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SOLUTIONSNo problem is ever permanently losed. The editor is always pleasedto onsider for publiation new solutions or new insights on past problems.Our apologies for omitting orret solutions to problem 3466 by GeorgeApostolopoulos, Messolonghi, Greee, and Paolo Perfetti, Dipartimento diMatematia, Universit �a degli studi di Tor Vergata Roma, Rome, Italy.

3475. [2009 : 463, 465℄ Proposed by Mihel Bataille, Rouen, Frane.Let ABC be an equilateral triangle with side length a, and let P be apoint on the line BC suh that AP = 2x > a. Let M be the midpoint of
AP . If BM

x
=

BP

a
= α and CM

x
=

CP

a
= β, �nd x, α, and β.Solution by Joe Howard, Portales, NM, USA.We show that x =

a√
2
, α =

1 +
√

5

2
, and β =

−1 +
√

5

2
withoutassuming that △ABC is equilateral; rather we assume that AB = BC = a,and that AP = 2x > AC with C between B and P . The equations for αand β then imply that

α =
BP

a
=

a + CP

a
= 1 +

CP

a
= 1 + β . (1)Stewart's theorem applied to △ABP and evian BM yields

AB2 · PM + BP 2 · MA = AP (BM2 + PM · MA) ,or
a2x + a2α2x = 2x(x2α2 + x2) ,whene,

a =
√

2x . (2)Stewart's theorem applied to △BMP and evian MC yields
BM2 · CP + MP 2 · BC = BP (CM2 + BC · CP ) ,or

α2x2 · aβ + x2 · a = aα(β2x2 + a · aβ) .From (2) this equation beomes α2β + 1 = α(β2 + 2β), whih upon usingthe relation in (1) beomes (β2 + 2β + 1)β + 1 = (β + 1)(β2 + 2β), andredues to
β2 + β − 1 = 0 .
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Sine β > 0, we onlude that β =

−1 +
√

5

2
. Finally, using (1) again, weget that α =

1 +
√

5

2
.Also solved by MIGUEL AMENGUAL COVAS, Cala Figuera, Mallora, Spain; GEORGEAPOSTOLOPOULOS, Messolonghi, Greee; ROY BARBARA, Lebanese University, Fanar,Lebanon; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; OLEHFAYNSHTEYN, Leipzig, Germany; OLIVER GEUPEL, Br �uhl, NRW, Germany; JOHN G. HEUVER,Grande Prairie, AB; GEOFFREY A. KANDALL, Hamden, CT, USA; V �ACLAV KONE �CN �Y, BigRapids, MI, USA (2 solutions); MADHAV R. MODAK, formerly of Sir Parashurambhau College,Pune, India; CRISTINEL MORTICI, Valahia University of Târgovi�ste, Romania; JOELSCHLOSBERG, Bayside, NY, USA; EDMUND SWYLAN, Riga, Latvia; PETER Y. WOO, Biola Uni-versity, La Mirada, CA, USA; KONSTANTINE ZELATOR, University of Pittsburgh, Pittsburgh,PA, USA; TITU ZVONARU, Com�ane�sti, Romania; and the proposer. There was one inorretsubmission.Applying Stewart's theorem to △ACP with evian CM, we dedue that a = AC, sothat △ABC is neessarily equilateral and, onsequently, the onditions stated in the problemare onsistent. Although most of the submitted solutions were based on Stewart's theorem andthe osine law, a few exploited other notable features of the on�guration suh as the yliquadrilateral ABCM and the similar triangles BMP and ACP .Bataille observed that his result provides a simple way to onstrut line segments hav-ing lengths 1+

√
5

2
and −1+

√
5

2
given an equilateral triangle ABC with sides of unit length:onstrut a unit segment CQ perpendiular to AC at C; the irle with entre A and radius

AQ =
√

2 intersets BC at P . The segments BP and CP have the desired lengths.
3476. [2009 : 463, 466℄ Proposed by Mihel Bataille, Rouen, Frane.Let ℓ be a line and O be a point not on ℓ. Find the lous of the vertiesof the retangular hyperbolas entred at O and tangent to ℓ. (A hyperbola isretangular if its asymptotes are perpendiular.)Solution by Peter Y. Woo, Biola University, La Mirada, CA, USA.Choose oordinates so that O is the origin and the equation of ℓ is
x = 1. Let R denote the family of all retangular hyperbolas with entre Othat are tangent to ℓ, and let A : (1, 0) be the foot of the perpendiularfrom O to ℓ. We will see that the desired lous is the hyperbola with theequation x2 − y2 = 1.Lemma. The area of any triangle formed by the asymptotes of a retangularhyperbola together with one of its tangents equals the square of the distanebetween the entre of the hyperbola and one of its verties.It is easier to provide a proof of this familiar result than to look up areferene: We introdue oordinates so that the retangular hyperbola hasequation xy = a2; the tangent to this hyperbola at the point (ak, a/k) is
y = − 1

k2
x +

2a

k
, whih forms with the asymptotes x = 0, y = 0 a trianglewhose verties are (0, 0), (0, 2a/k) and (2ak, 0), and whose area (for every

k) is the onstant 2a2. Sine the verties of xy = a2 are (a, a) and (−a, −a),the distane from the entre (0, 0) to a vertex is 2a2.
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Returning to the main problem, let V be the vertex of the branh forwhih x > 0 of any retangular hyperbola of R, and de�ne θ = ∠AOV .Beause OV bisets the right angle formed by the two asymptotes, the areaof the triangle these asymptotes form with the tangent ℓ is

