
Junior problems

J79. Find all integers that can be represented as a3 + b3 + c3−3abc for some positive
integers a, b, and c.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

First solution by Salem Malikic Sarajevo, Bosnia and Herzegovina

We have

w = a3 + b3 + c3 − 3abc = (a + b + c)(a2 + b2 + c2 − ab− bc− ca) =

=
(a + b + c)

2
[(a− b)2 + (b− c)2 + (c− a)2].

Let a = b = n + 1 and c = n, then w = 3n + 2 so each positive integer of the
form 3n + 2 can be written as a3 + b3 + c3 − 3abc. Taking a = n + 1, b = c = n
we can represent all positive integers of the form 3n + 1.

If we take a = n − 1, b = n, and c = n + 1 we find that w = 9n, n ≥ 2. Thus
each positive integer divisible by 9 except 9 can be written in the given form.
Now we will prove that integers of the form 9k +3 and 9k +6 cannot be written
as

(a + b + c)
2

[(a− b)2 + (b− c)2 + (c− a)2].

Since x2 ≡ 0, 1 (mod 3) the number (a− b)2 + (b− c)2 + (c− a)2 is divisible by
three if and only if (a − b)2 ≡ (b − c)2 ≡ (c − a)2 ≡ 0 (mod 3) or (a − b)2 ≡
(b− c)2 ≡ (c− a)2 ≡ 1 (mod 3).

If (a− b)2 ≡ (b− c)2 ≡ (c− a)2 ≡ 0 (mod 3) then a ≡ b ≡ c ≡ 0 (mod 3). Thus
3|(a + b + c) so 9|12(a + b + c)[(a− b)2 + (b− c)2 + (c− a)2] and so w 6= 9k ± 3.

If (a−b)2 ≡ (b−c)2 ≡ (c−a)2 ≡ 1 (mod 3) then no two of a, b, c give same residue
mod 3 and we can assume without loss of generality that a ≡ 1, b ≡ 2, and c ≡ 0
(mod 3) and so a+b+c ≡ 0 (mod 3) and 9 | 1

2(a+b+c)[(a−b)2+(b−c)2+(c−a)2]
which means w 6= 9k±3. From these, we conclude that, if w is of the form 9k±3
then 3 | a + b + c, while 3 does not divide (a− b)2 + (b− c)2 + (c− a)2.

It is easy to check that 3 | a + b + c if one of the following residue situation
occurs:

(a, b, c) = (0, 0, 0), (1, 1, 1), (2, 2, 2), (2, 1, 0).

In each case (a − b)2 + (b − c)2 + (c − a)2 is divisible by three so if 1
2(a + b +

c)[(a − b)2 + (b − c)2 + (c − a)2] is divisible by 3, then it is divisible by 9 and
therefore it cannot be of the form 9k ± 3.
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Second solution by Daniel Campos Salas, Costa Rica

Let us say an integer is nice if it can be represented as a3 + b3 + c3 − 3abc for
some positive integers a, b, c. Assume without loss of generality that b = a + x
and c = a + x + y, for some nonnegative integers x, y. Therefore,

a3 + b3 + c3 − 3abc = (3a + 2x + y)(x2 + xy + y2).

For x = y = 0 it follows that 0 is nice. Suppose that x, y are not both zero.
Since (3a + 2x + y)(x2 + xy + y2) > 0 we have that any nonzero nice integer is
nonnegative. Let us prove first that 1 and 2 are not nice. We have that

(3a + 2x + y)(x2 + xy + y2) > 3a(x2 + xy + y2) ≥ 3,

from where it follows the claim. Let us prove also that any nice integer divisible
by 3 must be divisible by 9. We have that

0 ≡ (3a + 2x + y)(x2 + xy + y2) ≡ (y − x) · (x− y)2 ≡ (y − x)3 (mod 3),

from where it follows that x ≡ y (mod 3). Therefore,

3a + 2x + y ≡ x2 + xy + y2 ≡ 0 (mod 3),

which implies the claim. Let us prove that 9 is not nice. From the previous
result we have that x ≡ y (mod 3), from where it follows that

(3a + 2x + y)(x2 + xy + y2) ≥ (3a + 3) · 3 > 9.

Let us proceed to find which integers are nice. Taking x = 0, y = 1 it follows
that any positive integer of the form 3a + 1 is nice. Taking x = 1, y = 0 it
follows that any positive integer of the form 3a + 2 is nice. Taking x = y = 1
it follows that any positive integer of the form 9(a + 1) is nice. From these we
conclude that all the nice integers are 0, any positive integer greater than 3 of
the form 3a + 1 or 3a + 2, and the integers greater than 9 of the form 9a, and
we are done.

Also solved by Daniel Lasaosa, Universidad Publica de Navarra, Spain; John
T. Robinson, Yorktown Heights, NY, USA; Roberto Bosch Cabrera, Faculty of
Mathematics, University of Havana, Cuba.
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J80. Characterize triangles with sidelengths in arithmetical progression and lengths
of medians also in arithmetical progression.

Proposed by Daniel Lasaosa, Universidad Publica de Navarra, Spain

First solution by Magkos Athanasios, Kozani, Greece

We prove that only equilateral triangles have the desired property. Let ABC be
a triangle with sides a, b, c and the corresponding medians ma,mb,mc. Assume
that a ≥ b ≥ c. Then we have ma ≤ mb ≤ mc. Since the sides and the medians
form arithmetic progressions we have

2b = a + c, 2mb = ma + mc. (1)

It is a known fact that m2
a + m2

b + m2
c = 3

4(a2 + b2 + c2). and we also know that
for reals x, y, z we have the inequality 3(x2 + y2 + z2) ≥ (x+ y + z)2. Hence, we
have

3
4
(a2 + b2 + c2) = m2

a + m2
b + m2

c ≥
1
3
(ma + mb + mc)2.

From this, using (1) and the relation 4m2
b = 2a2 + 2c2 − b2, we obtain the

following chain of inequalities

9
4
(a2+b2+c2) ≥ (3mb)2 ⇔ a2+b2+c2 ≥ 4m2

b ⇔ a2+b2+c2 ≥ 2a2+2c2−b2.

Hence, 2b2 ≥ a2 + c2 ⇔ (a + c)2 ≥ 2a2 + 2c2 ⇔ (a − c)2 ≤ 0. This means
that a = c. Therefore, we have a = b = c.

Second solution by Vicente Vicario Garcia, Huelva, Spain

We use the habitual notation in a triangle. Without loss of generality a ≤ b ≤ c.
By the well known Apollonius-formulas (application of Stewart’s theorem) for
the medians of a triangle we have

mA =
1
2

√
2b2 + 2c2 − a2

and the analoguous ones. We can then deduce that mC ≤ mB ≤ mA. By the
properties of arithmetic progression we have that

a + c = 2b [1]

mA + mC = 2mB [2].
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By the relations [1] and [2] we have√
2b2 + 2c2 − a2 +

√
2a2 + 2b2 − c2 = 2

√
2a2 + 2c2 − b2 ⇔

a2 + 4b2 + 2
√

(2b2 + 2c2 − a2)(2a2 + 2b2 − c2) = 4(2a2 + 2c2 − b2).

Doing all the subsequent calculations will yeild

5
( c

a

)4
− 8

( c

a

)3
+ 6

( c

a

)2
− 8

( c

a

)
+ 5 = 0.

Then the polynomial P (x) = 5x4−8x3+6x2−8x+5 = (x−1)2(5x2+2x+5) and
the quadratic equation 5x2 +2x+5 has no real roots. Then c

a = 1 which means
a = b = c and the triangle is equilateral. Finally, it is clear that equilateral
triangle satisfies the problem and we are done.

Also solved by Daniel Lasaosa, Universidad Publica de Navarra, Spain; John
T. Robinson, Yorktown Heights, NY, USA; Roberto Bosch Cabrera, Faculty of
Mathematics, University of Havana, Cuba.
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J81. Let a, b, c be positive real numbers such that

1
a2 + b2 + 1

+
1

b2 + c2 + 1
+

1
c2 + a2 + 1

≥ 1.

Prove that ab + bc + ca ≤ 3.

Proposed by Alex Anderson, New Trier High School, Winnetka, USA

First solution by Dinh Cao Phan, Pleiku, GiaLai, Vietnam

By applying the Cauchy-Scharz inequlity, we have

(a2 + b2 + 1)(1 + 1 + c2) ≥ (a + b + c)2

or
1

a2 + b2 + 1
≤ 2 + c2

(a + b + c)2
.

Similarily, we obtain

1
b2 + c2 + 1

≤ 2 + a2

(a + b + c)2
,

1
c2 + a2 + 1

≤ 2 + b2

(a + b + c)2
.

Therefore

1 ≤ 1
a2 + b2 + 1

+
1

b2 + c2 + 1
+

1
c2 + a2 + 1

≤ 6 + a2 + b2 + c2

(a + b + c)2

or
(a + b + c)2 ≤ 6 + a2 + b2 + c2

equivalent to

a2 + b2 + c2 + 2(ab + bc + ca) ≤ 6 + a2 + b2 + c2.

Thus ab + bc + ca ≤ 3 and we are done.

Also solved by Oleh Faynshteyn, Leipzig, Germany; Daniel Campos Salas, Costa
Rica; Daniel Lasaosa, Universidad Publica de Navarra, Spain; Nguyen Manh
Dung, Hanoi, Vietnam; Perfetti Paolo, Dipartimento di matematica Universita
degli studi di Tor Vergata, Italy.
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J82. Let ABCD be a quadrilateral whose diagonals are perpendicular. Denote by
Ω1,Ω2,Ω3,Ω4 the centers of the nine-point circles of triangles ABC, BCD,
CDA, DAB, respectively. Prove that the diagonals of Ω1Ω2Ω3Ω4 intersect at
the centroid of ABCD.

Proposed by Ivan Borsenco, University of Texas at Dallas, USA

First solution by G.R.A.20 Math Problems Group, Roma, Italy

Let MAB, MBC , MCD, MAD be the midpoints of the sides AB, BC, CD, DA,
respectively. Since the nine-point circle of the triangle ABC passes through
the midpoints of its sides we have Ω1 belongs to the perpedicular bisector of
MABMBC . Similarly, Ω3 belongs to the perpedicular bisector of MCDMDA.
Since AC and BD are perpendicular we get that MABMBCMCDMAD is a
rectangle. This implies that the line Ω1Ω3 is the midline of opposite sides of
this rectangle: MABMBC and MCDMDA. Finally, the intersection of the lines
Ω1Ω3 and Ω2Ω4 coincides with the intersection of the diagonals of the rectangle
MABMBCMCDMAD which is the centroid of ABCD.

