


Junior problems

J73. Let

an =

{
n2 − n, if 4 divides n2 − n

n− n2, otherwise.

Evaluate a1 + a2 + . . . + a2008.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

First solution by Andrea Munaro, Italy

It is well known that 4 divides n2 − n if and only if n ≡ 0(mod 4) or n ≡
1(mod 4). Hence the sum is

S = ((12−1)+(2−22))+((3−32)+(42−4))+· · ·+((2007−20072)+(20082−2008)).

But n2 − n + (n + 1)− (n + 1)2 = −2n and so

S = −2·1+2·3+· · ·+2·2007 = 2((−1+3)+(−5+7)+· · ·+(−2005+2007)) = 2008.

Second solution by Ganesh Ajjanagadde, Acharya Vidya Kula, Mysore, India

By examining the residues modulo 4, we see that 4 divides n2− n if and only if
n ≡ 0 (mod 4) or n ≡ 1 (mod 4). We know a0 to be 0, by substituting n = 0.∑2008

i=0 ai can be written as

a2008 +
501∑
k=0

(a4k + a4k+1 + a4k+2 + a4k+3)

= a2008 +
501∑
k=0

[((4k)2 − 4k) + ((4k + 1)2 − (4k + 1))

− ((4k + 2)2 − (4k + 2))− ((4k + 3)2 − (4k + 3))]

= a2008 +
501∑
k=0

[−4k + 4k − 12k − 20k − 2− 6]

= a2008 +
501∑
k=0

(−32k − 8)

= 20082 − 2008− 32× 501× 502
2

− 8× 502 = 2008.
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Third solution by Brian Bradie, Newport News, VA

2008∑
n=1

an =
501∑
k=0

(a4k+1 + a4k+2 + a4k+3 + a4k+4)

=
501∑
k=0

[
(4k + 1)2 − (4k + 1) + 4k + 2− (4k + 2)2 + 4k + 3− (4k + 3)2

+(4k + 4)2 − (4k + 4)
]

=
501∑
k=0

(
16k2 + 4k − 16k2 − 12k − 2− 16k2 − 20k − 6 + 16k2 + 28k + 12

)
=

501∑
k=0

4 = 4(502) = 2008.

Also solved by Arkady Alt, San Jose, California, USA; Athanasios Magkos,
Kozani, Greece; Daniel Campos Salas, Costa Rica; Daniel Lasaosa, Universi-
dad Publica de Navarra, Spain; G.R.A.20 Math Problems Group, Roma, Italy;
John Mangual, New York, USA; John T. Robinson, Yorktown Heights, NY,
USA; Navid Safaei, Tehran, Iran; Salem Malikic, Sarajevo, Bosnia and Herze-
govina; Vicente Vicario Garcia, Huelva, Spain; Vinoth Nandakumar, Sydney
University, Australia; Sarah Burnham, Auburn University Montgomery; Jose
Hernandez Santiago, Oaxaca, Mexico; Raul A. Simon, Chile; Roberto Bosch
Cabrera, Cuba.
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J74. A triangle has altitudes ha, hb, hc and inradius r. Prove that

3
5
≤ ha − 2r

ha + 2r
+

hb − 2r

hb + 2r
+

hc − 2r

hc + 2r
<

3
2
.

Proposed by Oleh Faynshteyn, Leipzig, Germany

First solution by Arkady Alt, San Jose, California, USA

Let s be the semiperimeter in our triangle. Since 2rs = aha then 2r
ha

= a
s and∑

cyc

ha − 2r

ha + 2r
=
∑
cyc

s− a

s + a
= 2s

∑
cyc

1
s + a

− 3.

Thus

3
5
≤
∑
cyc

ha − 2r

ha + 2r
⇐⇒ 9 ≤ 5s

∑
cyc

1
s + a

=
∑
cyc

(s + a) ·
∑
cyc

1
s + a

,

where the latter inequality is an application of the Cauchy Inequality to triples(√
s + a,

√
s + b,

√
s + c

)
,

(
1√

s + a
,

1√
s + b

,
1√

s + c

)
.

Instead of proving that
∑

cyc

ha − 2r

ha + 2r
<

3
2
, we prove that

∑
cyc

ha − 2r

ha + 2r
< 1.

Let x = s − a, y = s − b, z = s − c, x, y, z > 0. Due to homogeneity we can
assume that s = x + y + z = 1, then a = 1− x, b = 1− y, c = 1− z. Thus,∑

cyc

ha − 2r

ha + 2r
< 1 ⇐⇒

∑
cyc

s− a

s + a
< 1

⇐⇒ s
∑
cyc

1
s + a

< 2

⇐⇒
∑
cyc

1
2− x

< 2

⇐⇒
∑
cyc

(2− y) (2− z) < 2 (2− x) (2− y) (2− z) .