OV 2 =
1

2
sec(45◦ − θ) sec(45◦ + θ) =

1

cos 2θ
.Hene, V lies on the urve whose polar equation is r2 =

1

cos 2θ
. We reognizethis as the retangular hyperbola x2 − y2 = 1 of R that has A as its vertex.Beause −45◦ < θ < 45◦, it is lear that every point of this hyperbola isa vertex of some member of R, whene the lous of verties is the entirehyperbola.Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greee; OLIVER GEUPEL,Br �uhl, NRW, Germany; V �ACLAV KONE �CN �Y, Big Rapids, MI, USA; MADHAV R. MODAK, for-merly of Sir Parashurambhau College, Pune, India; and the proposer.

3477. [2009 : 463, 466℄ Proposed by Mihel Bataille, Rouen, Frane.Find all funtions f : R → R suh that
x2y2

�
f(x + y) − f(x) − f(y)

�
= 3(x + y)f(x)f(y)for all real numbers x and y.Similar solutions by Edward J. Barbeau, University of Toronto, Toronto, ONand Salvatore Ingala, student, Suola Superiore di Catania, University ofCatania, Catania, Italy.We prove that the only two solutions are the zero funtion, f(x) = 0,

x ∈ R, and the ube funtion f(x) = x3, x ∈ R. Clearly these two funtionsare solutions.If f is the zero-funtion, then we are done, so heneforth we assumethat f is not the zero funtion.We �rst show that f(0) = 0.Assume for the sake of ontradition that f(0) 6= 0. Setting y = 0yields 0 = 3xf(x)f(0). Thus, f(x) = 0 for all x 6= 0. Then setting x = 1,
y = −1 we obtain f(0) = 0, a ontradition.Thus, f(0) = 0.Now setting y = −x yields

x4[−f(x) − f(−x)] = 0 ,and sine f(0) = 0 we have f(−x) = −f(x) for all x.Setting y = x for x 6= 0 yields
f(2x) =

6

x3
f(x)2 + 2f(x) .
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Now piking z 6= 0 and setting x = 2z, y = −z yields

4z4 [2f(z) − f(2z)] = 3zf(2z)f(−z) = −3zf(2z)f(z) .Hene,
4z3

�
6

z3
f(z)2

�
= 3f(z)

�
6

z3
f(z)2 + 2f(z)

� .Thus,
24z3f(z)2 = 18f(z)3 + 6z3f(z)2 ,or

z3f(z)2 = f(z)3 .Therefore, for all z 6= 0, either f(z) = 0 or f(z) = z3. We show thatif f is not the zero funtion, then f(z) = z3 for all z.Suppose, for the sake of ontradition, that f(z) = 0 for some z 6= 0.By putting y = z in the original equation we get that
x2z2[f(x + z) − f(x)] = 0 ,thus f(x + z) = f(x) for all x 6= 0.Sine f is not the zero funtion, there exists an x 6= 0 so that f(x) 6= 0.Then

x3 = f(x) = f(x + z) .whih ontradits the fat that f(x + z) = 0 or f(x + z) = (x + z)3.Thus, f(z) 6= 0 for all z 6= 0, and hene f(z) = z3 for all z 6= 0.This ompletes the proof.Also solved by ROY BARBARA, Lebanese University, Fanar, Lebanon; CHIP CURTIS,Missouri Southern State University, Joplin, MO, USA; CHARLES R. DIMINNIE, Angelo StateUniversity, San Angelo, TX, USA; OLIVER GEUPEL, Br �uhl, NRW, Germany; MADHAV R.MODAK, formerly of Sir Parashurambhau College, Pune, India; ALBERT STADLER, Herrliberg,Switzerland; and the proposer. One inorret solution and one inomplete solution were sub-mitted.
3478. [2009 : 463, 466℄ Proposed by CaoMinh Quang, Nguyen Binh KhiemHigh Shool, Vinh Long, Vietnam.Let a and b be positive real numbers. Prove that

a

b
+

b

a
+

Ê
1 +

2ab

a2 + b2
≥ 2 +

√
2 .
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Solution by Miguel Amengual Covas, Cala Figuera, Mallora, Spain.Let x =

a

b
, then

a

b
+

b

a
+

Ê
1 +

2ab

a2 + b2
= x +

1

x
+

x + 1
√

x2 + 1
.