Second solution by Roberto Bosch Cabrera, University of Havana, Cuba

We proceed by coordinate geometry. Let the point of intersection of the diag-
onals be (0, 0). Let A = (a, 0), B = (0, b), C = (c, 0), D = (0, d), then the
centroid of ABCD, G = (a+c

4 , b+d
4 ).

Now we will find the coordinates of Ω1. Let H and O be the orthocenter
and the circumcenter of triangle ABC. Then H = (0, −ac

b ) and using that
BH = 2OF where F is the feet of the perpendicular to AC from O we obtain
that O = (a+c

2 , b2+ac
2b ). It is well known that Ω1 is the midpoint of HO, hence

Ω1 = (a+c
4 , b2−ac

4b ).

Analogously, Ω2 = ( c2−bd
4c , b+d

4 ), Ω3 = (a+c
4 , d2−ac

4d ), Ω4 = (a2−bd
4a , b+d

4 ). Clearly,
Ω1Ω3 and Ω2Ω4 pass through G, and we are done.

Third solution by Mihai Miculita, Oradea, Romania

Let Mac and Mbd be the midpoints of the diagonals AC and BD. It is known that
the centroid G of ABCD coincides with the midpoint of MacMbd. Let Ox and
Hx be the cicrumcenter and the orthocenter of triangle Y ZT , {X, Y, Z, T} =
{A,B, C, D}. Points Od and Oc being cicrumcenters of triangle ABC and ACD,
are on the same perpendicular bisector of AC, yielding

Mac ∈ OdOb⊥AC. (1)
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The quadrilateral ABCD having the diagonals intersecting at a right angle
implies that BO and DO are heights in the triangles ABC and ACD. Thus
Hd,Hb ∈ BD and

HdHB⊥AC. (2).

From (1) and (2) it follows that OdOb ‖ HdHb. Last relation proves that
OdObHdHb is a trapezoid. The Euler circle’s center in a triangle is the mid-
point of the segment determined by the circumcenter and the orthocenter. It
follows that Ωd and Ωb are the midpoints of OdHd and ObHb. Thus the line
ΩdΩb is the midline of this trapezoid and so passes through G, the midpoint of
MacMbd. Analogoulsly, we prove that G ∈ ΩaΩc.

Also solved by Daniel Lasaosa, Universidad Publica de Navarra, Spain; Vicente
Vicario Garcia, Huelva, Spain.
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J83. Find all positive integers n such that a divides n for all odd positive integers a
not exceeding

√
n.

Proposed by Dorin Andrica, Babes-Bolyai University, Romania

First solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain;

If 1 is the largest odd integer not exceeding
√

n, the result is trivially true, and√
n < 3, or n ≤ 8. Assume now that m ≥ 1 is an integer such that 2m + 1 is

the largest odd integer not exceeding
√

n. Then, 2m + 3 >
√

n ≥ 2m + 1, or
4m2 + 12m + 9 > n ≥ 4m2 + 4m + 1. Since 2m + 1 and 2m − 1 are positive
odd integers with difference 2, they are coprime, and if both divide n, then their
product 4m2 − 1 must also divide n, which is larger than 4m2 − 1. Therefore,
n ≥ 2(4m2 − 1), and 4m2 + 12m + 9 > 8m2 − 2, or 4m2 − 12m − 11 < 0.
Now, if m ≥ 4, then 4m2 − 12m − 11 = (m2 − 11) + 3(m − 4)m > 0, and
necessarily m ≤ 3. Assume that m = 3. Then 2m + 3 = 9 >

√
n, and n < 81,

but n must be divisible by 3, 5 and 7, which are coprime. Therefore, n must
be divisible by 105, which is absurd, and m ≤ 2. Assume now m = 2. Then,
2m + 3 = 7 >

√
n ≥ 5 = 2m + 1, and 25 ≤ n < 49, but n must be divisible by 3

and 5, which are coprime. Therefore, n must be divisible by 15, or n = 30, 45.
Assume next that m = 1. Then, 9 ≤ n < 25 and n must be divisible by 3, or
n = 9, 12, 15, 18, 21, 24. The integers that we are looking for are then 1 through
9, 12, 15, 18, 21, 24, 30 and 45.

Second solution by John T. Robinson, Yorktown Heights, NY, USA

For n ≤ 25 such integers can be computed as 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 18,
21, and 24. In order to get some intuition, consider what happens for n ≥ 25:
up to n = 72 = 49, these are the integers divisible by 3 and 5, that is multiples
of 15, which are 30 and 45 in this range. After n = 49, up to n = 92 = 81, these
are the integers divisible by 3, 5, and 7, that is multiples of 105, a contradiction.
Recall Bertrand’s postulate, that is there is always a prime between m and 2m,
where m is any integer with m > 1. Using induction we can see that every time
we jump from n to 4n we get at least one more prime in the range [

√
n, 2

√
n].

This prime is greater than 4 for n ≥ 9, so the product of primes that must
divide n grows faster than n. In summary, the only positive integers n such
that a divides n for all odd positive integers a not exceeding

√
n are

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 18, 21, 24, 30, 45.
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Third solution by Roberto Bosch Cabrera, University of Havana, Cuba

Let b
√

nc = m, then n ∈
{
m2,m2 + 1, ...,m2 + 2m

}
. Now we have two cases m

is odd and m is even.

Assume m is odd and m ≥ 3, then

m odd ⇒ m | n ⇒ n ∈
{
m2,m2 + m,m2 + 2m

}
m odd ⇒ m− 2 | n. Now we have three sub-cases:

• m− 2 | m2 ⇒ m− 2 | (m− 2)2 + 4(m− 2) + 4 ⇒ m− 2 | 4 ⇒ m = 3.

• m− 2 | m2 + m ⇒ m− 2 | (m− 2)2 + 5(m− 2) + 6 ⇒ m− 2 | 6 ⇒ m = 3
or m = 5.

• m− 2 | m2 + 2m ⇒ m− 2 | (m− 2)2 + 6(m− 2) + 8 ⇒ m− 2 | 8 ⇒ m = 3.

From m = 3 we obtain n = 9, n = 12, n = 15.
From m = 5 we obtain n = 30 since 3 not divide 25 neither 35.

Assume m is even and m ≥ 6, then

m even ⇒ m− 1 | n ⇒ n ∈
{
m2 + m− 2,m2 + 2m− 3

}
m even ⇒ m− 3 | n. Now we have two sub-cases:

• m−3 | m2+m−2 ⇒ m−3 | (m−3)2+7(m−3)+10 ⇒ m−3 | 10 ⇒ m = 8.

• m−3 | m2+2m−3 ⇒ m−3 | (m−3)2+8(m−3)+12 ⇒ m−3 | 12 ⇒ m = 6.

From m = 6 we obtain n = 45 since 3 not divide 40.
From m = 8 we not obtain n since 3 not divide 70 neither 77.

Now just we need consider the trivial cases m = 1, m = 2, m = 4.
From m = 1 we obtain n = 1, n = 2, n = 3.
From m = 2 we obtain n = 4, n = 5, n = 6, n = 7, n = 8.
From m = 4 we obtain n = 18, n = 21, n = 24.

Finally, n ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 18, 21, 24, 30, 45}

Also solved by G.R.A.20 Math Problems Group, Roma, Italy.
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J84. Al and Bo play the following game: there are 22 cards labeled 1 through 22. Al
chooses one of them and places it on a table. Bo then places one of the remaining
cards at the right of the one placed by Al such that the sum of the two numbers
on the cards is a perfect square. Al then places one of the remaining cards such
that the sum of the numbers on the last two cards played is a perfect square,
and so on. The game ends when all the cards were played or no more card can
be placed on the table. The winner is the one who played the last card. Does
Al have a winning strategy?

Proposed by Titu Andreescu, University of Texas at Dallas, USA

First solution by Roberto Bosch Cabrera, University of Havana, Cuba

The winning strategy for Al is to choose the card labeled 2 in the first step.
Note that the perfect squares in the play are: 4, 9, 16, 25, 36. We consider the
equation 2 + m = n2 to obtain that Bo just can choose 7 or 14 in the second
step.

If Bo chosses 7, then Al chosses 18. Bo cannot play since the equation 18+m =
n2 is not solvable, because 7 was chosen before. Thus Al is winner (2− 7− 18).

If Bo chosses 14, then Al have another winning chain (2 − 14 − 11 − 5 − 20 −
16− 9− 7− 18). At each step Bo have no choice other than choosing the card
shown in the chain. So Al has a winning strategy and we are done.

Second solution by Ganesh Ajjanagadde, Acharya Vidya Kula, Mysore, India

We claim that Al has a winning strategy.

On his first move, let Al choose 22. On his subsequent moves, let Al choose the
maximum number available to him, such that the sum of his number and the
previous number is a perfect square. It is clear that Bo has two choices for her
first move, namely 3 and 14. Let us consider these two cases separately.

Case 1. Bo chooses 14. Thus Bo has only one choice in each of her subsequent
moves if Al sticks to his strategy. The sequence of moves are the following: 22,
14, 11, 5, 20, 16, 9, 7, 18. Once Al places 18, Bo has to either place 7, or 18,
both of which are impossible.

Case 2. Bo chooses 3. The sequence of moves runs 22, 3, 13, 12, 4. Bo can
now either place 5 or 21.

Case 2 a. Bo plays 5. Then the sequence of moves continues as
follows: 5, 20, 16, 9, 7, 18. Once again we reach a state when Bo can
make no further move.
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Case 2 b Bo plays 21. Then the sequence of moves continues as
follows: 21, 15, and Bo can now play either 1 or 10.

Case 2 b i Bo plays 1. The sequence continues thus: 1, 8,
17, 19, 6, 10. Now Bo can play either 15 or 6, both of which
are not possible as they have been played earlier.
Case 2 b ii Bo plays 10. The sequence continues as follows:
10, 6, 19, 17, 8, 1. Now Bo has to play either 3, 8, or 15,
none of which is possible as they have been played earlier.

Thus Al can always force a win by sticking to this strategy.

Also solved by Daniel Campos Salas, Costa Rica; Daniel Lasaosa, Universidad
Publica de Navarra, Spain; John T. Robinson, Yorktown Heights, NY, USA;
Salem Malikic Sarajevo, Bosnia and Herzegovina.
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Senior problems

S79. Let an = 4
√

2 + n
√

4, n = 2, 3, 4, . . . Prove that 1
a5

+ 1
a6

+ 1
a12

+ 1
a20

= 4
√

8.

