≤
∫ 1

0

dx√
1− x2

=
π

2
.

Also solved by Pedro Henrique O. Pantoja, student, Natal-RN, Brazil; Paolo Perfetti,

Dipartimento di matematica, Università degli Studi di Roma “Tor Vergata”, Rome, Italy; and the

Proposer. Editor’s Note. One solver pointed out that this problem appeared in a
Chinese mathematics contest of 1996.

1229. F. Hoffman and S.C. Locke, Florida Atlantic University, Boca Raton, FL.

For a non-zero integer s, let h (s) = t, where 2t | s and 2t+1 - s. Let (a1, . . . , an)
be a sequence of non-zero integers, let m = max {h (aj) : 1 6 j 6 n}, and let Y =
{j : 1 6 j 6 n, h (aj) = m}.
Part (a). Suppose that |Y | is odd and that S =

n∑
j=1

1
aj

= p
q , with gcd (p, q) = 1.

Prove that p is odd.

Part (b). Let T =
n∑

j=k

1
j = 1

k + 1
k+1 + · · ·+ 1

n = p
q , with gcd (p, q) = 1. Prove that p

is odd.

Solution by Kathleen E. Lewis, University of the Gambia, Brikama, Re-
public of the Gambia.

a) Let k be the least common multiple of the denominators. Since the highest
power of 2 that appears in any denominator is m, it follows that k = 2m ∗ r, with
r odd. When each fraction in the sum is written with denominator k, the fractions
that originally had smaller powers of 2 in the denominator now have even numerators.
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Only those fractions that originally had a multiple of 2m in the denominator now have
odd numerators. Therefore, if there are an odd number of such terms, the sum of all
the numerators must be an odd number even before the fraction is reduced to lowest
terms.

b) In the sequence of consecutive positive integers k, k + 1, . . . , n, consider the
highest power of 2, say 2m, that occurs as a factor. If it occurs more than once in the
sequence, then successive occurrences must be of the form j ∗ 2m and (j + 1) ∗ 2m for
some natural number j. But either j or j + 1 must be even, which means that either
j ∗2m or (j +1)∗2m is actually a multiple of 2m+1. But this contradicts the choice of
2m as the highest power of 2 appearing. Since one is an odd number, this means that
the sequence meets the conditions of part (a), so the sum of the fractions, reduced to
lowest terms, has an odd numerator.

Also solved by Paul S. Bruckman, Nanaimo, BC; Michael Cheung, student, Elizabethtown

College, Elizabethtown, PA; Proposer.

1230. Proposed by Mohammad K. Azarian, University of Evansville, Indiana.

Let

P (x) = xn + a1x
n−1 + a2x

n−2 + ... + an−1x + an,

be a polynomial of degree n (n ≥ 1) where an 6= 0. If r1, r2, . . . , rn are the roots
of P (x), then show that

(
n∑

i=1

ri).(
n∑

i=1

1
ri

).(
n∏

i=1

ri) = (−1)na1an−1.

Dionne T. Bailey, Elsie M. Campbell, Charles Diminnie, Angelo State
University, San Angelo, TX;

Let

P (x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ an−1x + an,

be a polynomial of degree n (n ≥ 1) where an 6= 0. If r1, r2, . . . , rn are the roots of
P (x), then show that

(
n∑

i=1

ri

)
·
(

n∑

i=1

1
ri

)
·
(

n∏

i=1

ri

)
= (−1)na1an−1.

Given the roots r1, r2, . . . , rn of P (x), then

P (x) = (x− r1)(x− r2) · · · (x− rn). (1)

From (1),

a1 =
n∑

i=1

(−ri) = −
n∑

i=1

ri, (2)
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and

an−1 =
n∑

i=1


∏

j 6=i

(−rj)




= (−1)n−1
n∑

i=1


∏

j 6=i

rj




= (−1)n−1
n∑

i=1


 1

ri




n∏

j=1

rj







= (−1)n−1




n∏

j=1

rj




(
n∑

i=1

1
ri

)
. (3)

Thus, by (2) and (3),
(

n∑

i=1

ri

)
·
(

n∑

i=1

1
ri

)
·
(

n∏

i=1

ri

)
= (−1)na1an−1.