Let f : (0, ∞) → (0, ∞) be given by f(x) = x +
1

x
+

x + 1√
x2 + 1

. From thederivative
f ′(x) = 1 − 1

x2
+

1 − x

(x2 + 1)3/2

= (x − 1)

�
x + 1

x2
− 1

(x2 + 1)3/2

�
= (x − 1)

(x + 1)
�
x2 + 1

�3/2 − x2

x2 (x2 + 1)3/2

= (x − 1)
x8 + 2x7 + 4x6 + 6x5 + 5x4 + 6x3 + 4x2 + 2x + 1

x2 (x2 + 1)3/2
�
x2 + (x + 1) (x2 + 1)3/2

�
we see that f ′(x) ≤ 0 for x ∈ (0, 1] while f ′(x) ≥ 0 for x ∈ [1, ∞).Therefore, f(1) = 2 +

√
2 is the absolute minimum value of f on (0, ∞).Equality ours if and only if a

b
= 1, that is, if and only if a = b.Also solved by ARKADY ALT, San Jose, CA, USA; GEORGE APOSTOLOPOULOS,Messolonghi, Greee; �SEFKET ARSLANAGI �C, University of Sarajevo, Sarajevo, Bosnia andHerzegovina; DIONNE BAILEY, ELSIE CAMPBELL, and CHARLES R. DIMINNIE, AngeloState University, San Angelo, TX, USAROY BARBARA, Lebanese University, Fanar, Lebanon;MICHEL BATAILLE, Rouen, Frane; BRIAN D. BEASLEY, Presbyterian College, Clinton, SC,USA; PAUL BRACKEN, University of Texas, Edinburg, TX, USA; CHIP CURTIS, Missouri South-ern State University, Joplin, MO, USA; AARON ESSNER, MARK FARRENBURG, and LUKE E.HARMON, students, Southeast Missouri State University, Cape Girardeau, MO, USA; OLEHFAYNSHTEYN, Leipzig, Germany; OLIVER GEUPEL, Br �uhl, NRW, Germany; RICHARD I. HESS,Ranho Palos Verdes, CA, USA; JOE HOWARD, Portales, NM, USA; KEE-WAI LAU, Hong Kong,China; PHIL MCARTNEY, Northern Kentuky University, Highland Heights, KY, USA; DUNGNGUYEN MANH, Student, Hanoi University of Tehnology, Hanoi, Vietnam; DRAGOLJUBMILO�SEVI �C, Gornji Milanova, Serbia; MADHAV R. MODAK, formerly of Sir ParashurambhauCollege, Pune, India; PAOLO PERFETTI, Dipartimento di Matematia, Universit �a degli studi diTor Vergata Roma, Rome, Italy; JUAN-BOSCO ROMEROM�ARQUEZ, Universidad de Valladolid,Valladolid, Spain; JOEL SCHLOSBERG, Bayside, NY, USA; BOB SERKEY, Tuson, AZ, USA;SKIDMORE COLLEGE PROBLEM SOLVING GROUP, Skidmore College, Saratoga Springs, NY,USA; ALBERT STADLER, Herrliberg, Switzerland; EDMUND SWYLAN, Riga, Latvia; PANOSE. TSAOUSSOGLOU, Athens, Greee; HAOHAO WANG and JERZY WOJDYLO, SoutheastMissouri State University, Cape Girardeau, Missouri, USA; LUKEWESTBROOK, student, South-east Missouri State University, Cape Girardeau, MO, USA; PETER Y. WOO, Biola University,La Mirada, CA, USA; TITU ZVONARU, Com�ane�sti, Romania; and the proposer. One inompletesolution was submitted and two submitted solutions were disquali�ed.
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3479. Proposed by Jonathan Shneider, student, University of TorontoShools, Toronto, ON.The real numbers x, y, and z satisfy the system of equations

x2 − x = yz + 1 ,
y2 − y = xz + 1 ,
z2 − z = xy + 1 .Find all solutions (x, y, z) of the system and determine all possible values of

xy + yz + zx + x + y + z where (x, y, z) is a solution of the system.Solution by George Apostolopoulos, Messolonghi, Greee.By subtrating the seond equation from the �rst one we obtain
x2 − y2 − x + y = z(y − x)

⇐⇒ (x + y)(x − y) − (x − y) + z(x − y) = 0

⇐⇒ (x − y)(x + y + z − 1) = 0

⇐⇒ x = y or x + y + z = 1 .Similarly, we dedue that x = z or x + y + z = 1, and that y = z or
x + y + z = 1.Thus, if x + y + z 6= 1, then x = y = z and the �rst given equationyields that x = −1. By symmetry we dedue that