Proposed by Titu Andreescu, University of Texas at Dallas

First solution by Simon Morris, Guernsey

1
a5

+
1
a6

+
1

a12
+

1
a20

=
1

2
1
4 + 2

2
5

+
1

2
1
4 + 2

2
6

+
1

2
1
4 + 2

2
12

+
1

2
1
4 + 2

2
20

=
1

2
15
60 + 2

24
60

+
1

2
15
60 + 2

20
60

+
1

2
15
60 + 2

10
60

+
1

2
15
60 + 2

6
60

=
1

2
15
60 (2

9
60 + 1)

+
1

2
15
60 (2

5
60 + 1)

+
1

2
10
60 (2

5
60 + 1)

+
1

2
6
60 (2

9
60 + 1)

=
2−

15
60

2
9
60 + 1

+
2−

6
60

2
9
60 + 1

+
2−

15
60

2
5
60 + 1

+
2−

10
60

2
5
60 + 1

=
2−

15
60 + 2−

6
60

2
9
60 + 1

+
2−

15
60 + 2−

10
60

2
5
60 + 1

=
2

3
4 (2−1 + 2−

51
60 )

2(2−
51
60 + 2−1)

+
2

3
4 (2−1 + 2−

55
60 )

2(2−
55
60 + 2−1)

=
2

3
4

2
+

2
3
4

2
= 2

3
4 .

Second solution by Johnathon M. Ashcraft, Auburn Montgomery, USA

Given the above information, we find

a5 = 4
√

2 + 5
√

4 = 2
1
4 + 2

2
5 = 2

5
20 + 2

8
20 = 2

1
4

(
1 + 2

3
20

)
a6 = 4

√
2 + 6

√
4 = 2

1
4 + 2

1
3 = 2

15
60 + 2

20
60 = 2

1
4

(
1 + 2

1
12

)
a12 = 4

√
2 + 12

√
4 = 2

1
4 + 2

1
6 = 2

3
12 + 2

2
12 = 2

1
4

(
1 + 2−

1
12

)
a20 = 4

√
2 + 20

√
4 = 2

1
4 + 2

1
10 = 2

10
40 + 2

4
40 = 2

1
4

(
1 + 2−

3
20

)
.

Therefore
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1
a5

+ 1
a6

+ 1
a12

+ 1
a20

=

=
1

2
1
4

(
1 + 2

3
20

) +
1

2
1
4

(
1 + 2

1
12

) +
1

2
1
4

(
1 + 2−

1
12

) +
1

2
1
4

(
1 + 2−

3
20

)
=

1

2
1
4

(
1

1 + 2
3
20

+
1

1 + 2−
3
20

+
1

1 + 2
1
12

+
1

1 + 2−
1
12

)

=
1

2
1
4

(
2 + 2

3
20 + 2−

3
20

2 + 2
3
20 + 2−

3
20

+
2 + 2

1
12 + 2−

1
12

2 + 2
1
12 + 2−

1
12

)

=
2

2
1
4

= 2
3
4 = 4

√
23 = 4

√
8.

Third solution by Prithwijit De, Kolkata, India

We observe that a5 = 2
1
4 + 2

2
5 ; a6 = 2

1
4 + 2

1
3 ; a12 = 2

1
4 + 2

1
3 ; a20 = 2

1
4 + 2

1
10 .

Let u = 2
1
60 = u and observe that

a5 = u15 + u24 = u15(u9 + 1);

a6 = u15 + u20 = u15(u5 + 1);

a12 = u15 + u10 = u10(u5 + 1);

a20 = u15 + u6 = u6(u9 + 1).

Now,

1
a5

+
1
a6

+
1

a12
+

1
a20

=

=
1

u15(u9 + 1)
+

1
u15(u5 + 1)

+
1

u10(u5 + 1)
+

1
u6(u9 + 1)

=
2

u15
= 4
√

8, as desired.

Also solved by Arkady Alt, San Jose, California, USA; Brian Bradie, Christo-
pher Newport University, USA; Daniel Lasaosa, Universidad Publica de Navarra,
Spain; John T. Robinson, Yorktown Heights, NY, USA; Vicente Vicario Garcia,
Huelva, Spain.
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S80. Let ABC be a triangle and let Ma,Mb,Mc be the midpoints of sides BC, CA,
AB, respectively. Let the feet of the perpendiculars from vertices Mb,Mc in
triangle AMbMC be C2 and B1; the feet of the perpendiculars from vertices
Ma,Mb in triangle CMaMb be B2 and A1; the feet of the perpendiculars from
vertices Mc,Ma in triangle BMaMc be A2 and C1. Prove that the perpendicular
bisectors of B1C2, C1A2, and A1B2 are concurrent.

Proposed by Vinoth Nandakumar, Sydney University, Australia

Solution by Mihai Miculita, Oradea, Romania

Let A0, B0, C0 be the midpoints of MbMc,MaMc,MaMb and let a, b, c be the per-
pendicular bisectors of B1C1, C1A2, A1B2, respectively. Since triangle A0B0C0

is the complementary triangle of triangle MaMbMc and triangle MaMbMc is the
complementray triangle of ABC, triangles A0B0C0 and ABC are homothetic.
They have the same centroid G and at the same time G is the center of ho-
mothety with the ratio 1

4 . Let O and O0 be the centers of their circumcircles.
Thus

GO0 =
1
4
GO. (1)

Quadrilateral McMbB1C2 is cyclic, having center at A0, the midpoint of MbMc.
Thus A0B1 = A0C2, and triangle A0B1C2 is isosceles. This implies that A0 ∈ a.

On the other hand MbMc‖BC, thus OA⊥B1C2 and since a⊥B1C2 we get OA‖a.
This means that line a in triangle A0B0C0 is homologous to the radius OA of
triangle ABC and so O0 ∈ a. Analoguously it can be proved that b and c pass
through O0, the circumcenter of triangle A0B0C0.

Also solved by Daniel Lasaosa, Universidad Publica de Navarra, Spain; Oleh
Faynshteyn, Leipzig, Germany; Ricardo Barroso, University of Sevilla, Spain.
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S81. Consider the polynomial

P (x) =
n∑

k=0

1
n + k + 1

xk,

with n ≥ 1. Prove that the equation P (x2) = (P (x))2 has no real roots.

Proposed by Dorin Andrica, Babes-Bolyai University, Romania

First solution by Daniel Campos Salas, Costa Rica

Suppose there exist a real root t to the equation. Since

P (t2) ≥ 1
n + 1

> 0,

it follows that P (t2) = (P (t))2 > 0. From Cauchy-Schwarz we get(
n∑

k=0

1
n + k + 1

)(
n∑

k=0

1
n + k + 1

t2k

)
≥

(
n∑

k=0

1
n + k + 1

tk

)2

,

which implies that
n∑

k=0

1
n + k + 1

≥ 1.

However, we have

n∑
k=0

1
n + k + 1

< (n + 1)
1

n + 1
= 1,

a contradiction. It follows that the equation P (x2) = (P (x))2 has no real roots.

Second solution by John T. Robinson, Yorktown Heights, NY, USA

Consider the polynomial Q(x) = P (x2)−P (x)2. Since Q(0) = 1
(n+1)−

1
(n+1)2

> 0,
the problem is equivalent to proving the inequality P (x2) > P (x)2.

Define the vector V (x) as

V (x) =
(

xn

√
2n + 1

,
xn−1

√
2n

, . . . ,
1√

n + 1

)
.

Using vector dot product we have P (x2) = V (x) · V (x) = |V (x)|2 and

P (x) = V (x) · V (1) = |V (x)| · |V (1)| · cos α,
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where α is the angle between V (x) and V (1). Therefore

P (x)2 = |V (x)|2 · |V (1)|2 cos2 α.

Since cos2(a) ≤ 1, if we can show |V (1)|2 < 1 this will establish the inequality
P (x2) > P (x)2. Note that

|V (1)|2 = V (1) · V (1) =
1

2n + 1
+

1
2n

+ . . . +
1

n + 1
.

It can be shown that |V (1)|2 < 1 for n ≥ 1 by induction on n. For n = 1,
|V (1)|2 = 1/3 + 1/2 < 1. Next suppose that for some n:

|V (1)|2 =
1

2n + 1
+

1
2n

+ . . . +
1

n + 1
< 1.

Moving to n + 1 :

|V (1)|2 =
1

2n + 3
+

1
2n + 2

+ . . . +
1

n + 2
.

We see that we subtracted 1
n+1 , and added 1

2n+3 and 1
2n+2 . But since 1

n+1 >
1

2n+3 + 1
2n+2 , the value subtracted was larger than the values added, so |V (1)|2

is decreasing for increasing n. Therefore P (x2) > P (x)2 for all n ≥ 1, and Q(x)
has no real roots.

Third solution by Perfetti Paolo, Dipartimento di Matematica Tor Vergata Roma,
Italy

Since
xk

n + k + 1
=
∫ x

0

tk+n

xn+1
dt

the equation (P (x))2 = P (x2) becomes

1
x2n+2

∫ x2

0
tn

tn+1 − 1
t− 1

dt− 1
x2n+2

(∫ x

0
tn

tn+1 − 1
t− 1

dt
)2 .=

R(x)
x2n+2

x = 0 is not a solution of the equation for any n by 1
n+1 6=

1
(n+1)2

for any n ≥ 1.

We show that the derivative of R(x) .=
∫ x2

0 Q(t)dt−
(∫ x

0 Q(t)dt
)2 is positive for

x > 0 and negative for x < 0. This is enough together with R(0) = 0.

R′(x) = 2xQ(x2)− 2Q(x)
∫ x

0
Q(t)dt =

= 2x2n+1
( n∑

k=0

x2k −
2n∑

q=0

xq
q∑

r=0

1
n + 1 + r

· 1
n + 2 + q − r

)
=

Mathematical Reflections 2 (2008) 16



= 2x2n+1
n∑

k=0

x2k
(
1−

q∑
r=0

1
n + 1 + r

· 1
n + 2 + q − r

)
−

−x2n+1
n−1∑
q=0

x2q+1
q∑

r=0

1
n + 1 + r

· 1
n + 2 + q − r

We observe that
q∑

r=0

1
n + 1 + r

1
n + 2 + q − r

≤
n∑

r=0

1
n + 1 + r

· 1
n + 2 + q − r

≤ n + 1
(n + 1)2

≤ 1
2
(1)

For x < 0 the conclusion R′(x) < 0 immediately follows.

As for x > 0, rewrite R′(x) as

2x2n+1
n∑

k=0

x2k
(1

2
−

q∑
r=0

1
n + 1 + r

· 1
n + 2 + q − r

)
+

+2x2n+1
n∑

k=0

x2k

2
− 2x2n+1

n−1∑
q=0

x2q+1
q∑

r=0

1
n + 1 + r

· 1
n + 2 + q − r

.

The first sum over k is positive by (1). Apart from the factor 2x2n+1 we rewrite
the second and the third sums as

n∑
k=0

x2k

4
+

n∑
k=0

x2k

4
−

n−1∑
q=0

x2q+1
q∑

r=0

1
n + 1 + r

· 1
n + 2 + q − r

and by means of the AM-GM inequality we have

1
4
x2q +

1
4
x2q+2 ≥ 1

2
x2q+1 ≥ x2q+1

q∑
r=0

1
n + 1 + r

· 1
n + 2 + q − r

which again in implied by (1). The proof is completed.