Also solved by Gezim Basha, student, Kosovo, Serbia; Paul S. Bruckman, Nanaimo, BC;

Hongwei Chen, Christopher Newport University, Newport News, VA; Thomas Dence, Ashland

University, Ashland, OH; Stephen Gendler, Clarion University, Clarion PA; Gerhardt Hinkle,

student, Central High School, Springfield, MO; Brian Klatt, student, Saint Joseph’s University,

Philadelphia, PA; Kathleen E. Lewis, University of the Gambia, Brikama, Gambia; Peter A.

Lindstrom, Batavia, NY; Yoshinobu Murayoshi, Naha City, Okinawa, Japan; Paolo Perfetti,

Dipartimento di matematica, Università degli Studi di Roma “Tor Vergata”, Rome, Italy; Juan L.

Vargas, student, University of North Carolina Charlotte; and the Proposer.

1231. Proposed by Arthur L. Holshouser, Charlotte, NC.

A real number is called a Cantor number if it can be written in base 3 notation
without the use of the digit 1. For example 1/3 = 0.1 = 0.02 is a Cantor number.
Prove that every real number is the sum of two Cantor numbers.

Solution by Robert Graham, student, and Melissa Cangialosi, student,
Elizabethtown College, Elizabethtown, PA.

Let c be a real number with ternary expansion cncn−1 . . . c2c1c0.c−1c−2 . . . and
let S = {i ≤ n|ci = 1}. If S is empty, then c is a Cantor number, and if c is a Cantor
number, then it can be written trivially as a sum of two Cantor numbers, c = c + 0,
since zero is a Cantor number.

Note that if j > k, then 3j − 3k =
j−1∑

i=k

2 · 3i is a Cantor number. Suppose that c

is not a Cantor number and S = {s1, s2, s3, s4, . . .} where s1 > s2 > s3 > s4 > . . ..

If |S| = 2m for some integer m, then a =
m∑

i=1

(3s2i−1 − 3s2i) is a Cantor number

since S is strictly ordered. The difference b = c− a is also a Cantor number because
bs2i−1 = 0, bs2i = 2, i = 1, . . . ,m, and bj = cj , otherwise. Therefore, c = a + b is
written as a sum of two Cantor numbers. If |S| = 2m + 1 for some integer m, then
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a =
m∑

i=1

(3s2i−1 − 3s2i) +
s2m+1−1∑

i=−∞
2 · 3i is a Cantor number and b = c − a is also a

Cantor number. Finally, if |S| is infinite, then a =
∞∑

i=1

(3s2i−1 − 3s2i) and b = c − a

are both Cantor numbers, so c = a + b is the sum of two Cantor numbers.

Solution by Miguel Lerma, Northwestern University Problem Solving Group,
Evanston, IL.

Without loss of generality we may assume that the real number is in the interval
[0, 1), since any real number can be mapped to that interval by possibly a change of
sign and right shift of its base-3 digits.

So, assume r ∈ [0, 1), with digits ri (i = 0, 1, 2, . . . ) in base 3, i.e.:

r =
∞∑

i=0

ri

3i
, r0 = 0 , and ri ∈ {0, 1, 2} for all i > 0 .

We will describe how to find two Cantor numbers a =
∞∑

i=0

ai

3i
, b =

∞∑

i=0

bi

3i
, with

ai, bi ∈ {0, 2} for all i ≥ 0, such that r = a + b.
We define the sequences ai and bi, together with a third sequence ci recursively

in the following way: for i = 0, a0 = b0 = c0 = 0, and for i > 0:

ai = the greatest of 0 or 2 such that ai ≤ ri + 3ci−1 ,

bi = the greatest of 0 or 2 such that ai + bi ≤ ri + 3ci−1 ,

ci = ri + 3ci−1 − ai − bi ,

By induction we see that ci ∈ {0, 1} for all i ≥ 0. On the other hand we will
prove also by induction that for n ≥ 0:

n∑

i=0

ri

3i
−

n∑

i=0

ai

3i
−

n∑

i=0

bi

3i
=

cn

3n
, (1)

In fact, for n = 0 the equality is trivially true. Next, assuming that the equality
holds for some value of n ≥ 0, we get for n + 1:

n+1∑

i=0

ri

3i
−

n+1∑

i=0

ai

3i
−

n+1∑

i=0

bi

3i
=

cn

3n
+

rn+1 − an+1 − bn+1

3n+1
=

3cn + rn+1 − an+1 − bn+1

3n+1
=

cn+1

3n+1
.