(x, y, z) = (−1, −1, −1) (1)is the only solution.Otherwise x+y+z = 1, and we now lassify the solutions in this ase.Substituting z = 1−x−y into the �rst given equation and simplifyingyields
x2 + (y − 1)x + (y2 − y − 1) = 0 ,hene by the quadrati solution formula
x =

(1 − y) ±
p

−3y2 + 2y + 5

2
.Sine x is a real number, we must have D = −3y2 +2y+5 ≥ 0, whih holdsif and only if y ∈ [−1, 5

3
]. For y in this range we obtain

z = 1 − x − y =
(1 − y) ∓

√
D

2
,so that the solutions are

(x, y, z) =

�
(1 − y) ±

√
D

2
, y,

(1 − y) ∓
√

D

2

� , y ∈
h
−1,

5

3

i . (2)
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Finally, in either ase (1) or (2), it is a straightforward alulation toshow that xy + yz + zx + x + y + z = 0.Also solved by ARKADY ALT, San Jose, CA, USA; ROY BARBARA, Lebanese Univer-sity, Fanar, Lebanon; EDWARD J. BARBEAU, University of Toronto, Toronto, ON; MICHELBATAILLE, Rouen, Frane; BRIAN D. BEASLEY, Presbyterian College, Clinton, SC, USA; BAOCHANGJIN, Toronto, ON; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA;CALVIN DENG, student, William G. Enloe High Shool, Cary, North Carolina, USA; OLIVERGEUPEL, Br �uhl, NRW, Germany; MADHAV R. MODAK, formerly of Sir ParashurambhauCollege, Pune, India; CRISTINEL MORTICI, Valahia University of Târgovi�ste, Romania; PAOLOPERFETTI, Dipartimento di Matematia, Universit �a degli studi di Tor Vergata Roma, Rome,Italy; JOEL SCHLOSBERG, Bayside, NY, USA; ALBERT STADLER, Herrliberg, Switzerland;HAOHAO WANG and JERZY WOJDYLO, Southeast Missouri State University, Cape Girardeau,Missouri, USA; TITU ZVONARU, Com�ane�sti, Romania; and the proposer. One inorret solutionand four inomplete solutions were submitted.

3480. Proposed by Biana-Teodora Iordahe, Carol I National College,Craiova, Romania.Let a1, a2, . . . , an (n ≥ 3) be positive real numbers suh that
a1 + a2 + · · · + an ≥ a1a2 · · · an

�
1

a1

+
1

a2

+ · · · +
1

an

� .Prove that an
1 + an

2 + · · · + an
n ≥ an−1

1 an−1
2 · · · an−1

n . Find a neessary andsuÆient ondition for equality to hold.Comments by Oliver Geupel, Br �uhl, NRW, Germany and Albert Stadler,Herrliberg, Switzerland.Oliver Geupel omments that there is a dupliation of problem 3480with problem 880 in the College Mathematial Journal, 2008, May issue.Albert Stadler omments that problem 3480 has already been publishedby the same author as Aufgabe 1251 in Elemente der Mathematik, 2008,issue 1. The solution appeared in the same journal in 2009, issue 1.Solutions were reeived from ARKADY ALT, San Jose, CA, USA; MICHEL BATAILLE,Rouen, Frane; DUNG NGUYEN MANH, Student, Hanoi University of Tehnology, Hanoi,Vietnam; CRISTINEL MORTICI, Valahia University of Târgovi�ste, Romania; PAOLO PERFETTI,Dipartimento di Matematia, Universit �a degli studi di Tor Vergata Roma, Rome, Italy; PETERY. WOO, Biola University, La Mirada, CA, USA; and the proposer.
3481. [2009 : 464, 466℄ Proposed by Joe Howard, Portales, NM, USA.Let △ABC have at most one angle exeeding π

3
. If △ABC has area

F and side lengths a, b, and c, prove that
(ab + bc + ca)2 ≥ 4

√
3 · F

�
a2 + b2 + c2

� .
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Composite of similar solutions by Mihel Bataille, Rouen, Frane and OliverGeupel, Br �uhl, NRW, Germany.The given inequality atually holds for all triangles. Reall �rst theHadwiger-Finsler Inequality

a2 + b2 + c2 ≥ 4
√

3F + (a − b)2 + (b − c)2 + (c − a)2 , (1)two proofs of whih are given in Problem-Solving Strategies by A. Engel,Springer, 1998; pp. 173-4. We rewrite (1) as
2(ab + bc + ca) − (a2 + b2 + c2) ≥ 4

√
3F . (2)Note that

(ab + bc + ca)2

=
�
(a2 + b2 + c2) − (ab + bc + ca)

�2
− (a2 + b2 + c2)2 + 2(ab + bc + ca)(a2 + b2 + c2)

=
1

4

�
(a − b)2 + (b − c)2 + (c − a)2

�2
+
�
2(ab + bc + ca) − (a2 + b2 + c2)

�
(a2 + b2 + c2)

≥
�
2(ab + bc + ca) − (a2 + b2 + c2)

�
(a2 + b2 + c2) . (3)The result now follows from (2) and (3).It is easy to see that equality holds if and only if a = b = c; that is, ifand only if △ABC is equilateral.Also solved by GEORGE APOSTOLOPOULOS, Messolonghi, Greee; CHIP CURTIS,Missouri Southern State University, Joplin, MO, USA; OLEH FAYNSHTEYN, Leipzig, Germany;KEE-WAI LAU, Hong Kong, China; PANOS E. TSAOUSSOGLOU, Athens, Greee; PETER Y.WOO,Biola University, La Mirada, CA, USA; and the proposer.