Also solved by Daniel Lasaosa, Universidad Publica de Navarra, Spain; Nguyen
Manh Dung, Hanoi, Vietnam.
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S82. Let a and b be positive real numbers with a ≥ 1. Further, let s1, s2, s3 be
nonnegative real numbers for which there is a real number x such that

s1 ≥ x2, as2 + s3 ≥ 1− bx.

What is the least possible value of s1 +s2 +s3 in terms of a and b (the minimum
is taken over all possible values of x)?

Proposed by Zoran Sunic, Texas A&M University, USA

First solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Clearly, s2 + s3 ≥ s2 + s3
a = as2+s3

a ≥ 1−bx
a , where the first inequality reaches

equality iff a = 1 or s3 = 0. Therefore, s1 + s2 + s3 ≥ ax2−bx+1
a ≥ 4a−b2

4a2 , where
the second inequality reaches equality iff x = b

2a . We may consider two cases:

(1) b2 ≤ 2a. Then, we may indeed take x = b
2a , s1 = x2, s2 = 2a−b2

2a2 ≥ 0 and
s3 = 0, yielding s1 + s2 + s3 = 4a−b2

4a2 .

(2) b2 ≥ 2a. Take then x = 1
b , s1 = 1

b2
, s2 = s3 = 0, for s1 + s2 + s3 = 1

b2
.

If a lower value were possible, then an x < 1
b would exist such that 1−bx

a ≤
s2 +s3 < 1

b2
−s1 ≤ 1

b2
−x2, or x would exist such that 0 > ab2x2−b3x+b2−a =

(bx − 1)(abx − b2 + a). Note that, if x < 1
b , the first factor is negative, or the

second factor must be positive, which is absurd, since abx−b2+a < ab1
b−b2+a =

2a− b2 ≤ 0. Therefore, no value of s1 + s2 + s3 exists lower than the proposed
one in this case.

Finally note that, if b2 > 2a, then 1
b2

< 2a
4a2 < 4a−b2

4a2 , whereas if b2 < 2a, 1
b2

>
2a
4a2 > 4a−b2

4a2 , and the least value that s1 + s2 + s3 may take is min
{

1
b2

, 4a−b2

4a2

}
,

where x = min
{

1
b ,

b
2a

}
, s1 = min

{
1
b2

, b2

4a2

}
, s2 = max

{
0, 2a−b2

2a2

}
, and s3 = 0.

Second solution by John T. Robinson, Yorktown Heights, NY, USA

Since s1 ≥ x2 ≥ 0 we see that
√

s1 ≥ |x|. We may assume that x is nonnegative,
since we are minimizing s1 + s2 + s3 over all x, and for x ≥ 0, as2 + s3 ≥ 1− bx
is a less restrictive constraint than as2 + s3 ≥ 1 + bx (which is the constraint
we would have if we replaced x with −x). Therefore

0 ≤ x ≤
√

s1, − x ≥ −
√

s1, as2 + s3 ≥ 1− bx ≥ 1− b
√

s1

and
as2 + s3 + b

√
s1 ≥ 1.
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Since we are trying to minimize s1 + s2 + s3, and the LHS is the sum of terms
involving s1, s2, and s3 each of which increases for increasing s1, s2, or s3, the
minimum will be on the surface as2 + s3 + b

√
s1 = 1 in the octant s1, s2, s3 ≥ 0.

Note that since as2, s3, and b
√

s1 are all nonnegative, we require as2, s3, and
b
√

s1 ≤ 1. Next consider the s2 + s3 component of s1 + s2 + s3 - for any given
value of s1, we have as2+s3 = 1−b

√
s1, and since a ≥ 1, s2+s3 is minimized by

choosing s3 = 0. So the problem is now simplified to minimizing s1 + s2 subject
to the constraint as2 + b

√
s1 = 1.

Since
√

s1 = (1− as2)/b, we have s1 + s2 = (1−as2)2

b2
+ s2. Taking the derivative

of the RHS, we find the minimum when −2a(1−as2)
b2

+ 1 = 0, b2

2a = 1 − as2,
s2 = 1

a −
b2

2a2 . So if 1
a ≥ b2

2a2 , or 2a ≥ b2, then s1 + s2 + s3 is minimized by
choosing

s2 =
1
a
− b2

2a2
,

s1 =
(

1− as2

b

)2

=
b2

4a2
,

s3 = 0.

Otherwise, if b2 > 2a, the minimum of the quadratic (1−as2)2

b2
+ s2 occurs for

a negative value of s2, and is at its minimum value for nonnegative s2 when
s2 = 0. Therefore s1 + s2 + s3 is minimized by choosing

s1 =
1
b2

, s2 = s3 = 0.
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S83. Find all complex numbers x, y, z of modulus 1, satisfying

y2 + z2

x
+

x2 + z2

y
+

x2 + y2

z
= 2(x + y + z).

Proposed by Cosmin Pohoata, Bucharest, Romania

First solution by Magkos Athanasios, Kozani, Greece

ewrite the given relation as

(x2 + y2 + z2)
(

1
x

+
1
y

+
1
z

)
= 3(x + y + z).

Since the numbers are of unit modulus we obtain (x2 + y2 + z2)(x̄ + ȳ + z̄) =
3(x+y+z). Passing to the moduli we get either |x2+y2+z2| = 3 or x+y+z = 0.
If x + y + z = 0, because |x| = |y| = |z| = 1, the images of the numbers are
the vertices of an equilateral triangle inscribed in the unit circle. Set x =
cos a + i sin a, a ∈ [0, 2π). Then

y = x(cos 120◦ + i sin 120◦) = x

(
−1
2

+ i

√
3

2

)
,

z = x(cos 240◦ + i sin 240◦) = x

(
−1
2

+ i
−
√

3
2

)
.

If |x2 + y2 + z2| = 3, we have

|x2 + y2 + z2| = |x2|+ |y2|+ |z2|.

In this case, it is known that there exist positive reals A,B such that x2 = Ay2

and x2 = Bz2. Since |x| = |y| = |z| = 1 we get A = B = 1, hence, x2 = y2 = z2.
This means that we have one of the following possibilities:

x = y = z, x = y = −z, x = −y = z, x = −y = −z,

where |x| = 1. It is easy to verify that all of of the above triplets satisfy the
initial condition.

Second solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Clearly, x + y2+z2

x = x2+y2+z2

x = x
(
x2 + y2 + z2

)
, where x denotes the complex

conjugate of x, and we have used that the modulus of x is 1 = xx. Therefore,
the given equation is equivalent to

3 (x + y + z) = (x + y + z)
(
x2 + y2 + z2

)
.
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Taking the complex conjugate of both sides of this last equation and using it
for simplification yields

9 (x + y + z) = 3 (x + y + z)
(
x2 + y2 + z2

)
= (x + y + z)

∣∣x2 + y2 + z2
∣∣2 .

The given equation may have a solution then in one of the following two cases:

1)
∣∣x2 + y2 + z2

∣∣ = 3 =
∣∣x2
∣∣ +

∣∣y2
∣∣ +

∣∣z2
∣∣. Now, equality in the triangular

inequality forces x2, y2, z2 to define collinear vectors in the complex plane, or
x2 = y2 = z2. Note that any such triplet yields in fact a solution to the given
equation, since y2+z2

x = 2x2

x = 2x, and similarly for the other two fractions.

2) x + y + z = 0. Then, y2+z2

x = (y+z)2−2yz
x = x − 2yz

x , and similarly for the
other two fractions. Substitution in the original equation yields

0 =
yz

x
+

zx

y
+

xy

z
= xyz

(
x2 + y2 + z2

)
,

and since xyz 6= 0, then x2+y2+z2 = 0. Now, x2 = −y2−z2 = −(y+z)2+2yz =
−x2 + 2yz, and x2 = yz, and similarly y2 = zx, z2 = xy. Substitution in the
given equation yields y2+z2

x = z + y, and similarly for the other two fractions,
or all triplets x, y, z such that x + y + z = 0 and x2 + y2 + z2 = 0 are solutions
of the given equation. Now, xy + yz + zx = (x+y+z)2−x2−y2−z2

2 = 0, and thus by
Cardano-Vieta relations, x, y, z are the three roots of an equation of the form
r3 − a = 0, where a = xyz is a complex number with modulus 1, ie, x, y, z are
the three cubic roots of a complex number of modulus 1.

Therefore, all the solutions of the given equation either satisfy x2 = y2 = z2 (ie,
x = ±y and x = ±z), or x, y, z are the three cubic roots of any complex number
of modulus 1.

Third solution by Perfetti Paolo, Dipartimento di matematica Universita degli
studi di Tor Vergata, Italy

Clearing the denominators we obtain

(xy + yz + zx)(x2 + y2 + z2)− 3(xyz)(x + y + z)
xyx

= 0

and then (
1
x

+
1
y

+
1
z

)
(x2 + y2 + z2) = 3(x + y + z)

Taking the absolute value and observing that for complex numbers of modulus
one the following holds

|x + y + z| =
∣∣∣∣1x +

1
y

+
1
z

∣∣∣∣ ,
we get |x2 + y2 + z2| = 3 or x + y + z = 0 and this is possible only when the
three complex numbers are collinear or they are vertices of a equilateral triangle
inscribed in the unit circle.
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S84. Let ABC be an acute triangle and let ω and Ω be its incircle and circumcircle,
respectively. Circle ωA is tangent internally to Ω at A and tangent externally
to ω. Circle ΩA is tangent internally to Ω at A and tangent internally to ω.
Denote by PA and QA the centers of ωA and ΩA, respectively. Define the points
PB, QB, PC , QC analogously. Prove that

PAQA

BC
+

PBQB

CA
+

PCQC

AB
≥
√

3
2

.

Proposed by Cezar Lupu, Univeristy of Bucharest, Romania

First solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Denote by R, r,RA, rA the respective radii of Ω, ω,ΩA, ωA. It is clear by con-
struction that PA, QA are on segment OA, and APA = rA, AQA = RA,
yielding PAQA = RA − rA. Denote by A′, A′′ the respective points where
ωA,ΩA touch ω, it is clear that A′, A′′ are respectively on lines IPA, IQA, and
IPA = IA′ + A′PA = r + rA, IQA = QAA′′ − IA′′ = RA − r. Furthermore,
∠IAPA = ∠IAQA = ∠IAO = ∠IAC−∠OAC = A

2 −
π
2 +B = B−C

2 . Therefore,
using the theorem of the cosine,

r2 + r2
A + 2rrA = IP 2

A = IA2 + AP 2
A − 2IA ·APA cos ∠IAPA

=
r2

sin2 A
2

+ r2
A − 2

rrA cos B−C
2

sin A
2

,

r cos2
A

2
= 2rA sin

A

2

(
sin

A

2
+ cos

B − C

2

)
=

rrA

R

cos B
2 cos C

2

sin B
2 sin C

2

;

r2 + R2
A − 2rRA = IQ2

A = IA2 + AQ2
A − 2IA ·AQA cos ∠IAQA

=
r2

sin2 A
2

+ R2
A − 2

rRA cos B−C
2

sin A
2

,

r cos2
A

2
= 2RA sin

A

2

(
cos

B − C

2
− sin

A

2

)
=

rRA

R
.