This completes the induction.
Finally, the desired result follows from (1) by taking into account that the left

hand side tends to r − a− b, and cn/3n → 0.
Also solved by Paul S. Bruckman, Nanaimo, BC; Stephen Gendler, Clarion University,

Clarion PA; Kathleen E. Lewis University of the Gambia, Brikama, Republic of the Gambia; and

the Proposer.

1232A. Proposed by Paul Bruckman, Nanaimo, BC.

Given 0 < x < 1, define F (x) by F (x) = 1
x + 1

ln(1−x) . Show that 1
2 < F (x) < 1.

Show that F may be extended continuously to [0, 1].
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Solution by Hongwei Chen, Christopher Newport University, Newport News,
VA.

Let t = − ln(1− x) and define G(t) by

G(t) = F (x) =
et

et − 1
− 1

t
=

tet − et + 1
t(et − 1)

.

We now show that G′(t) > 0 for all 0 < t < ∞. To this end, the quotient rule yields
that

G′(t) =
(et − 1)2 − t2et

t2(et − 1)2
=

(et − 1 + tet/2)(et − 1− tet/2)
t2(et − 1)2

.

Notice that G′(t) > 0 is equivalent to et − 1 − tet/2 > 0. For any n ≥ 3, we have
n < 2n−1 and so

et − 1− tet/2 =
∞∑

n=1

(
1− n

2n−1

) tn

n!
> 0 for all t > 0.

This confirms that G′(t) > 0. Moreover, by the L’Hôpital’s rule, we have

lim
t→0

G(t) =
1
2
, lim

t→∞
G(t) = 1,

which implies that 1
2 < F (x) < 1. Defining F (0) = 1/2 and F (1) = 1 yields that

F (x) is continuous on [0, 1]
Also solved by Frank Battles, Massachusetts Maritime Academy, Buzzards Bay, MA; Thomas

Dence, Ashland University, Ashland, OH; Richard Hess, Rancho Palos Verdes, CA; Miguel

Lerma, Northwestern University Problem Solving Group, Evanston, IL; Peter A. Lindstrom,

Batavia, NY; Yoshinobu Murayoshi, Naha City, Okinawa, Japan; Paolo Perfetti, Dipartimento

di matematica, Università degli Studi di Roma “Tor Vergata”, Rome, Italy; Angel Plaza, University

of Las Palmas de Gran Canaria, Spain; Raul A. Simon, Chile. and the Proposer.

1232B. Proposed by David Wells, Penn State New Kensington, Upper Burrell,
PA.

Numbers r, s, and t are chosen independently and uniformly at random from the
interval (0, 1]. Circles with radii r, s, and t are then constructed so that they are
pairwise externally tangent. What is the probability that the circles can be enclosed
in a triangle, each of whose sides is tangent to two of the circles?

Solution by the Proposer.

Let the circles with radii r, s, and t have centers R, S, and T , respectively, and
assume with no loss of generality that r ≥ s ≥ t. Of the two lines that are tangent to
both circles R and S, let L1 be the one whose points of tangency with R and S are
on the opposite side of line RS from T . Let L2 (respectively, L3), tangent to both
circles R and T (respectively, S and T ) be chosen in a similar manner. The required
triangle, if it exists, must have sides on L1, L2, and L3. The circles may be placed in
a coordinate plane so that R = (0, 0), S is in the first quadrant, and L1 is the line
x = r.