3482. [2009 : 464, 467℄ Proposed by Jos �e Luis D��az-Barrero and JosepRubi �o-Masseg �u, Universitat Polit �enia de Catalunya, Barelona, Spain.Let an 6= 0 and p(z) =
nP

k=0

akzk be a polynomial with omplex o-eÆients and zeros z1, z2, . . . , zn, suh that |zk| < R for eah k. Provethat
nX

k=1

1È
R2 − |zk|2

≥ 2

R2

����an−1

an

���� .When does equality our?
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Solution by Mihel Bataille, Rouen, Frane.For x ∈ (0, R2), we have x(R2−x) ≤

�
x + R2 − x

2

�2 (by the AM-GMInequality). Hene,
1

√
R2 − x

≥ 2

R2

√
x ,whih still holds if x = 0. Note that equality holds if and only if x = R2 −x,that is, x =

R2

2
. It follows that

nX
k=1

1È
R2 − |zk|2

≥ 2

R2

nX
k=1

|zk| . (1)
By the triangle inequality, ����� nX

k=1

zk

����� ≤
nX

k=1

|zk| (2)
and nP

k=1

zk =
an−1

an
(Vieta's formula), hene

nX
k=1

1È
R2 − |zk|2

≥ 2

R2

����an−1

an

���� , (3)
as required.Equality holds in (1) if and only if |zk| =

R√
2
for k = 1, 2, . . . , n and in(2) if the nonzero zk's have the same argument. As a result, equality in (3) isequivalent to z1 = z2 = · · · = zn =

R√
2

· eiθ for some θ ∈ [0, 2π) that is,when p(z) is of the form an

�
z − R√

2
· eiθ

�n.Also solved by CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA;OLIVER GEUPEL, Br �uhl, NRW, Germany; ALBERT STADLER, Herrliberg, Switzerland; and theproposers. Three inomplete solutions were submitted.
3483. [2009 : 464, 467℄ Proposed by CaoMinh Quang, Nguyen Binh KhiemHigh Shool, Vinh Long, Vietnam.Letn ≥ 3 be an integer and let x1, x2, . . . , xn be positive real numbers.Prove that�

x1

x2

�n−2

+

�
x2

x3

�n−2

+ · · · +

�
xn

x1

�n−2

≥ x1 + x2 + · · · + xn

n
√

x1x2 · · · xn

.
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Solution by Oliver Geupel, Br �uhl, NRW, Germany.Let

N =
(n − 3)n

2
+

n−1X
k=1

k = (n − 2)n .The arithmeti mean of the following N numbers
1, 1, 1, . . . , 1| {z }
(n−3)n

2 numbers ,
�

x1

x2

�n−2

, . . . ,

�
x1

x2

�n−2| {z }
n−1 numbers ,
�

x2

x3

�n−2

, . . . ,

�
x2

x3

�n−2| {z }
n−2 numbers , . . . , �xn−1

xn

�n−2| {z }one numberis not less than their geometri mean; that is
(n − 3)n

2
+

n−1X
k=1

(n − k)

�
xk

xk+1

�n−2

≥ N

2664x
(n−2)(n−1)
1

nQ
k=2

xn−2
k

37751/N

=
Nx1

n
√

x1x2 · · · xn

.
We obtain n variants of this inequality by yli shifts of the index k. Addingthese n inequalities and using the AM{GM Inequality again yields

(n − 3)n2

2
+

(n − 1)n

2

��
x1

x2

�n−2

+

�
x2

x3

�n−2

+ · · · +

�
xn

x1

�n−2�
≥ N

�
x1 + x2 + · · · + xn

n
√

x1x2 · · · xn

�
≥ (n − 3)n

2
· n n

√
x1x2 · · · xn

n
√

x1x2 · · · xn

+
(n − 1)n

2
· x1 + x2 + · · · + xn

n
√

x1x2 · · · xn

=
(n − 3)n2

2
+

(n − 1)n

2
· x1 + x2 + · · · + xn

n
√

x1x2 · · · xn

.The desired inequality follows immediately.Equality holds if and only if x1 = x2 = · · · = xn.Also solved by ARKADY ALT, San Jose, CA, USA;MICHEL BATAILLE, Rouen, Frane; JOEHOWARD, Portales, NM, USA; MADHAV R. MODAK, formerly of Sir Parashurambhau College,Pune, India; PETER Y. WOO, Biola University, La Mirada, CA, USA; and the proposer.
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3484⋆. Proposed by Juan-Boso Romero M�arquez, Universidad deValladolid, Valladolid, Spain.Let N be a positive integer with deimal expansion N = a1a2 . . . ar,where r is the number of deimal digits and 0 ≤ ai ≤ 9 for eah i, exeptfor a1, whih must be positive. Let s(N) = a1 + a2 + · · · + ar. Find allpairs (N, p) of positive integers suh that �s(N)

