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PROBLEM DEPARTMENT

ASHLEY AHLIN AND HAROLD REITER∗

DRAFT - Fall 2011
This department welcomes problems believed to be new and at a level appropriate for the readers

of this journal. Old problems displaying novel and elegant methods of solution are also invited.

Proposals should be accompanied by solutions if available and by any information that will assist

the editor. An asterisk (*) preceding a problem number indicates that the proposer did not submit a

solution.

All correspondence should be addressed to Harold Reiter, Department of Mathematics, Univer-

sity of North Carolina Charlotte, 9201 University City Boulevard, Charlotte, NC 28223-0001 or sent

by email to hbreiter@uncc.edu. Electronic submissions using LATEX are encouraged. Other elec-

tronic submissions are also encouraged. Please submit each proposal and solution preferably typed

or clearly written on a separate sheet (one side only) properly identified with name, affiliation, and

address. Solutions to problems in this issue should be mailed to arrive by March 1, 2012. Solutions

identified as by students are given preference.

Problems for Solution.

1243. Proposed by M. B. Kulkarni, B. Y. K. College, Nasik India and M. N.
Deshpande, Nagpur, India

We toss an unbiased coin n times. The results of the random experiment are
written in a linear array. Suppose Rn and Xn respectively denote the number of
runs of like symbols and number of double HH’s (overlapping allowed). Show that
Cov(Rn, Xn) = −n+1

8 .

1244. Proposed by Cecil Rousseau, University of Memphis, Memphis, TN.

The function cos(log x) has an interesting property: its nth derivative is given
simply by

dn

dxn
cos(log x) =

an cos(log x)− bn sin(log x)
xn

,

where an and bn are integers.
1. Prove the last statement.
2. Find recurrences for (an) and (bn), and use them to construct a table (n, an, bn)

for n = 1, 2, . . . , 10.

3. The unsigned Stirling number of the first kind
[

n
k

]
is the number of permu-

tations of [n] that have k cycles. Use the change of basis identity

xn =
∑

k

[
n
k

]
(−1)n−kxk,

to prove

an = (−1)n
∑

k

[
n
2k

]
(−1)k and bn = (−1)n+1

∑
k

[
n

2k + 1

]
(−1)k.

Provide a combinatorial interpretation of an and bn.

∗University of North Carolina Charlotte
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Note. The author gratefully acknowledges the assistance of Floridia Jackson in the
early phase of the exploration that led to this problem proposal.

1245. Proposed by Stanley Rabinowitz, MathPro Press, Chelmsford, MA)

Let ABC be an equilateral triangle with edge length c inscribed in a circle. Let P

be a point on minor arc
_

AB . Let PA = a and PB = b. Is it possible for a, b, and c
to all be distinct positive integers?
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1246. Proposed by Bessem Samet, Tunis College of Sciences, Tunisia.

Characterize the set of functions f : (0,∞) → (0,∞) satisfying the following
properties:

(a) f is a bounded function,
(b) f is of class C2 on (0,+∞), and
(c) xg′′(x) + (1 + xg′(x))g′(x) ≥ 0, ∀x > 0, where g(x) = ln(f(x)).

1247. Proposed by Proposed by H. A. ShahAli, Tehran, IRAN.

Given integers k and m with 1 < k < m; also given m vectors of a finite dimen-
sional vector space such that the sum of every k vectors is equal to k times one of the
vectors. Prove that all of the vectors are equal.

1248. Proposed by José Luis Dı́az-Barrero, Universidad Politécnica de Cataluña,
Barcelona, Spain.

Let Tn be the nth triangular number defined by Tn =
(
n+1

2

)
for all n ≥ 1.

Show that for all integers k ≥ 2, the sequence {T k
n}n≥1 does not contain any infinite

subsequence with all terms in arithmetic progression.

1249. Proposed by Peter Linnell, Vinginia Polytechnic University, Blacksburg,
VA. This was problem 5 on the annual VPI Regional College Math Contest, 1994.