Lemma: The required triangle exists if and only if 4st > r2. Proof: Consider
first the case in which L2 is the line x = −r. In that case the required triangle does
not exist. Also S = (r − s, 2

√
rs), T = (t− r, 2

√
rt), and

(s + t)2 = ST 2 = (2r − s− t)2 + (2
√

rs− 2
√

rt)2.
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Simplifying gives 4st = r2.
If circle T extends to the left of the line x = −r, then 4st > r2, which implies

that s > r/2. Together with the condition t ≤ s, this implies that the line L3 has a
positive slope and intersects L1 above all three circles. Because t ≤ s ≤ r, the line L2

has a negative slope and intersects L1 below all three circles. Therefore in this case
the required triangle exists. If circle T lies entirely to the right of the line x = −r,
then 4st < r2. In this case the lines L2 and L3 both intersect L1 in the first quadrant,
so the required triangle cannot exist. ¥

Because the required triangle exists if and only if s > r/2 and r2/4s < t ≤ s, it
exists with probability

∫ 1

0

∫ r

r/2

∫ s

r2/4s
dtdsdr

∫ 1

0

∫ r

0

∫ s

0
dtdsdr

= 6
∫ 1

0

∫ r

r/2

(
s− r2

4s

)
dsdr

= 6
∫ 1

0

(
s2

2
− r2

4
ln |s|

)∣∣∣∣
r

r/2

dr = 6
∫ 1

0

r2

(
3
8
− ln 2

4

)
dr =

3− ln 4
4

.

1233. Proposed by Perfetti Paolo, Dipartimento di matematica, Università degli
studi di Tor Vergata Roma, via della ricerca scientifica, Roma, Italy.

Evaluate

∞∑

k=1

k(2k + 1)H2
k−1 + k(1 + k)2Hk−1 + (1 + k)2

k3(k + 1)2
,

where Hk = 1 + 1/2 + . . . + 1/k, H0 = 0.

Solution by the Proposer.

The answer is 3. First note that

k(2k + 1)H2
k−1 + k(1 + k)2Hk−1 + (1 + k)2

k3(k + 1)2
=

2k + 1
k2(k + 1)2

H2
k−1 +

1
k2

(
Hk−1 +

1
k

)
=

2k + 1
k2(k + 1)2

H2
k−1 +

Hk

k2

.= S.

Moreover

2k + 1
k2(k + 1)2

H2
k−1 = H2

k−1

(
1
k2
− 1

(1 + k)2

)

=
(

H2
k

k2
− 2

Hk−1

k3
− 1

k4

)
+

(
− H2

k

(k + 1)2
+ 2

Hk−1

k(k + 1)2
+

1
k2(1 + k2)

)

We make use of the following equalities 1) and 2) (see for example the article
D.Borwein and J.M.Borwein On an intriguing Integral and some Series Related to

ζ(4) Proceedings of the Amer. Math. Soc., Vol 123, No.4 (Apr.,1995) pp.1191–1198)
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1)
∞∑

k=1

H2
k

k2
=

17
4

ζ(4),2)
∞∑

k=1

H2
k

(k + 1)2
=

11
4

ζ(4),

3)
∞∑

k=1

Hk

k3
=

5
4
ζ(4),4)

∞∑

k=1

Hk

k2
= 2ζ(3)

3) can be obtained by 1) and 2) because Hk−1 = Hk − 1
k

and then H2
k−1 =

H2
k − 2

Hk

k
+

1
k2

.
Hence

2
∞∑

k=1

Hk

k3
=

∞∑

k=1

(
1
k4

+
H2

k

k2
− H2

k−1

k2

)
= ζ(4)

(
1 +

17
4
− 11

4

)
=

5
2
ζ(4).

4) is an old result going back to Euler yielding

∞∑

k=1

Hk+1

(k + 1)2
=

∞∑

k=1

Hk

k2
− 1 = 2ζ(3)− 1.

Moreover

∞∑

k=1

Hk−1

k3
=

∞∑

k=1

Hk

k3
−

∞∑

k=1

1
k4

=
ζ(4)
4

.

Now
∞∑

k=1

1
k2(1 + k2)

=
∞∑

k=1

(
1
k2

+
1

(1 + k)2
+

2
k + 1

− 2
k

)
= ζ(2)+(ζ(2)−1)−2 = 2ζ(2)−3.

Next

Hk−1

k(1 + k)2
=

Hk−1

k
− Hk−1

k + 1
− Hk−1

(1 + k)2

=
[
Hk

k
− 1

k2

]
−

[
Hk+1

k + 1
− 1

(k + 1)2
− 1

k(k + 1)

]
−

[
Hk+1

(1 + k)2
− 1

(1 + k)3
− 1

k(1 + k)2

]

=
[
Hk

k
− Hk+1

k + 1

]
+

[
1

(k + 1)2
− 1

k2

]
+

1
k(k + 1)

− Hk+1

(1 + k)2
+

1
(1 + k)3

+
1

k(1 + k)2
.