�p
= s

�
Np

�.Solution by Oliver Geupel, Br �uhl, NRW, Germany, modi�ed by the editor.We relabel the deimal expansion as N = ar−1ar−2 . . . a1a0, so that
N = ar−110

r−1 + ar−210
r−2 + · · · + a110

1 + a010
0. Then for any positiveinteger p we have

Np =

p(r−1)X
n=0

qn10n ,where
qn =

X
(k1,...,kp)∈{1,...,r}p

k1+···+kp=n

ak1
ak2

· · · akp
.

We all the number N arry-free of order p, or CF-p for short, if allthe numbers q0, q1, . . . , qp(r−1) are less than 10. This means that no arriesour in the p − 1 multipliations needed to ompute Np.If for positive integers M =
P

bk10k and N =
P

cj10
j the long mul-tipliation of MN is free of arries, then we have s(MN) = s(M)s(N), asis veri�ed by onsidering the polynomial multipliation �P bkxk

� �P
cjx

j
�and substituting x = 10. On the other hand, the digit sum dereases by 9eah time a arry ours.Therefore, a pair (N, p) is a solution if and only if N is CF-p.We observe that if N is CF-(p + 1), then N is CF-p, and furthermoredereasing any (positive) digit of a CF-p integer leaves a CF-p integer.Proposition 1 For p ≥ 5, the number N is CF-p if and only if N = 10r−1.Proof: Clearly, N = 10r−1 is CF-p.Conversely, assume that N is CF-p. Then N is CF-5 with eah digiteither zero or one. If N ontains the digit one at least twie, then zeros anbe eliminated so that a0 = ar−1 = 1, and we obtain

q2r−2 =
��{(k1, . . . , k5) ∈ {1, . . . , r}5 | k1 + · · · + k5 = 2r + 3}

��
≥

�
5

2

�
a3

0a2
r−1 = 10 ,a ontradition.Proposition 2 The number N is CF-4 if and only if it is CF-5 or N = 10k+10ℓwhere k and ℓ are distint nonnegative integers.
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Proof: The number N = 10k + 10ℓ is CF-4, sine qn ≤ max

m

� 4
m

�
= 6 foreah n.Conversely, let N be CF-4. Then eah digit of N is either zero or one.Assume that the digit one ours at least thrie, say a0 = at = ar−1 = 1,

1 < t < r − 1. Then, q2r+t−2 ≥ �4
2

��2
1

�
a0ata

2
r−1 = 12, a ontradition.Proposition 3 If N is CF-3, then ai ∈ {0, 1, 2} for eah digit ai of N , and Nontains the digit 2 if and only if N = 2 · 10r−1.Proof: Sine 33 > 9, it follows that ai ∈ {0, 1, 2} for eah i.Clearly, N = 2 · 10r−1 is CF-3.Conversely, assume that the digit 2 ours in the CF-3 number N withat least one more digit of N being nonzero.Then a number of the form N1 = 2 · 10r−1 + 1 would also be CF-3.However, for N1 we have q2r−2 =

�3
2

� · 2 · 2 · 1 = 12, a ontradition.Proposition 4 If N is CF-2, then ai ∈ {0, 1, 2, 3} for eah digit ai of N , andif N ontains the digit 3, then all other digits of N are zero or one.Proof: Sine 42 > 9, we have ai ∈ {0, 1, 2, 3} for eah i. The seondstatement follows from the fat that if N = 3 · 10r−1 +2, then qr−1 = 12.Clearly, any positive integer N is CF-1, and this observation ompletesour haraterization.One hankers for a more expliit desription of the solutions when p = 3 and N onsistsof 0's and 1's, or when p = 2. In eah of these ases Geupel exhibited in�nitely many positiveintegers N that are solutions, and in�nitely many that are not.Rihard I. Hess, Ranho Palos Verdes, CA, USA determined all solutions (N,p) with Nhaving at most 5 digits.The proposer indiated that the speial ase when p = 2 and N is a two-digit integer hadbeen posed by him earlier in the Otober 2007 issue of the journal Shool Siene Mathematis.
3485. [2009 : 465, 465℄ Proposed by Dragoljub Milo�sevi�, GornjiMilanova, Serbia.Let x, y, z be positive real numbers in the interval [0, 1]. Prove that

x

y + z + 1
+

y

x + z + 1
+

z

x + y + 1
+ (1 − x)(1 − y)(1 − z) ≤ 1 .