Let f : Z× Z → R be a function which satisfies f(0, 0) = 1 and

f(m,n) + f(m + 1, n) + f(m,n + 1) + f(m + 1, n + 1) = 0

for all m,n ∈ Z (where Z and R denote the set of all integers and all real numbers,
respectively). Prove that |f(m,n)| ≥ 1/3, for infinitely many pairs of integers (m,n).
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1250. Proposed by Ayoub B. Ayoub, Pennsylvania State University, Abington
College, Abington, PA.

If on the sides of an arbitrary triangle ABC three similar triangles AKB, BLC,
and CNA are drawn outward (or inward), then the triangles KLN and ABC have
the same centroid G.

1251. Proposed by Arthur Holshouser, Charlotte, NC.

This problem appeared on the 2011 Lower Michigan Mathematics Competition.

The operator (R,�) on the real numbers R is defined by

x� y =
xy

xy + (1− x) (1− y)

when xy + (1− x) (1− y) 6= 0. x� y is not defined when xy + (1− x) (1− y) = 0.

1. Show that (R,�) has an identity I ∈ R such that x � I = I � x = x for all
x ∈ R.

2. Show that each x ∈ R\ {0, 1} has an inverse x−1 such that x�x−1 = x−1�x =
I.

3. Show that (R,�) is both commutative and associative when all operations
involved are defined.

4. Show that for all x ∈ R, x � x � · · · � x (n-times) is always defined and
x� x� · · · � x (n-times) = xn

xn+(1−x)n .

5. Discuss the possibility of “patching up” (R,�) so that (R,�) is a true group.

1252. Proposed by Neculai Stanciu, Emil Palade Secondary School, Buzau, Ro-
mania.

Let p be a prime not 2 or 5, let a be a digit and let m and n be positive integers.
Show that there exist infinitely many numbers of type A = a · pn whose last m digits
are 0 . . . 0a.

1253. Proposed by Arthur Holshouser, Charlotte, NC and Patrick Vennebush,
NCTM, Reston, VA.

Let P be a 2n-sided regular polygon. Suppose k ≥ 3 points are randomly and
uniformly selected from the boundary of P . Find the probability that the convex hull
of the k points includes the center of P .

1254. Proposed by Perfetti Paolo, Dipartimento di matematica, Università degli
Studi di Roma “Tor Vergata”, Rome, Italy.

Let [a] the integer part of a and {a} = a− [a]. Evaluate

∫ 1

0

∫ 1

0

{
x
y

}
[

x
y

]
+ 1

dxdy −
∫ 1

x=0

∫ x

y=0

ln
[
x

y

]
dxdy

Solutions. The editors regret that the spring issue of the Journal, we failed to
acknowledge solutions of problem 1232A by Joseph Dence.

1235. Proposed by Parviz Khalili, Christopher Newport University, Newport News,
VA.
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Let x, y, and z be positive real numbers such that x + y + z = 1. Show that

1
x

+
1
y

+
1
z
≥ 3 + 2

√
xx yy zz

x y z
.

Solution by Dorottya Fekete, ‘Fejéntaláltuka Szeged’ problem solving group,
University of Szeged, Hungary.

We know that 1 = x+y + z, so the left-hand side of the inequality can be written
in the following way:

x + y + z

x
+

x + y + z

y
+

x + y + z

z
=

x

x
+

y

x
+

z

x
+

x

y
+

y

y
+

z

y
+

x

z
+

y

z
+

z

z

= 3 +
x

y
+

y

x
+

z

y
+

y

z
+

x

z
+

z

x

Subtracting 3 from both sides, then dividing them by 2:

y
x + z

x

2
+

x
y + z

y

2
+

x
z + y

z

2
≥
√

xxyyzz

xyz
. (0.1)

The right-hand side of the inequality can be simplified as follows:√
xxyyzz

xyz
=

1

x
1−x
2 y

1−y
2 z

1−z
2

.