We have used that sin A
2 = cos B+C

2 and r = 4R sin A
2 sin B

2 sin C
2 . Then,

PAQA = RA − rA = R cos2
A

2

(
1−

sin B
2 sin C

2

cos B
2 cos C

2

)
=

R sin A
2 cos2 A

2

cos B
2 cos C

2

;

PAQA

BC
=

cos A
2

4 cos B
2 cos C

2

=
tan B

2 + tan C
2

4
,
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and similarly PBQB
CA = tan C

2
+tan A

2
4 and PCQC

AB = tan A
2

+tan B
2

4 .

It suffices therefore to prove that tan A
2 + tan B

2 + tan C
2 ≥

√
3. But it is well

known (or easily provable using that A + B + C = π) that

tan
A

2
tan

B

2
+ tan

B

2
tan

C

2
+ tan

C

2
tan

A

2
= 1,

while application of the inequality between arithmetic and quadratic means for
any positive real numbers u, v, w yields

(u + v + w)2 ≥ (u + v + w)2

3
+ 2(uv + vw + wu),

with equality iff u = v = w, or u + v + w ≥
√

3(uv + vw + wu). The result
follows, with equality holding if and only if A = B = C, i.e. if and only if
triangle ABC is equilateral.

Also solved by Oleh Faynshteyn, Leipzig, Germany.
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Undergraduate problems

U79. Let a1 = 1 and an = an−1 +lnn. Prove that the sequence
∑n

i=1
1
ai

is divergent.

Proposed by Ivan Borsenco, University of Texas at Dallas, USA

First solution by Arin Chaudhuri, North Carolina State University, NC, USA

Note an = a1 +(a2−a1)+ · · ·+(an−an−1) = 1+ln(2)+ · · ·+ln(n) = 1+ln(n!).

From Stirling’s approximation we have

lnn! = ln(
√

2π)− n + n lnn +
1
2

lnn + cn

where cn → 0. Hence,

an = C − n + n lnn +
1
2

lnn + cn

where C = 1 + ln(
√

2π).

If n ≥ 2 then diving throughout by n lnn we have

an

n lnn
=

C

n lnn
− 1

lnn
+ 1 +

1
2n

+
cn

n lnn

Note all terms above vanish as n →∞ except 1. Hence

lim
n→∞

an

n lnn
= 1 (1)

Hence we can find an N such that for all n ≥ N

an

n lnn
≤ 2

Hence for all n ≥ N
1

2n lnn
≤ 1

an

Using the well known result that
∑∞

k=2
1

k ln k = +∞, we have
∑∞

k=1
1
ak

= +∞.

Second solution by Arkady Alt, San Jose ,California, USA

Since n! <
(

n
2

)n and an − a1 =
n∑

k=2

(ak − ak−1) =
n∑

k=2

ln k = ln n! we get

an = 1 + lnn!.
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Note that an < 1 + n ln
(n

2

)
< n lnn, n ≥ 2 ⇐⇒ 1

an
>

1
n lnn

, n ≥ 2.

Moreover,
1
an

> ln ln(n + 1) − ln lnn, for n ≥ 2 because by the Mean Value

Theorem for some cn ∈ (n, n + 1) we have

ln ln(n + 1)− ln lnn =
1

cn ln cn
<

1
n lnn

.

Hence,

n∑
k=1

1
an

= 1 +
n∑

k=2

1
an

> 1 +
n∑

i=2

(ln ln(k + 1)− ln ln k) =

= 1 + ln ln(n + 1)− ln ln 2,

and, therefore, sequence
n∑

k=1

1
an

is divergent.

Third solution by Jean Mathieux, Senegal

We have that a3 ≤ 3 ln 3. Suppose that for n > 3, an ≤ n lnn, then

an+1 ≤ n lnn + ln(n + 1) ≤ (n + 1) ln(n + 1).

So for all i > 2, 1
ai
≥ 1

i ln 1 . Also, since t → 1
t ln t is decreasing,

∫ i+1
i

1
t ln tdt ≤ 1

i ln i.
Thus

n∑
i=3

1
ai
≥
∫ n+1

3

1
t ln t

dt = ln(ln(n + 1))− ln(ln(3)).

Hence the given sequence is divergent.

Also solved by Magkos Athanasios, Kozani, Greece; Brian Bradie, Christopher
Newport University, USA; Daniel Lasaosa, Universidad Publica de Navarra,
Spain; John T. Robinson, Yorktown Heights, NY, USA; Perfetti Paolo, Di-
partimento di matematica Universita degli studi di Tor Vergata, Italy; Vicente
Vicario Garcia, Huelva, Spain; Roberto Bosch Cabrera, Faculty of Mathemat-
ics, University of Havana, Cuba.
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U80. Let f : R → R be a differentiable function at the origin satisfying f(0) = 0 and
f ′(0) = 1. Evaluate

lim
x→0

1
x

∞∑
n=1

(−1)nf
(x

n

)
.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

First solution by Brian Bradie, Christopher Newport University, USA

Because f(0) = 0 and f ′(0) = 1, we have

lim
x→0

1
x

f
(x

n

)
= lim

x→0

f(x/n)− f(0)
x

= lim
w→0

f(w)− f(0)
nw

=
1
n

f ′(0) =
1
n

.

Thus,

lim
x→0

1
x

∞∑
n=1

(−1)nf
(x

n

)
=

∞∑
n=1

(−1)n lim
x→0

1
x

f
(x

n

)
=

∞∑
n=1

(−1)n 1
n

= −
∞∑

n=1

(−1)n−1 1
n

= − ln 2.

Second solution by John T. Robinson, Yorktown Heights, NY, USA

By definition, the limit as x goes to 0 of (f(x)− f(0))/x = f(x)/x is f ′(0) = 1.
Consider f(x/n)/x: substituting y = x/n,

f(x/n)
x

=
f(y)
n · y

=
1
n
· f(y)

y
,

therefore the limit as x goes to 0 of f(x/n)
x = 1

n · f
′(0) = 1

n . It follows that the
limit being asked for is

−1 + 1/2− 1/3 + 1/4− 1/5 + · · · = − ln 2.

Also solved by Daniel Lasaosa, Universidad Publica de Navarra, Spain; Perfetti
Paolo, Dipartimento di matematica Universita degli studi di Tor Vergata, Italy.
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U81. The sequence (xn)n≥1 is defined by

x1 < 0, xn+1 = exn − 1, n ≥ 1.

Prove that limn→∞ nxn = −2.

Proposed by Dorin Andrica, Babes-Bolyai University, Romania

First solution by Ovidiu Furdui, The University of Toledo, OH

By induction it can be proved that xn < 0 for all n ≥ 1. On the other hand,
since ex − 1 ≥ x for all x ∈ R, we get that xn+1 = exn − 1 ≥ xn, and hence,
the sequence increases. It follows that x1 < xn < 0 for all n ≥ 1, and hence,
the sequence converges. If l = lim xn, then passing to the limit as n → ∞ in
the recurrence relation we obtain that l = el − 1 from which it follows that
l = 0. We calculate lim

n→∞
nxn by using Cesaro-Stolz lemma. We have, since

lim
x→0

ex−1
x = 1 and lim

x→0

x2

ex−1−x = 2, that

lim
n→∞

nxn = − lim
n→∞

n
−1
xn

= − lim
n→∞

1
1

xn
− 1

xn+1

= − lim
n→∞

xn+1 · xn

xn+1 − xn

= − lim
n→∞

exn − 1
xn

· lim
n→∞

x2
n

exn − 1− xn
= −2,

and the problem is solved.

Second solution by Brian Bradie, Christopher Newport University, USA

If xn < 0, then xn+1 = exn − 1 < 1 − 1 = 0. As we are given that x1 < 0,
it follows by induction on n that xn < 0 for all n. Moreover, it is clear that
limn→infty xn = 0 for any x1 < 0. Now, let yn = −1

2xn. Then, yn > 0 for all n,
yn → 0 and

yn+1 = −1
2
(
e−2yn − 1

)
= yn − y2

n + O(y3
n).

According to formula (8.5.3) (N. G. de Bruijn, Asymptotic Methods in Analysis,
Dover Publications Inc., New York, 1981, page 155) it follows that

yn =
1
n

+ O(n−2 lnn)

as n →∞. Therefore,

xn = − 2
n

+ O(n−2 lnn)

as n →∞, and limn→∞ nxn = −2.

Mathematical Reflections 2 (2008) 27



Solution to Mathematical Reflections Problem U81
Brian Bradie

Department of Mathematics
Christopher Newport University

Newport News, VA

Solution to Mathematical Reflections Problem U81

Problem: The sequence (xn)n≥1 is defined by

x1 < 0, xn+1 = exn − 1, n ≥ 1.

Prove that limn→∞ nxn = −2.

Solution: If xn < 0, then xn+1 = exn − 1 < 1 − 1 = 0. As we are given that
x1 < 0, it follows by induction on n that xn < 0 for all n. Moreover, the cobweb
diagram shown below illustrates that xn → 0 for any x1 < 0.

x1 x2 x3 x4
x5

xn+1 = xn

xn+1 = exn – 1

Now, let yn = − 1
2xn. Then, yn > 0 for all n, yn → 0 and

yn+1 = −1
2
(
e−2yn − 1

)
= yn − y2

n + O(y3
n).

According to formula (8.5.3) in [1, page 155], it follows that

yn =
1
n

+ O(n−2 lnn)

4

Also solved by Arin Chaudhuri, North Carolina State University, NC, USA;
Arkady Alt, San Jose, California, USA; Daniel Lasaosa, Universidad Publica de
Navarra, Spain; G.R.A.20 Math Problems Group, Roma, Italy; John T. Robin-
son, Yorktown Heights, NY, USA; Perfetti Paolo, Dipartimento di matematica
Universita degli studi di Tor Vergata, Italy.
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U82. Evaluate

lim
n→∞

n∏
k=1

(
1 +

k

n

) n
k3

.

Proposed by Cezar Lupu, Univeristy of Bucharest, Romania

First solution by Brian Bradie, Christopher Newport University, USA

Let

y =
n∏

k=1

(
1 +

k

n

)n/k3

.