Comment by Paolo Perfetti, Dipartimento di Matematia, Universit �a deglistudi di Tor Vergata Roma, Rome, Italy.This is Problem 5 from the USA Mathematial Olympiad, 1980. A so-lution an be found here: http://www.artofproblemsolving.com/Resources/
Papers/MildorfInequalities.pdf.Solutions were reeived from ARKADY ALT, San Jose, CA, USA; GEORGE APOS-TOLOPOULOS, Messolonghi, Greee; �SEFKET ARSLANAGI �C, University of Sarajevo, Sarajevo,Bosnia and Herzegovina; MICHEL BATAILLE, Rouen, Frane; PAUL BRACKEN, University of
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Texas, Edinburg, TX, USA; CHIP CURTIS, Missouri Southern State University, Joplin, MO,USA; OLEH FAYNSHTEYN, Leipzig, Germany; OLIVER GEUPEL, Br �uhl, NRW, Germany; JOEHOWARD, Portales, NM, USA; PHIL MCARTNEY, Northern Kentuky University, HighlandHeights, KY, USA; ALBERT STADLER, Herrliberg, Switzerland; PANOS E. TSAOUSSOGLOU,Athens, Greee; TITU ZVONARU, Com�ane�sti, Romania; and the proposer. One inomplete so-lution was submitted.Arslanagi; Walther Janous, Ursulinengymnasium, Innsbruk, Austria; and Howard alsonoted that the problem is the same as Problem 5 of the USAMO.
3486. [2009 : 465, 467℄ Proposed by Pham Huu Du, Ballajura, Australia.Let a, b, and c be positive real numbers. Prove that

bc

a2 + bc
+

ca

b2 + ca
+

ab

c2 + ab
≤ 1

2
3

Ê
3(a + b + c)

�
1

a
+

1

b
+

1

c

� .
Solution by Paolo Perfetti, Dipartimento di Matematia, Universit �a deglistudi di Tor Vergata Roma, Rome, Italy.The inequality to be proved isXyli�1 − a2

a2 + bc

�
≤ 1

2
3

Ê
3(a + b + c)

�
1

a
+

1

b
+

1

c

� ,or
1

2
3

Ê
3(a + b + c)

�
1

a
+

1

b
+

1

c

�
+
Xyli a2

a2 + bc
≥ 3 .Applying the Cauhy{Shwarz inequality, ‖u‖2 ‖v‖2 ≥ (u · v)2, to

u =

�
a

√
a2 + bc

,
b

√
b2 + ca

,
c

√
c2 + ab

� ,
v = (

p
a2 + bc,

p
b2 + ca,

p
c2 + ab) ,we dedue thatXyli a2

a2 + bc
≥ (a + b + c)2

a2 + b2 + c2 + ab + bc + ca

=
(a + b + c)2

(a + b + c)2 − (ab + bc + ca)
.Hene, it suÆes to show that

1

2
3

Ê
3(a + b + c)

�
1

a
+

1

b
+

1

c

�
+

(a + b + c)2

(a + b + c)2 − (ab + bc + ca)
≥ 3 . (1)



477
Sine the inequality is homogeneous, wemay assume that a+b+c = 1. Then
(a, b, c)·(b, c, a) ≤ a2+b2+c2 = 1−2(ab+ac+bc), so 3(ab+ac+bc) ≤ 1.Thus, there is some 0 ≤ x ≤ 1 suh that ab + bc + ca =

1 − x2

3
. Now, ithas been shown (see Mathematial Reetions, issue 2, 2007, \On a lass ofthree{variable inequalities", by Vo Quo Ba Can) that

abc ≤ (1 − x)2(1 + 2x)

27
,and thus, (1) follows from

1

2 + x2
+

1

2
3

Ê
1 + x

(1 − x)(1 + 2x)
≥ 1 ,whih is equivalent to

1

8

1 + x

(1 − x)(1 + 2x)
−
�
1 − 1

2 + x2

�3

≥ 0 . (2)After some algebra, we see that (2) will follow from
x2(16x6 − 7x5 + 41x4 − 18x3 + 30x2 − 12x + 4) ≥ 0 .Evidently this last inequality holds, sine it is the same as

x2
�
16x6 + (41x4 − 7x5) + (18x2 − 18x3) + 4(3x2 − 3x + 1)

�
≥ 0 ,the quadrati 3x2 − 3x + 1 takes only positive values, and 0 ≤ x ≤ 1.Also solved by OLIVER GEUPEL, Br �uhl, NRW, Germany; ALBERT STADLER, Herrliberg,Switzerland; and the proposer. One inorret solution was submitted.