But 1 = x + y + z, thus:

1

x
1−x
2 y

1−y
2 z

1−z
2

=
1

x
y+z
2 y

x+z
2 z

x+y
2

=
(

1
x

) y+z
2
(

1
y

) x+z
2
(

1
z

) x+y
2

.

Since y+z
2 + x+z

2 + x+y
2 = 1, we can apply the inequality of weighted arithmetic and

geometric means, hence we get that(
1
x

) y+z
2
(

1
y

) x+z
2
(

1
z

) x+y
2

≤ y + z

2
1
x

+
x + z

2
1
y

+
x + y

2
1
z

=
y
x + z

x

2
+

x
y + z

y

2
+

x
z + y

z

2
,

where the last expression is exactly the left-hand side of (0.1).
Equality holds if and only if x = y = z = 1

3 . This completes the proof.

Also solved by Paul S. Bruckman, Nanaimo, BC; Hongwei Chen, Christopher Newport

University, Newport News, VA; Moti Levy, Rehovot, Israel; David E. Manes, Oneonta, NY;

Yoshinobu Murayoshi, Naha City, Okinawa, Japan; Paolo Perfetti, Dipartimento di matemat-

ica, Università degli Studi di Roma “Tor Vergata”, Rome, Italy; Henry Ricardo, Tappan, NY; and

the Proposer.

1236. Proposed by Mohsen Soltanifar, University of Saskatchewan, Saskatoon,
Canada.

Prove or give a counterexample: Let Ui(1 ≤ i ≤ n), be finite dimensional sub-
spaces of a vector space V . Then, the dimension of

∑n
i=1 Ui is given by:
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dim(
∑n

i=1 Ui) =
∑n

r=1(−1)r+1
∑

i1<i2<...<ir:n dim(Ui1 ∩ Ui2 ∩ ... ∩ Uir
),

where the summation
∑

i1<i2<...<ir:n dim(Ui1 ∩Ui2 ∩ ...∩Uir ) is taken over all of the(
n
r

)
possible subsets of the set 1, 2, ..., n.

Solution by Kathleen E. Lewis, University of the Gambia, Brikama, Republic
of the Gambia.

The statement is not true. Consider the following subspaces of R3 :

U1 = {(a, 0, 0) : a ∈ R}, U2 = {(0, a, 0) : a ∈ R}, U3 = {(a, a, 0) : a ∈ R}.

Then U1 + U2 + U3 = {(a, b, 0) : a, b ∈ R}, which has dimension 2, but

[dim(U1)+dim(U2)+dim(U3)]−[dim(U1∩U2)+dim(U1∩U3)+dim(U2∩U3)]+dim(U1∩U2∩U3) =

(1 + 1 + 1)− (0 + 0 + 0) + 0 = 3.

Also solved by the Proposer.

1237. Proposed by Thomas Dence, Ashland University, Ashland, OH and Joseph
Dence, St. Louis, MO.

For each integer n ≥ 2, determine the values of the integrals

In,3 =
∫ π

0

sin3 x sin(nx) dx and In,5 =
∫ π

0

sin5 x sin(nx) dx.

Solution by Elsie M. Campbell, Dionne T. Bailey, Charles Diminnie, and
Andrew Siefker, Angelo State University, San Angelo, TX.

Using basic trigonometric identities, it can be shown that

sin3 x =
1
4
(3 sinx− sin 3x) (0.1)

and

sin5 x =
1
16

(20 sin3 x− 5 sinx + sin 5x). (0.2)

It can also be shown that∫ π

0

sin(mx) sin (nx) dx =

{
0, if m 6= n,
π
2 , if m = n.