Then,

ln y =
n∑

k=1

n

k3
ln
(

1 +
k

n

)
=

n∑
k=1

n

k3

( ∞∑
`=1

(−1)`−1 (k/n)`

`

)

=
∞∑

`=1

(−1)`−1 n1−`

`

(
n∑

k=1

k`−3

)

=
n∑

k=1

1
k2
− 1

2n

n∑
k=1

1
k

+
∞∑

`=3

(−1)`−1 n1−`

`

(
n∑

k=1

k`−3

)
.

Now, as n →∞,
∑n

k=1 k`−3 = O(n`−2), so

∞∑
`=3

(−1)`−1 n1−`

`

(
n∑

k=1

k`−3

)
= O(n−1)

∞∑
`=3

(−1)`−1

`
→ 0.

Additionally, as n →∞,
∑n

k=1
1
k = O(lnn), so

1
2n

n∑
k=1

1
k

= O

(
lnn

n

)
→ 0.

Finally, as n →∞,
n∑

k=1

1
k2
→

∞∑
k=1

1
k2

=
π2

6
.

Thus,

lim
n→∞

ln y =
π2

6
and lim

n→∞

n∏
k=1

(
1 +

k

n

)n/k3

= eπ2/6.
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Second solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Call Pn =
∏n

k=1

(
1 + k

n

) n
k3 . Then,

lnPn =
n∑

k=1

n

k3
ln
(

1 +
k

n

)
.

But since ln (1 + x) = x− x2

2 + x3

3 − x4

4 + ..., we may write

n

k3
ln
(

1 +
k

n

)
=

1
k2
− 1

2nk
+

1
3n2

− ...

The terms in the sum in the RHS have alternating signs and decreasing absolute
value, or

1
k2
− 1

2nk
+

1
3n2

>
n

k3
ln
(

1 +
k

n

)
>

1
k2
− 1

2nk
.

Adding over k,
1
3n

> lnPn −
n∑

k=1

1
k2

+
1
2n

n∑
k=1

1
k

> 0.

As n tends to infinity, the upper bound tends to 0, or the middle term has limit
0. Now,

ln(k)− ln(k − 1) =
∫ k

k−1

1
x

dx >
1
k

>

∫ k+1

k

1
x

dx = ln(k + 1)− ln(k),

and 1+ln(n)
2n > 1

2n

∑n
k=1

1
k > ln(n+1)

2n , and since the upper and lower bounds
tend to 0 as n grows, we conclude that limn→∞ Pn =

∑∞
k=1

1
k2 , which we may

recognize as ζ(2) = π2

6 . It follows that

lim
n→∞

n∏
k=1

(
1 +

k

n

) n
k3

= eζ(2) = e
π2

6 .

Third solution by John Mangual, New York, USA

The limit is e
π2

6 . Let S denote the limit:

S = lim
n→∞

n∏
k=1

(
1 +

k

n

) n
k3

(2)

Instead of evluating S directly, let’s examine the logarithm. By continuity of
the logarithm we can write

lnS = lim
n→∞

n∑
k=1

n

k3
ln
(

1 +
k

n

)
(3)
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Huristically speaking each term behaves like 1/k2 therefore we will subtract our
guess from the summation:

lnS − π2

6
= lim

n→∞

n∑
k=1

1
k2

[
n

k
ln
(

1 +
k

n

)
− 1
]

(4)

By Taylor’s theorem we can estimate the logarithm. For any x ∈ [0, 1] there
exists ξ ∈ [0, x] such that:

| ln(1 + x)− (x + x2/2)| < x3

(1 + ξ)2
≤ x3 (5)

This is a uniform bound on the difference. Therefore we can rewrite (3):

n∑
k=1

1
k2

[
n

k

(
k

n
− k2

n2

)
− 1
]

+
n∑

k=1

1
k2

[
n

k

[
ln
(

1 +
k

n

)
−
(

k

n
− k2

n2

)]]
(6)

By triangle inequality the second term is bounded by:

n∑
k=1

1
k2

(
k

n

)2

=
1
n

(7)

The second term also converges, despite the harmonic series:

n∑
k=1

1
k2

[
n

k

(
k

n
− k2

n2

)
− 1
]

=
1
n

n∑
k=1

1
k

= o

(
lnn

n

)
(8)

Both (6) and (7) are bounded as n →∞ so lnS − π2/6 = 0.

Also solved by Perfetti Paolo, Dipartimento di matematica Universita degli
studi di Tor Vergata, Italy; Arin Chaudhuri, North Carolina State University,
Raleigh, NC; Arkady Alt , San Jose ,California, USA; G.R.A.20 Math Prob-
lems Group, Roma, Italy; John T. Robinson, Yorktown Heights, NY, USA;
Vicente Vicario Garcia, Huelva, Spain.
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U83. Find all functions f : [0, 2] → (0, 1] that are differentiable at the origin and
satisfy f(2x) = 2f2(x)− 1, for all x ∈ [0, 1].

Proposed by Titu Andreescu, University of Texas at Dallas, USA

First solution by Li Zhou, Polk Community College, USA

Let g(x) = arccos f(x) for all x ∈ [0, 2]. Then for x ∈ [0, 1],

cos g(2x) = f(2x) = 2 cos2 g(x)− 1 = cos(2g(x)),

thus g(2x) = 2g(x). Hence, for any x ∈ [0, 2], g(x) = 2g(x/2) = 4g(x/4) =
· · · = 2ng(x/2n) for all n ≥ 1. Since g is differentiable at 0, limn→∞

g(x/2n)
x/2n = k

for some constant k. Therefore, g(x) = kx for all x ∈ [0, 2]. Considering the
range of f , we conclude that f(x) = cos(kx) with −π/4 < k < π/4. Finally, it
is easy to verify that all such functions f do satisfy the conditions.

Second solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Taking x = 0 yields f(0) = 2f2(0) − 1, or f(0) is a root of 0 = 2r2 − r − 1 =
(2r + 1)(r − 1). Since f(0) ∈ (0, 1], then f(0) = 1. Take now any ε > 0.
Obviously,

f(2ε)− f(0)
2ε

=
f2(ε)− f2(0)

ε
= (f(ε) + f(0))

f(ε)− f(0)
ε

.

If f is differentiable at the origin, it is obviously continuous at the origin, and
when ε → 0, the previous equality becomes f ′(0) = 2f(0)f ′(0) = 2f ′(0), or
f ′(0) = 0. This relation is obviously equivalent to limx→0

f(x)
x = 0.

The interval (0, 2] may be defined as the disjoint union of sets of the form
Ay =

{
y, y

2 , y
4 , y

8 , ...
}
, where y takes on all possible real values in (1, 2]. Note

that this is true since (1) Ay ∩Ay′ = ∅ iff y 6= y′, since if an element belongs to
both Ay and Ay′ , then non-positive integers a, a′ exist such that x = 2ay = 2a′y′,
and since 2y > 2 ≥ y′, and 2y′ > 2 ≥ y, then a = a′ and y = y′, and (2) for any
x ∈ (0, 2], sufficiently high integral exponents a yield 2ax > 1. The minimum of
all such exponents will obviously yield 2ax = y for some y ∈ (1, 2], and x ∈ Ay.

Take now any function (not necessarily continuous) g : (1, 2] → (0, 1]. We will
now construct a function f : [0, 2] → (0, 1] such that f(0) = 1, which satisfies
the given functional equation, and such that

(1) if x ∈ (1, 2], then f(x) = g(x),

(2) limx→0 f(x) = 1 and

(3) limx→0
f(x)−1

x = 0.
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The last two conditions are equivalent to f being differentiable at the origin
with value 1 and derivative 0. In order to construct f , for any y ∈ (1, 2],
take f(y) = g(y); we may write f(y) = cos(αyy) for some αy ∈

[
0, π

2

)
since

f(y) ∈ (0, 1]. Now,

f
(y

2

)
=

√
1 + cos(αyy)

2
=
√

cos2
(αyy

2

)
= cos

(
αy

y

2

)
,

where we have selected the positive root since f(x) ∈ (0, 1] for all x, and a
trivial exercise in induction yields f(x) = cos(αyx) for all x ∈ Ay. Repeat the
same procedure for all y ∈ (1, 2]. It is obvious that f thus constructed satisfies
the given functional equation, and condition (1). Conditions (2) and (3) are
also easily checked, since, as it is well known, cos(β) → 1 and cos(β)−1

β → 0
for any β → 0. Therefore, for any g(x) defined over (1, 2], a function f has
been constructed that satisfies the requirements of the problem, and given any
function f that satisfies the requirements of the problem, its values in (1, 2]
biunivocally determine all values of f in (0, 1]. Therefore, for any such g an f
may be constructed, and no other solutions may exist.
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U84. Let f be a three times differentiable function on an interval I, and let a, b, c ∈ I.
Prove that there exists ξ ∈ I such that

f

(
a + 2b

3

)
+f

(
b + 2c

3

)
+f

(
c + 2a

3

)
−f

(
2a + b

3

)
−f

(
2b + c

3

)
−f

(
2c + a

3

)
=

=
1
27

(a− b)(b− c)(c− a)f ′′′(ξ).

Proposed by Vasile Cirtoaje, University of Ploiesti, Romania

First solution by Arkady Alt, San Jose, California, USA

Let g (t) := f

(
a + b + c

3
+ t

)
− f

(
a + b + c

3
− t

)
and let x =

b− c

3
, y =

c− a

3
,

z =
a− b

3
then x + y + z = 0 and δ (a, b, c) := f

(
a + 2b

3

)
+ f

(
b + 2c

3

)
+

f

(
c + 2a

3

)
− f

(
2a + b

3

)
− f

(
2b + c

3

)
− f

(
2c + a

3

)
= g (x) + g (y) + g (z) .

We will consider non-trivial case where x, y, z 6= 0.

Note that if I = (p, q) then x, y, z ∈ (p1, q1) where p1 := p− a + b + c

3
and

q1 := q − a + b + c

3
and g is three times differentiable function on the inter-

val (p1, q1) .

Since g (0) = 0 and g′′ (0) = 0 then by Maclaurin’s Theorem

(1) g (t) = g′ (0) t +
g′′′ (θ) t3

6
fore some θ ∈ (p1, q1) .

Applying (1) to t = x, y, z we obtain

g (x)+g (y)+g (z) =
g′′′ (θx) x3 + g′′′ (θz) y3 + g′′′ (θz) z3

6
( because x+y+z = 0).

Since g′′′ (t) := f ′′′
(

a + b + c

3
+ t

)
+ f ′′′

(
a + b + c

3
− t

)
then

δ (a, b, c) =
1
6
∑
cyc

x3

(
f ′′′
(

a + b + c

3
+ x

)
+ f ′′′

(
a + b + c

3
− x

))
and by

Darboux’s Theorem about intermediate values of derivative for differentiable

function f ′′ we there is such ξ ∈ I such that
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∑
cyc

x3

(
f ′′′
(

a + b + c

3
+ x

)
+ f ′′′

(
a + b + c

3
− x

))
= 2

(
x3 + y3 + z3

)
f ′′′ (ξ) .