3487⋆. [2009 : 465, 467℄ Proposed by Neven Juri�, Zagreb, Croatia.Does the following hold for every positive integer n?
n−1X
k=0

(−1)k 1

2n − 2k − 1

�
2n − 1

k

�
= (−1)n−1 16n

8n
�2n

n

� .
Solution by George Apostolopoulos, Messolonghi, Greee, modi�ed andexpanded by the editor.The answer is Yes. We start o� by setting l = 2n − 1 − k. Then
2n − 2k − 1 = 2n − 2(2n − 1 − l) − 1 = −(2n − 2l − 1) and l takesthe values 2n − 1, 2n − 2, . . . , n as k takes the values 0, 1, 2, . . . , n − 1;respetively.
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Hene,

(−1)k 1

2n − 2k − 1

�
2n − 1

k

�
= (−1)2n−1−l 1

−(2n − 2l − 1)

�
2n − 1

l

�
= (−1)l 1

2n − 2l − 1

�
2n − 1

l

� .Thus, if S denotes the sum on the left side of the given identity, thenwe dedue that
2S =

n−1X
k=0

(−1)k 1

2n − 2k − 1

�
2n − 1

k

�
+

2n−1X
l=n

(−1)l 1

2n − 2l − 1

�
2n − 1

l

� ;
S =

1

2

2n−1X
k=0

(−1)k 1

2n − 2k − 1

�
2n − 1

k

�
=

1

2(2n − 1)

2n−1X
k=0

(−1)k
1
2

− n
1
2

− n + k

�
2n − 1

k

� . (1)We now prove a lemma.Lemma For any �xed non-integer onstant α,
nX

k=0

(−1)k α

α + k

�
n

k

�
=

n!
nQ

i=1

(α + i)

. (2)
Proof: Let An denote the left side of the identity to be proved.Then,

An =
nX

k=0

(−1)k α

α + k

�
n

k

�
= 1 +

n−1X
k=1

(−1)k α

α + k

��
n − 1

k

�
+

�
n − 1

k − 1

��
+ (−1)n α

α + n

= An−1 +
nX

k=1

(−1)k α

α + k

�
n − 1

k − 1

�
= An−1 +

α

n

nX
k=0

(−1)k k

α + k

�
n

k

�
= An−1 +

α

n

 
nX

k=0

(−1)k

�
1 − α

α + k

��
n

k

�!
= An−1 +

α

n

 
nX

k=0

(−1)k

�
n

k

�
−

nX
k=0

(−1)k α

α + k

�
n

k

�!
= An−1 −

�α

n

�
An ,
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sine nP

k=0

(−1)k
�n

k

�
= (1−1)n = 0. Hene, we obtain the reurrene relation

An =

�
n

α + n

�
An−1 . (3)

Now A1 = 1 − α

α + 1
=

1

α + 1
, so the reurrene (3) yields (2).Before ontinuing our proof, we follow the usual pratie and use thenotation (2n − 1)!! for the produt (2n − 1)(2n − 3) · · · 3 · 1 and (2n − 2)!!for the produt (2n − 2)(2n − 4) · · · 4 · 2.It is easily seen that (2n − 2)!

(2n − 3)!!
= (2n − 2)!! = 2n−1(n − 1)! and

(2n − 1)!! =
(2n)!

2nn!
.To omplete our proof we take α =

1

2
− n and replae n by 2n − 1 inthe lemma. Then we have

2n−1X
k=0

(−1)k
1
2

− n

k + 1
2

− n

�
2n − 1

k

�
=

(2n − 1)!
2n−1Q
i=1

�
1

2
− n + i

� =
(2n − 1)!�

3

2
− n

� �
5

2
− n

�
· · ·
�

4n − 1

2
− n

�
=

(−1)2n−122n−1(2n − 1)!

(2n − 3)!!(−1)(−3) · · · (−(2n − 1))

=
(−1)n−122n−1(2n − 1)!

(2n − 3)!!(2n − 1)!!
. (4)From (1) and (3) we then have

S =
(−1)n−122n−1(2n − 1)!

2(2n − 1)(2n − 1)!!(2n − 3)!!
=

(−1)n−122n−2(2n − 2)!

(2n − 1)!!(2n − 3)!!

=
(−1)n−122n−2(2n − 2)!!

(2n − 1)!!
=

(−1)n−123n−3(n − 1)!

(2n − 1)!!

=
(−1)n−123n−3n!n!

n(2n − 1)!!n!
=

(−1)n−124n−3(n!)2

n(2n)!

=
(−1)n−116n

8n
�2n

n

� ,and our proof is omplete.
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Also solved by CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; andALBERT STADLER, Herrliberg, Switzerland.Stan Wagon gave the usual omment that the proposed identity an by veri�ed by usingMathematia if one expresses the given sum in terms of the Pohhammer funtion. Curtis usedGauss' Hypergeometri funtion and the Gamma funtion, while Stadler used omplex ontourintegration, the Residue Theorem, and the Gamma funtion as well. Our featured solution isthe only elementary one submitted, though by no means easy.
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