(0.3)

Then, using (0.1) and (0.3),

In,3 =
∫ π

0

sin3 x sin (nx) dx

=
1
4

∫ π

0

(3 sinx− sin 3x) sin (nx) dx

=
3
4

∫ π

0

sinx sin(nx) dx− 1
4

∫ π

0

sin 3x sin (nx) dx.
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Therefore, for each integer n ≥ 2,

In,3 =

{
0, if n 6= 3,
−π

8 , if n = 3.
(0.4)

Similarly, using (0.2), (0.3), and (0.4),

In,5 =
∫ π

0

sin5 x sin (nx) dx

=
1
16

∫ π

0

(20 sin3 x + sin 5x− 5 sinx) sin (nx) dx

=
5
4

∫ π

0

sin3 x sin(nx) dx +
1
16

∫ π

0

sin 5x sin (nx) dx− 5
16

∫ π

0

sinx sin (nx) dx.

Thus, for each integer n ≥ 2,

In,5 =


0, if n 6= 3, 5,
− 5π

32 , if n = 3,
π
32 , if n = 5.

Remark: In a similar way, it can be shown that, for each integer n ≥ 2,

In,7 =


0, if n 6= 3, 5, 7,
− 21π

128 , if n = 3,
7π
128 , if n = 5,

− π
128 , if n = 7.

Also solved by Natham Aguirre, student, Binghamton University, NY; Paul S. Bruckman,

Nanaimo, BC; Cal Poly Pomona Problem Solving Group, Cal Poly Pomona, Pomona, CA;

Elsie M. Campbell, Dionne T. Bailey, Charles Diminnie, and Andrew Siefker, Angelo

State University, San Angelo, TX; Hongwei Chen, Christopher Newport University, Newport News,

VA; Pat Costello, Eastern Kentucky University, Richmond, KY; Kenny Davenport, Dallas, PA;

Alan Dyson, student, Elizabethtown College, Elizabethtown, PA; Miguel Lerma, Northwestern

University Problem Solving Group, Evanston, IL; Carl Libis, Middle Tennessee State University,

Murfreesboro, TN; Peter Lindstrom, Batavia, NY; Aaron Milauskas, Daniel Perrine, and

Kari Webster, students, Taylor University, Upland, IN; Yoshinobu Murayoshi, Naha City,

Okinawa, Japan; John R. Piccolo, J, P & R Group, Weber State University, Ogden, UT;

Skidmore College Problem Group, Saratoga Springs, NY; and the Proposer.

Solvers Pat Costello and Carl Libis pointed out that Mathematica can be used
to solve the problem.

1238. Proposed by Tuan Le, student, Fairmont High School, Fairmont, CA.

Given a, b, c, d ∈ [0, 1] such that no two of them are equal to 0. Prove that:

1
a2 + b2

+
1

b2 + c2
+

1
c2 + d2

+
1

d2 + a2
≥ 8

3 + abcd

Solution by Valmir Bucaj, student, Texas Lutheran University, Seguin, TX.
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By the AM −HM inequality we get:

1
a2 + b2

+
1

b2 + c2
+

1
c2 + d2

+
1

d2 + a2
≥ 8

a2 + b2 + c2 + d2
.

Now, to conclude the proof, it suffices to show that

a2 + b2 + c2 + d2 ≤ 3 + abcd.

First, since 0 ≤ a, b, c, d ≤ 1, then a2 + b2 + c2 + d2 ≤ a + b + c + d.
So,

a2 + b2 + c2 + d2 − abcd ≤ a + b + c + d− abcd

= a(1− bcd) + b + c + d

≤ 1− bcd + b + c + d

= 1 + b(1− cd) + c + d

≤ 1 + 1 + c(1− d) + d

≤ 1 + 1 + 1− d + d

= 3,

which concludes the proof.
Solution by Paolo Perfetti, Dipartimento di matematica, Università degli Studi

di Roma “Tor Vergata”, Rome, Italy.