Thus δ (a, b, c) =

(
x3 + y3 + z3

)
f ′′′ (ξ)

3
and, because x3 + y3 + z3 = 3xyz, we

finally

obtain δ (a, b, c) =
1
27

(a− b) (b− c) (c− a) f ′′′ (ξ) .

Second solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Note first of all that we may choose wlog c > b > a, since exchanging any two
of these values, inverts the sign of both sides of the given equation. Define now,
for m 6= 0, and suitable parameters to be defined later ∆1,∆2 > 0, functions
f3(x), g3(x):

f3(x) =
f(x + ∆1 + ∆2)− f(x−∆1 + ∆2)− f(x + ∆1 −∆2) + f(x−∆1 −∆2)

4∆1∆2
,

g3(x) = m(x− x3) + h3.

Assume now that x3 and ∆3 > 0 are chosen in a way such that

H3 = (x3 −∆3, x3 + ∆3) ⊂ I.

Obviously, f3(x) and g3(x) are differentiable in the interval H3. Therefore, by
Cauchy’s generalization of the mean value theorem, x2 ∈ H3 exists such that

f ′3(x2) =
f3(x3 + ∆3)− f3(x3 −∆3)
g3(x3 + ∆3)− g3(x3 −∆3)

g′3(x2) =
f3(x3 + ∆3)− f3(x3 −∆3)

2∆3
.

Using now this value of x2, define functions f2(x), g2(x):

f2(x) =
f ′(x + ∆1)− f ′(x−∆1)

2∆1
,

g2(x) = m(x− x2) + h2.

Note that
f ′3(x) =

f2(x + ∆2)− f2(x−∆2)
2∆2

Assume again that ∆2 is chosen such that

H2 = (x2 −∆2, x2 + ∆2) ⊂ I.

Again, f2(x) and g2(x) are differentiable in H2, and x1 ∈ H2 exists such that

f ′2(x1) =
f2(x2 + ∆2)− f2(x2 −∆2)
g2(x2 + ∆2)− g2(x2 −∆2)

g′2(x1) =
f2(x2 + ∆2)− f2(x2 −∆2)

2∆2
=
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= f ′3(x2).

Using now this value of x1, define finally functions f1(x) = f ′′(x) and g1(x) =
m(x− x1) + h1. Note that

f ′2(x) =
f1(x + ∆1)− f1(x−∆1)

2∆1
.

If once more ∆1 is chosen so that

H1 = (x1 −∆1, x1 + ∆1) ⊂ I,

then f1(x) and g1(x) are differentiable in H1, and ξ ∈ H1 exists such that

f ′1(ξ) =
f1(x1 + ∆1)− f1(x1 + ∆1)
g1(x1 + ∆1)− g1(x1 −∆1)

g′1(ξ) =
f1(x1 + ∆1)− f1(x1 −∆1)

2∆1
=

= f ′2(x1).

Therefore, we have proved that ξ ∈ H1 ⊂ I exists such that

f ′′′(ξ) = f ′1(ξ) = f ′2(x1) = f ′3(x2) =
f3(x3 + ∆3)− f3(x3 −∆3)

2∆3
,

for suitably defined x3,∆1,∆2,∆3. Taking ∆1 = c−b
6 , ∆2 = b−a

6 , ∆3 = c−a
6 ,

x3 = a+b+c
3 , it follows that

H1,H2,H3 ⊂
(

2a + b

3
,
2c + b

3

)
⊂ I,

and inserting these very values into the form of f3(x) substituted in the expres-
sion for f ′′′(ξ), the conclusion follows. Note that this general process may be
used to find other possible values of f ′′′(x) in I by selecting other values for
x3,∆1,∆2,∆3 (always, of course, values such that H1,H2,H3 ∈ I), and that
for functions differentiable more than three times, the process may be carried
on in the same way.
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Olympiad problems

O79. Let a1, a2, . . . , an be integer numbers, not all zero, such that a1+a2+. . .+an = 0.
Prove that

|a1 + 2a2 + . . . + 2k−1ak| >
2k

3
,

for some k ∈ {1, 2, . . . n}.

Proposed by Bogdan Enescu, “B.P.Hasdeu” National College, Romania

First solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Assume that
∣∣a1 + 2a2 + ... + 2k−1ak

∣∣ ≤ 2k

3 for all k ∈ {1, 2, ..., n}, the ai being
integers. We shall prove by induction that a1 = a2 = ... = an = 0. For k = 1,
the result is trivial, since |a1| ≤ 2

3 < 1 directly results in a1 = 0. If the result is
true for i = 1, 2, ..., k − 1, then

2k

3
≥
∣∣∣a1 + 2a2 + ... + 2k−1ak

∣∣∣ = 2k−1|ak|,

yielding |ak| ≤ 2
3 < 1, and again ak = 0. All the ai are then zero, which is not

true. The result follows.

Second solution by John T. Robinson, Yorktown Heights, NY, USA

Let k be the smallest integer such that ak is non-zero, that is, a1 = a2 = . . . =
ak−1 = 0 (if k > 1) and |ak| > 0. Since ak is an integer, |ak| ≥ 1. Therefore
|a1 + 2a2 + . . . + 2k−1ak| = 2k−1|ak|, and 2k−1|ak| ≥ 2k−1 > 2

3 · 2
k−1 = 2k

3 .
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O80. Let n be an integer greater than 1. Find the least number of rooks such that
no matter how they are placed on an n×n chessboard there are two rooks that
do not attack each other, but at the same time they are under attack by third
rook.

Proposed by Samin Riasat, Notre Dame College, Dhaka, Bangladesh

First solution by Kee-Wai Lau, Hong Kong, China

We show that the least number of rooks is 2n − 1. The standard algebraic
notation of the n× n chessboard is used. By placing the rooks on a12, a13, . . .,
a1n, a21, a31, . . ., an1, we see that 2n−2 rooks are not sufficient. We will prove
by induction that 2n− 1 rooks are sufficient. For n = 2, the result is clear. We
now suppose that the result is true for n = k ≥ 1. By placing the 2k + 1 rooks
on the (k+1)×(k+1) chessboard, there is at least one row containing one rook
or no rooks. Otherwise the total number of rooks is greater than or equal to
2k + 2, which is not true. Similarly there is at least one column containing one
rook or no rooks. Select any such row and any such column and delete them
from the (k + 1)× (k + 1) chessboard. We combine the undeleted parts of the
(k + 1) × (k + 1) chessboard to obtain a k × k chessboard which contains at
least 2k− 1 rooks. Select any 2k− 1 rooks. By the induction assumption, they
are sufficient. It follows that 2k− 1 rooks are sufficient for the (k +1)× (k +1)
chessboard. This completes the solution.

Second solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

We will show by induction that 2n− 1 rooks are enough to guarantee that one
rook attacks two rooks that do not attack each other. For n = 2, the result is
obvious, since 3 rooks can only be placed in such a way that one row contains 2
rooks and one column contains 2 rooks, and the rook in the intersection of this
row and this column attacks the other two, which do not attack each other.
Assume the result is true for n = 2, 3, ...,m, and consider 2m + 1 rooks in
an (m + 1) × (m + 1) board. Clearly, there is at least one row with at most
one rook (otherwise there would be at least 2m + 2 rooks), and analogously at
least one column with at most one rook. Eliminate one such row and one such
column, and the rooks contained therein, resulting in an m×m board with at
least 2m + 1− 2 = 2m− 1 rooks. Now, if two rooks attacked each other before
the elimination, they were either in the same row or in the same column, so if
the survived the elimination, they still attack each other. Conversely, if they
attack each other after the elimination, they also attacked each other before
the elimination. But by hypothesis of induction, there is after the elimination
one rook that attacks two which do not attack each other, and the situation
was exactly the same before the elimination, completing the proof.
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Let us now see that 2n − 2 rooks are not enough to guarantee that one rook
attacks two rooks which do not attack each other: consider all squares in the
first row and first column filled, except for the intersection of the first row and
first column. Obviously, two rooks attack each other iff either they are both in
the first row, or they are both in the first column, and if one rook attacks two,
then these two also attack each other, since the intersection of the first row
and the first column is empty in the proposed distribution. So 2n− 2 rooks do
not guarantee the desired arrangement, and 2n − 1 is the number that we are
looking for.

Third solution by G.R.A.20 Math Problems Group, Roma, Italy

We will show that the least number of rooks such that the property holds in a
m× n chessboard is m + n− 1.

If the rooks are less than m + n− 1, we can place them along the first column
and along the first row but not at the top left corner (there are m + n − 2
places). The property does not hold for this displacement.

The thesis holds trivially when m + n ≤ 6, n > 1 and m > 1. Now we consider
a m×n chessboard with m+n > 6, n > 1 and m > 1. and we assume that our
thesis holds for any m′× n′ chessboard such that m′ + n′ < m + n and m′ > 1,
n′ > 1. We can assume without loss of generality that n ≥ m and therefore
n > 3. Since we have at least m + n − 1 ≥ m + 1 rooks, then there is a row
with at least two rooks. If there is at least another rook in the corresponding
colums then the property holds. Otherwise we can cancel these two columns
obtaining a m× (n− 2) chessboard with at least m + (n− 2)− 1 rooks. Since
m + n > m + (n − 2), m > 1 and n − 2 > 1, by the inductive hypothesis,
the property holds in this smaller checkboard and therefore it holds also in the
initial one.

Also solved by John T. Robinson, Yorktown Heights, NY, USA.
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O81. Let a, b, c, x, y, z ≥ 0. Prove that

(a2 + x2)(b2 + y2)(c2 + z2) ≥ (ayz + bzx + cxy − xyz)2.

Proposed by Titu Andreescu, University of Texas at Dallas

First solution by Daniel Campos Salas, Costa Rica

The inequality is trivial if any of x, y, z equals 0. Suppose that xyz 6= 0.
Therefore, dividing by (xyz)2 it follows that the inequality is equivalent to

(m2 + 1)(n2 + 1)(p2 + 1) ≥ (m + n + p− 1)2,

where (m,n, p) =
(

a
x , b

y , c
z

)
. After expanding and rearranging some terms it

follows that this inequality is equivalent to

m2n2p2 +(m2n2 +m+n)+(n2p2 +n+p)+(p2m2 +p+m) ≥ 2mn+2np+2pm.

From AM-GM it follows that m2n2 + m + n ≥ 3mn ≥ 2mn, from where it is
easy to conclude the result.

Second solution by Nguyen Manh Dung, HUS, Hanoi, Vietnam

By expanding, we have

LHS : a2b2c2 + x2b2c2 + y2c2a2 + z2a2b2 + a2y2z2 + b2z2x2 + c2x2y2 + x2y2z2,

RHS : x2y2z2 + 2xyz(abz + bcx + cay − ayz − bzx− cxy).