Telescoping

∞∑

k=1

(
Hk

k
− Hk+1

k + 1
+

1
(k + 1)2

− 1
k2

)
= 0,

∞∑

k=1

1
k(k + 1)

=
∞∑

k=1

(
1
k
− 1

(k + 1)

)
= 1, and
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∞∑

k=1

1
k(k + 1)2

=
∞∑

k=1

(
1
k
− 1

k + 1
− 1

(k + 1)2

)
= 1− (ζ(2)− 1) = 2− ζ(2).

Hence

∞∑

k=1

Hk−1

k(1 + k)2
= 1− (2ζ(3)− 1) + ζ(3)− 1 + 2− ζ(2) = 3− ζ(3)− ζ(2).

Summing all the contributions we get

S = ζ(4)
(

17
4
− 2

1
4
− 1− 11

4

)
+ 2(3− ζ(3)− ζ(2)) + 2ζ(2)− 3 + 2ζ(3) = 3.

Also solved by Paul S. Bruckman, Nanaimo, BC; Kenny Davenport, Dallas, PA; Juan L.

Vargas, student, University of North Carolina Charlotte.

1234. Proposed by Sharon Sternadel Harada, Corvallis, Oregon and Leo Schnei-
der, John Carroll University, Cleveland, Ohio.

The streets in Mathville look like a grid formed by an x-y coordinate system.
All the even-numbered east-west streets, y = . . . ,−2, 0, 2, 4, . . . , are one-way east
(the direction of increasing x), and all the odd-numbered east-west streets y =
. . . ,−1, 1, 3, . . . are one-way west. Similarly, all the even-numbered north-south streets
x = . . . ,−2, 0, 2, 4, . . . , are one-way north (the direction of increasing y), and all the
odd numbered north- south streets are one-way south. Compute the (Euclidean) area
of the smallest convex quadrilateral that contains all the points (x, y) that can be
reached by driving no more than n blocks, starting at the origin and traversing these
one-way streets.

Solution by Nathan Caudill, student, Elizabethtown College, Elizabethtown,
PA.

The area is 2n(n− 1). If N , S, E, and W are the total number of blocks traveled
in the north, south, east, and west directions, respectively, then the final position is

[
x
y

]
= (E −W )

[
1
0

]
+ (N − S)

[
0
1

]
.

Since you can drive no more than n blocks, N + S + E + W ≤ n. Also, since travel
in the first direction must be either towards the north or east, then N + E ≥ 1. If
S = W = 0, then x = E, y = N , and x+y ≤ n. Similarly, if N = W = 0, then x = E,
y = −S, and x − y ≤ n and if S = E = 0, then x = −W , y = N , and −x + y ≤ n.
Finally, since N and E cannot both be zero, if E = 0 and N = 1, then x = −W ,
y = 1− S, and −x− y ≤ n− 1. Similarly, if E = 1 and N = 0, then −x− y ≤ n− 1.
All four inequalities together give the region shown in the figure.

The corners can be reached by taking N = S = W = 0 and E = n to arrive at
(n, 0), S = E = W = 0 and N = n to arrive at (0, n), N = W = 0, S = n − 1, and
E = 1 to arrive at (1, 1 − n), and S = E = 0, N = 1, and W = n − 1 to arrive at
(1 − n, 1). Therefore, the rectangle in the figure is the smallest convex quadrilateral
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that contains all of the points that can be reached by driving no more than n blocks.
The lengths of the sides of the rectangle are n

√
2 and (n − 1)

√
2, so the area is

2n(n− 1).

If x is the number of blocks traveled in the x direction and y is the number of
blocks traveled in the y direction, then x+y ≤ n. Turning south or west after driving
the first block will make it possible to reach the points (1, 1− n) and (1− n, 1). Just
as before, it is not possible to reach a further point northwest because of the nature
of driving in only the coordinate directions.

Connecting these furthest points yields a rectangle with edges of length n
√

2 and
(n − 1)

√
2. This results in an area of 2n(n − 1), which is the smallest possible area

that fits the given criteria.
Also solved by Richard Hess, Rancho Palos Verdes, CA; and the Proposer.