By Cauchy–Schwarz we have

1
a2 + b2

+
1

b2 + c2
+

1
c2 + d2

+
1

d2 + a2
≥ 16

2(a2 + b2 + c2 + d2)
≥ 8

3 + abcd

or

a2 + b2 + c2 + d2 − 3− abcd ≤ 0

The function f(a, b, c, d) = a2 + b2 + c2 + d2 − 3− abcd is convex in each variable
(faa = fbb = fcc = fdd = 2) thus the maximum is attained at one of the sixteen
vertices of the four–dimensional cube [0, 1]4. Since f(a, b, c, d) ≤ 0 if each coordinate
equals 0 or 1, the result is achieved.

Also solved by Dionne T. Bailey, Elsie M. Campbell, Charles Diminnie, Angelo State

University, San Angelo, TX; Paul S. Bruckman, Nanaimo, BC; Tamás Dékány, ”Fejéntaláltuka

Szeged” problem solving group, University of Szeged, Hungary; Moti Levy, Rehovot,

Israel; David E. Manes, Oneonta, NY; Yoshinobu Murayoshi, Naha City, Okinawa, Japan;

Henry Ricardo, Tappan, NY; and the Proposer.

1239. Proposed by Matthew McMullen, Otterbein College, Westerville, OH.

For i ∈ {1, 2, . . . , 9}, define Di to be the set of all positive integers that begin
with i. For all positive integers n, define

an,i =
1
n
· |Di ∩ {1, 2, . . . , n}| .
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Find lim supn→∞ an,i and lim infn→∞ an,i.

Solution by R. Keith Roop-Eckart, Columbus State University, Columbus, GA.

For a given i the Supremums occur at numbers of the form k = (i + 1)10n − 1.
This is because these numbers are of the form i99...9. Increasing k does not increase
Di while decreasing k will decrease Di, so any change in k will reduce ak,i. Thus
supremums have the form (i+1)10n−1. Therefore, for k = (i+1)10n−1, the number

of numbers which begin with digit i and are not exceeding k is
n∑

j=0

10j =
1− 10n+1

−9
.

We get:

lim
n→∞

sup an,i = lim
n→∞

a(i+1)10n−1,i =
10

9(i + 1)
.

Similarly, for a given i, the Infimums occur at numbers of the form k = i ·10n−1.
This is because these numbers are of the form (i−1)99...9. Increasing k will cause Di

to increase while decreasing k will leave Di the same, so any change in k will increase
ak,i. Thus Infimums have the form k = i · 10n − 1.
Therefore, for k = i · 10n − 1, the number of numbers which begin with i and are not

exceeding k is
n−1∑
j=0

10j =
1− 10n

−9
, so ai·10n−1,i =

10n − 1
−9i · (10n − 9)

.

We get:

lim
n→∞

inf an,i = lim
n→∞

ai·10n−1,i =
1
9i

.

Solution by Alan Dyson, student, Elizabethtown College, Elizabethtown, PA.

Define an,i as follows an,i = |{1, 2, ..., 10k, 10k +1, ..., 10k+1−1}∩Di| =
k+1∑
n=1

10n−1,

i ∈ {1, 2, ..., 9} and k ≥ 0.
However, note that an,i is maximized at the lowest possible n such that

|{1, 2, ..., 10k, 10k + 1, ..., n} ∩Di| =
k+1∑
n=1

10n−1.

Likewise, an,i is minimized at the highest possible n such that

|{1, 2, ..., 10k, 10k + 1, ..., n} ∩Di| =
k∑

n=1

10n−1

As a result, an,9 ≤ an,i ≤ an,1. Let i = 1. Choose n = 2 · 10k − 1 such that

an,1 =
|{1, 2, ..., 10k, ..., 2 · 10k − 1} ∩Di|

n
=

k+1∑
n=1

10n−1

2 · 10k − 1

At this point, aj,i < an,1 ∀j > n, where i ∈ {1, 2, ..., 9}, j ∈ N.
Define Ep and bp as follows:
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Ep =