The inequality becomes

a2b2c2+x2b2c2+y2c2a2+z2a2b2+2xyz(ayz+bzx+cxy) ≥ 2xyz(abz+bcx+cay)

By the AM-GM inequality, we have

x2b2c2 + xyz · bzx + xyz · cxy ≥ 3xyz · xbc.

Adding two similar inequalities, we obtain

x2b2c2 + y2c2a2 + z2a2b2 + 2xyz(ayz + bzx + cxy) ≥ 2xyz(abz + bcx + cay),

and we are done. Equality holds if and only if a = b = c = x = y = z = 0.

Also solved by Daniel Lasaosa, Universidad Publica de Navarra, Spain; Nguyen
Manh Dung, Hanoi, Vietnam; John T. Robinson, Yorktown Heights, NY, USA;
Perfetti Paolo, Dipartimento di matematica Universita degli studi di Tor Ver-
gata, Italy; Salem Malikic Sarajevo, Bosnia and Herzegovina.
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O82. Let ABCD be a cyclic quadrilateral inscribed in the circle C(O,R) and let E
be the intersection of its diagonals. Suppose P is the point inside ABCD such
that triangle ABP is directly similar to triangle CDP . Prove that OP ⊥ PE.

Proposed by Alex Anderson, New Trier High School, Winnetka, USA

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Since PA
PC = PB

PD = AB
CD , point P is the intersection of two distinct Apollonius’

circles constructed by taking the ratios of the distances to A and C for one,
B and D for the other. If AB = CD, the circles degenerate to straight lines
that meet only at one point. Otherwise, assuming wlog that AB < CD, then
the centers of both circles are on the rays CA, DB from C, B, but not on
segments CA or DB respectively. Since both points where the circles meet are
symmetric with respect to the line joining the centers of both circles, and this
line is outside ABCD, then both points cannot be in ABCD simultaneously,
and P is therefore unique.

If AB ‖ CD, then ABCD is an isosceles trapezoid, and P = E, or line PE
cannot be defined. Assume henceforth then that AB and CD are not parallel,
and call F = AB∩CD. Assume furthermore wlog that BC < DA (if BC = DA
then ABCD would be an isosceles trapezium and AB ‖ CD, which we are
assuming not to be true). Obviously, line EF contains all points Q such that
the distances from Q to lines AB and CD, respectively d(Q,AB) and d(Q,CD),
satisfy d(Q,AB)

d(Q,CD) = AB
CD , since it contains E and passes through the intersection

of both lines, and trivially AEB and DEC are similar, or the altitudes from
E to AB and CD are proportional to the lengths of the sides AB and CD.
Therefore, since APB and CPD are similar, the altitudes from D to AB and
CD are also proportional to AB and CD, or P ∈ EF .

We will now show that P is the point the circumcircles of ABE and CDE,
and line EF , meet. Call first P the second point where the circumcircle of
ABE and line EF meet. The power of F with respect to the circumcircle
of ABE (which is also the power of F with respect to the circumcircle of
ABCD is then FE · FP = FA · FB = FC · FD. Therefore, CDPE is also
cyclic, and P is also on the circumcircle of CDE. Now, since ABEP and
CDPE are cyclic, then ∠PAB = ∠BEF = ∠PED = ∠PCD, and similarly
∠ABP = ∠AEP = ∠CEF = ∠CDP , or indeed PAB and PCD are similar.
Note finally that, if the circumcircles of ABE and CDE where tangent, then
∠ABE = ∠BEF = π − ∠DEF = ∠DCE = ∠ABE, and ABE and CDE are
isosceles and similar, or AB ‖ CD.

Mathematical Reflections 2 (2008) 41



Call now A′, B′, C ′, D′ the second points where PD,PC, PB,PA meet the cir-
cumcircle of ABCD. Trivially, ∠ACB′ = ∠ECP = ∠EDP = ∠BDA′, or
AB′ = BA′, and similarly AC ′ = CA′, AD′ = DA′, or AA′BB′, AA′CC ′

and AA′D′D are isosceles trapezii, and AA′ ‖ BB′ ‖ CC ′ ‖ DD′. Trivially,
the diagonals AD′ and DA′ of AA′D′D meet at P , which is then in the com-
mon perpendicular bisector of AA′, BB′, CC ′, DD′, which trivially passes also
through O, and A′B′C ′D′ is the result of taking the reflection of ABCD with re-
spect to OP . Therefore, OP is the internal bisector of angles ∠APA′, ∠BPB′,
∠CPC ′ and DPD′. Now, ∠BPE = ∠BAE = ∠CDE = ∠CPE, and PE is
the internal bisector of angle ∠BPC = π − ∠BPB′, or PE is the external bi-
sector of angles ∠BPB′ and ∠CPC ′, and hence perpendicular to their internal
bisectors, ie, to OP . The proof is completed.

Remark. Note that this solution includes also the way to construct point P ,
i.e., the second point where the circumcircles of ABE and CDE meet. If both
circles are tangent, then as shown P = E, and ABCD is an isosceles trapezium
with AB ‖ CD.

Also solved by Salem Malikic Sarajevo, Bosnia and Herzegovina.

Mathematical Reflections 2 (2008) 42



O83. Let P (x) = a0x
n + a1x

n−1 + . . . + an, an 6= 0, be a polynomial with complex
coefficients such that there is an m with∣∣∣∣am

an

∣∣∣∣ > (n

m

)
.

Prove that the polynomial P has at least a zero with the absolute value less
than 1.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

First solution by Perfetti Paolo, Dipartimento di Matematica Tor Vergata Roma,
Italy

If x1, x2, . . . , xn are the roots of P (x) = 0, by the Viète’s formulae

am

a0
= (−1)m

∑
x1x2 . . . xm,

an

a0
= (−1)nx1x2 . . . xn

hence ∑ 1
|x1| |x2| . . . |xn−m|

≥
∣∣∣∣∑ 1

x1x2 . . . xn−m

∣∣∣∣ = ∣∣∣∣am

an

∣∣∣∣ > (n

m

)
If ε = min1≤k≤n{|xi|} we have

1
εn−m

(
n

n−m

)
≥
∑ 1

|x1| |x2| . . . |xn−m|
>

(
n

m

)
and then ε < 1. The proof is completed.

Second solution by G.R.A.20 Math Problems Group, Roma, Italy

The zeros of the polynomial

Q(x) = anxn + an−1xn−1 + · · ·+ a0

are {1/wk, k = 1, . . . , n} (note that wk 6= 0 because an 6= 0).

By Vieta’s formula ∣∣∣∣am

an

∣∣∣∣ = ∑
I∈In−m

∏
k∈I

1
|wk|

where In−m is the set of all subsets of {1, 2, . . . , n} such that |In−m| = n−m.
If all zeros of P has the absolute value greater or equal than 1 then 1/|wk| ≤ 1
and for any integer m ∈ [0, n− 1]∣∣∣∣am

an

∣∣∣∣ ≤ ∑
I∈In−m

1 =
(

n

n−m

)
=
(

n

m

)
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and this contradicts the hypothesis.

Third solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Denote by r1, r2, . . . , rn zeros of P (x), and assume without out loss of generality
that a0 = 1, since we may divide all coefficients of P (x) by a0 without changing
the conditions of the problem. For the value of m such that

∣∣∣am
an

∣∣∣ >
(

n
m

)
, call

s1, s2, . . . , s(n
m) the products of each subset of exactly m roots in some order.

Clearly, am is the sum of the sk, and using the triangular inequality,

|an| <

∣∣∣∣∣∣
∑(n

m)
k=1 sk(

n
m

)
∣∣∣∣∣∣ ≤

∑(n
m)

k=1 |sk|(
n
m

) ,

and without loss of generality max |sk| = |s1| > |an|, where again without loss
of generality s1 = r1r2 · · · rm. Therefore,

|rm+1rm+2 · srn| =
|r1r2 . . . rn|

|s1|
< 1,

and at least one of |rm+1|, |rm+2|, . . . , |rn| is less than 1.

Mathematical Reflections 2 (2008) 44



O84. Let ABCD be a cyclic quadrilateral and let P be the intersection of its di-
agonals. Consider the angle bisectors of the angles ∠APB, ∠BPC, ∠CPD,
∠DPA. They intersect the sides AB,BC,CD,DA at Pab, Pbc, Pcd, Pda, respec-
tively and the extensions of the same sides at Qab, Qbc, Qcd, Qda, respectively.
Prove that the midpoints of PabQab, PbcQbc, PcdQcd, PdaQda are collinear.

Proposed by Mihai Miculita, Oradea, Romania

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

The internal bisector of angles ∠APB and ∠CPD is the same straight line,
which passes through P, Pab, Pcd, Qbc, Qda. Clearly, the internal bisector of
∠BPC and ∠DPA passes through P, Pbc, Pda, Qab, Qcd. Trivially, both internal
bisectors meet perpendicularly at P since ∠APB +∠BPC = π. Therefore, tri-
angles PabPQab, PbcPQbc, PcdPQcd and PdaPQda are right triangles, and the
respective midpoints Oab, Obc, Ocd, Oda of PabQab, PbcQbc, PcdQcd, PdaQda, are
their respective circumcenters.

Now, without loss of generality ∠BPQab = π−∠APB
2 and ∠APQab = π+∠APB

2 ,
or

AQab sin∠AQabP

AP
= sin∠APQab = sin∠BPQab =

BQab sin∠BQabP

BP
,

and AQab
BQab

= AP
BP = APab

BPab
, and the circumcircle of PabPQab is defined as the

Apollonius circle such that AX
BX = AP

BP .

Note that, denoting by rab the circumradius of PabPQab, we find

OabA− rab

rab −OabB
=

PabA

PabB
=

QabA

QabB
=

OabA + rab

OabB + rab
,

leading to OabA · OabB = r2
ab, and A is the result of performing the inversion

of B with respect to the circumcircle of PabPQab.

Denote by O and R the circumcenter and thecircumradius of ABCD. Then
the power of Oab with respect to the circumcircle of ABCD is OO2

ab − R2 =
OabA·OabB = r2

ab, and the circumcircles of ABCD and PabPQab are orthogonal.
In an entirely analogous manner, we deduce that the circumcircle of ABCD is
orthogonal to the circumcircles of PabPQab, PbcPQbc, PcdPQcd and PdaPQda.
For each pair of these circles, O is then in their radical axis, and since each
pair of circles meet at P , they either meet at a second point P ′ also on OP , or
they are pairwise tangent at P . In the first case, the centers Oab, Obc, Ocd, Oda

of the four circles are on the perpendicular bisector of PP ′, and in the second
case, on the perpendicular to OP through P . The conlusion follows.
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