{∑k+1
n=1 10n−1

2 · 10k − 1
: k ≥ p

}
, p ∈ N

bp = sup{Ep = a2·10p−1,1}

lim sup
n→∞

an,i = lim
p→∞

bp =
10

∞∑
p=1

1
10p

1 + 90
∞∑

p=1

1
10p+1

=
5
9

Let i = 9. Choose n = 9 · 10k − 1 such that

an,9 =
|{1, 2, ..., 10k, ..., 9 · 10k − 1} ∩Di|

n
=

k∑
n=1

10n−1

9 · 10k − 1

At this point, aj,i > a9,n ∀j > n, where i ∈ {1, 2, ..., 9}, j ∈ N.
Define Gp and cp as follows:

Gp =

{∑k
n=1 10n−1

9 · 10k − 1
: k ≥ p

}
, p ∈ N

cp = inf{Gp = a9·10p−1,9}

lim inf
n→∞

an,i = lim
p→∞

cp =

∞∑
p=1

1
10p

8 + 9
∞∑

p=1

1
10p

=
1
81

Also solved by Paul S. Bruckman, Nanaimo, BC; and the Proposer.

1240. Proposed by Perfetti Paolo, Dipartimento di Matematica, Università degli
studi di Tor Vergata Roma, via della ricerca scientifica, Rome, Italy.

Let x, y be positive real numbers. Prove that

2xy

x + y
+

√
x2 + y2

2
≤ √

xy +
x + y

2
+

(L(x, y)−√xy)2
2xy
x+y

where L(x, y) = (x− y)/(ln(x)− ln(y)) if x 6= y and L(x, x) = x.

Solution by Moti Levy, Rehovot, Israel.
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Using the notation,

H =
2xy

x + y
; G =

√
xy; L = L (x, y) =

x− y

lnx− ln y
; A =

x + y

2
; M =

√
x2 + y2

2

the original inequality may be re-written as

(L−G)2

H
≥ M −A−G + H. (0.1)

Using G2

H = A, the inequality becomes(
L

G
− 1
)2

≥ M −A−G + H

A

We will later show that

M −A−G + H ≥ 0. (0.2)

Thus our goal is to prove that

L

G
≥ 1 +

√
M −A−G + H

A
. (0.3)

Remark: It is well known that L ≥ G, so inequality (0.3) is sharper version of
L
G ≥ 1.

For x = y, both sides of the inequality (0.1) are equal to zero, so w.l.o.g we may
assume that y > x.

Substitute (after Tung-Po Lin, ”The Power Mean and the Logarithmic Mean”, in
Mathematical Notes, October 1974)

y

x
=
(

1 + w

1− w

)2

, 0 ≤ w < 1

then

M −A−G + H

A
=

(
1 + w2

)√
w4 + 6w2 + 1 + w4 − 4w2 − 1

(1 + w2)2

and

L

G
=

(
1+w
1−w

)2

− 1

2
(

1+w
1−w

)
ln
(

1+w
1−w

) =
w/
(
1− w2

)
1
2 ln

(
1+w
1−w

) .

The inequality (0.3) in terms of the variable w is

w/
(
1− w2

)
1
2 ln

(
1+w
1−w

) ≥ 1 +

√
(1 + w2)

√
w4 + 6w2 + 1 + w4 − 4w2 − 1

1 + w2
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Letting

f (w) := 1 +

√
(1 + w2)

√
w4 + 6w2 + 1 + w4 − 4w2 − 1

1 + w2
,

our inequality becomes

w
1−w2

f (w)
≥ 1

2
ln
(

1 + w

1− w

)
(0.4)

We will show later that

1.643 6 ∼= 1 +
√√

2− 1 > f (w) ≥ 1 for 0 ≤ w < 1. (0.5)

The Maclaurin series of w
1−w2 and 1

2 ln
(

1+w
1−w

)
are:

w

1− w2
=

∞∑
n=0

w2n+1 (0.6)

and

1
2

ln
(

1 + w

1− w

)
=

∞∑
n=0

1
2n + 1

w2n+1. (0.7)

Now we use (0.6) and (0.7) to manipulate (0.4):

w
1−w2

f (w)
=
∑∞

n=0 w2n+1

f (w)
=

w + w3 + w5

f (w)
+
∑∞

n=3 w2n+1

f (w)
;

Since f (w) ≤ 1 +
√√

2− 1 ≤ 2n + 1 for n ≥ 3 then

w
1−w2

f (w)
≥ w + w3 + w5

f (w)
+

∞∑
n=3

1
2n + 1

w2n+1

=
w + w3 + w5

f (w)
−
(

w +
1
3
w3 +

1
5
w5

)
+

1
2

ln
(

1 + w

1− w

)

It follows that if we prove

w + w3 + w5

f (w)
−
(

w +
1
3
w3 +

1
5
w5

)
≥ 0 for 0 ≤ w < 1

or

w + w3 + w5

w + 1
3w3 + 1

5w5
≥ f (w) for 0 ≤ w < 1 (0.8)

then we are done.
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Inequality (0.8) involves only radicals, so its proof is straightforward but requires
some tedious calculations (a nice computer algebra system will do). The following
sequence of equivalent inequalities proves inequality (0.8):

1 + w2 + w4

1 + 1
3w2 + 1

5w4
≥ 1 +

√
(1 + w2)

√
w4 + 6w2 + 1 + w4 − 4w2 − 1

1 + w2

(
1 + w2

)( 1 + w2 + w4

1 + 1
3w2 + 1

5w4
− 1
)
≥
√

(1 + w2)
√

w4 + 6w2 + 1 + w4 − 4w2 − 1

12w6 + 22w4 + 10w2

3w4 + 5w2 + 15
≥
√

(1 + w2)
√

w4 + 6w2 + 1 + w4 − 4w2 − 1

(
12w6 + 22w4 + 10w2

3w4 + 5w2 + 15

)2

≥
(
1 + w2

)√
w4 + 6w2 + 1 + w4 − 4w2 − 1

(
12w6 + 22w4 + 10w2

3w4 + 5w2 + 15

)2

−
(
w4 − 4w2 − 1

)
≥
(
1 + w2

)√
w4 + 6w2 + 1

135w12 + 534w10 + 738w8 + 780w6 + 590w4 + 1050w2 + 2251
(3w4 + 5w2 + 15)2 (1 + w2)

≥
√

w4 + 6w2 + 1

(
135w12 + 534w10 + 738w8 + 780w6 + 590w4 + 1050w2 + 2251

(3w4 + 5w2 + 15)2 (1 + w2)

)2

≥ w4 + 6w2 + 1

(
135w12 + 534w10 + 738w8 + 780w6 + 590w4 + 1050w2 + 2251

)2
−
(
3w4 + 5w2 + 15

)4 (
1 + w2

)2 (
w4 + 6w2 + 1

)
≥ 0

The left hand side is the polynomial

18144w24 + 142992w22 + 475992w20 + 957 216w18 + 1387 928w16

+ 1648 000w14 + 2302 540w12 + 3320968w10 + 3268176w8 + 2758560w6

+ 2435 680w4 + 4254 600w2 + 5016 376

which is indeed non-negative for 0 ≤ w < 1. This completes the proof.

Proof of M −A−G + H ≥ 0:

It is enough to show that
(
1 + w2

)√
w4 + 6w2 + 1 +

(
w4 − 4w2 − 1

)
≥ 0 for

0 ≤ w < 1 or that (
1 + w2

)√
w4 + 6w2 + 1 ≥ 1 + 4w2 − w4
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Since 1+4w2−w4 ≥ 0 for 0 ≤ w ≤ 1, then we may square both sides of the inequality

(
1 + w2

)2 (
w4 + 6w2 + 1

)
≥
(
1 + 4w2 − w4

)2
.

But

(
1 + w2

)2 (
w4 + 6w2 + 1

)
−
(
1 + 4w2 − w4

)2
= 16w6,

hence
(
1 + w2

)√
w4 + 6w2 + 1 + w4 − 4w2 − 1 ≥ 0, which implies that

M −A−G + H

A
≥ 0.

Proof that f (w) is monotone increasing in the interval [0, 1]:

We differentiate f (w) ,

df

dw
=
(√

w4 + 6w2 + 1
(
w2 − 1

)
− w4 + 1

)
P (w)

for a certain positive function P (w) ≥ 0.

√
w4 + 6w2 + 1

(
w2 − 1

)
− w4 + 1 ≥

(
w2 − 1

)
− w4 + 1 = w2

(
1− w2

)
≥ 0.

We have shown that df
dw ≥ 0, hence f (w) is monotone increasing in [0, 1] . It follows

that 1 +
√√

2− 1 = f (1) > f (w) ≥ f (0) = 1 for 0 ≤ w < 1.

Also solved by Paul S. Bruckman, Nanaimo, BC; Hongwei Chen, Christopher Newport

University, Newport News, VA; and the Proposer.

1241. Proposed by Arthur Holshouser, Charlotte, NC. and Johannas Winterink,
Albuquerque, NM.

For each i = 0, 1, 2, 3, . . . , 8, does there exist a set {A,B,C} of three circles in
the plane such that there are exactly i circles in the plane that are tangent to each of
A,B, and C?

Solution by Richard Hess, Rancho Palos Verdes, CA. The solution is a sequence
of nine pictures, one for each value if i from 0 to 8. We give here just the picture for
i = 3. Circles A and B are externally tangent. Circles A and C are also externally
tangent. All three circles are tangent to the x-axis. Circle B hits circle C in two
places. The three circles tangent to each of A,B and C are as follows. One is in the
little ‘triangular’ region exterior to all three circles, one is internal to C and the third
is internal to B.
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Also solved by the Proposers.

1242. Proposed by Stas Molchanov, University of North Carolina Charlotte.

Given pyramid ABCD with bottom face triangle ABC with BC = a,AC =
b, AB = c. Let the lateral faces BCD,ACD,ABD form with the bottom angles
α, β, γ, in radians, all acute angles. Find the radius r of the sphere inscribed in the
pyramid.

Solution by Michael Cheung, student, Elizabethtown College, Elizabethtown,
PA.

We find the radius of the inscribed sphere by relating it to the volume of the
tetrahedron. Let AB be the area of the base, which we define to be the triangle
ABC. Let h be the corresponding height from the base to the point D. Let O be
the perpendicular projection of point D onto the base. First we compute AB by
splitting it into three smaller triangles BOC, COA, and AOB, the heights of which
are h cot α, h cot β, and h cot γ, respectively. The area of the base of the tetrahedron
is then AB = h (a cot α + b cot β + c cot γ) /2. From Heron’s formula, we also have
AB =

√
a + b− c

√
a− b + c

√
−a + b + c

√
a + b + c.
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Let P be the center of the inscribed sphere. We compute the volume of the
tetrahedron, V = ABh/3, by splitting it into four smaller tetrahedra, ABCP , BCDP ,
CDAP , and DABP , whose bases are the four sides of the original tetrahedron and
whose common height is the radius r of the inscribed sphere. Then

V =
1
3
r

[
1
2
h (a csc α + b csc β + c csc γ) + AB

]
.

Equating the two expressions for V and solving for r gives

r =
AB

1
2 (a csc α + b csc β + c csc γ) + AB/h

,

and substituting the two expressions for AB to remove the dependency on h gives

r =
√

a + b− c
√

a− b + c
√
−a + b + c

√
a + b + c

2 [a (csc α + cot α) + b (csc β + cot β) + c (csc γ + cot β)]
.
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Also solved by Eugen J. Ionascu, Columbus State University, Columbus, GA; Nikolay

Rangelov, student, Skidmore College Problem Group, Saratoga Springs, NY; and the Pro-
poser.