The last expression is equivalent to∑
cyc

(4− 2 (y + z) + yz) < 2 (8− 4 (x + y + z) + 2 (xy + yz + zx)− xyz) ,

8+xy+yz+zx < 8+4 (xy + yz + zx)−2xyz ⇐⇒ 2xyz < 3 (xy + yz + zx) ,
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and the latter inequality holds since

3(xy + yz + zx) = 3 (x + y + z) (xy + yz + zx) ≥ 27xyz > 2xyz.

Second solution by G.R.A.20 Math Problems Group, Roma, Italy

We know that
2A = haa = hbb = hcc = sr

where s is the semiperimeter and A is the area of the triangle. By replacing
ha, hb, hc, r in the original equation we obtain

3
5
≤ s− a

s + a
+

s− b

s + b
+

s− c

s + c
<

3
2

that is
3
5
≤ x

x + 2y + 2z
+

y

y + 2z + 2z
+

z

z + 2x + 2y
<

3
2

where x = s−a, y = s−b, z = s−c are non-negative (and not all zero otherwise
the triangle becomes a point).

The inequality on the left is equivalent to

2
∑
sym

x2y + 2
∑
sym

xyz ≤ 4
∑
sym

x3

which holds by Muirhead’s inequality (the equality holds when x = y = z, that
is when the triangle is equilateral).

The inequality on the right is equivalent to

0 < 4
∑
sym

x3 + 52
∑
sym

x2y + 19
∑
sym

xyz

which holds because x, y and z are non-negative and not all zero.

Third solution by Salem Malikic, Sarajevo, Bosnia and Herzegovina

Let P denote the area of a triangle. Then

ha − 2r

ha + 2r
= 1− 4r

ha + 2r
= 1−

8P
a+b+c

2P
a + 4P

a+b+c

= 1−
4

a+b+c
1
a + 2

a+b+c

= 1− 4a

3a + b + c
.

Let us prove the right side of the inequality first.∑ ha − 2r

ha + 2r
= 3−

∑ 4a

3a + b + c
<

3
2
,
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which is equivalent to ∑ 4a

3a + b + c
>

3
2
.

From the Triangle Inequality we have that a < b + c thus∑ 4a

3a + b + c
>
∑ 4a

2a + b + c + b + c
=
∑ 4a

2(a + b + c)
= 2 >

3
2
.

Let us prove the left hand side next. We have

ha − 2r

ha + 2r
= 1− 4a

3a + b + c
=

b + c− a

3a + b + c
=

x + z + x + y − y − z

3(y + z) + x + z + x + y
=

x

x + 2y + 2z

where we used the substitution a = x + y, b = y + z, and c + x + y. Thus we
have to prove ∑ x

x + 2y + 2z
≥ 3

5
.

By the Cauchy Shwartz inequality we have(∑ x

x + 2y + 2z

)(∑
x(x + 2y + 2z)

)
≥ (x + y + z)2

so it is enough to prove that∑ x

x + 2y + 2z
≥ (x + y + z)2

x2 + y2 + z2 + 4(xy + yz + zx)

or
(x + y + z)2

x2 + y2 + z2 + 4(xy + yz + zx)
≥ 3

5
,

which is equivalent to

x2 + y2 + z2 ≥ xy + yz + zx,

and we are done.

Fourth solution by Vicente Vicario Garcia, Huelva, Spain

Recall the following facts:

Lemma 1. In a triangle ABC we have: ab + bc + ca = r2 + 4Rr + s2.

Lemma 2. In a triangle ABC we have:
s2

27
≥ Rr

2
≥ r2.

Returing back to our problem we have

∆ =
1
2
aha → ha =

2∆
a

=
2rs

a
etc.
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Thus

ha − 2r

ha + 2r
+

hb − 2r

hb + 2r
+

hc − 2r

hc + 2r
=

2rs
a − 2r

2rs
a + 2r

+
2rs
b − 2r

2rs
b + 2r

+
2rs
c − 2r

2rs
c + 2r

=
s− a

s + a
+

s− b

s + b
+

s− c

s + c
.

Let
s− a

s + a
+

s− b

s + b
+

s− c

s + c
=

Ω(a, b, c, s)
Ψ(a, b, c, s)

where

Ω(a, b, c, s) = (s− a)(s + b)(s + c) + (s− b)(s + a)(s + c) + (s− a)(s + b)(s + c)

= 3s3 + (a + b + c)s2 − (ab + bc + ca)s− 3abc

= 3s3 + 2s3 − (r2 + 4Rr + s2)s− 3 · 4Rrs

= s(4s2 − 16Rr − r2),

and

Ψ(a, b, c, s) = (s + a)(s + b)(s + c)

= s3 + (a + b + c)s2 + (ab + bc + ca)s + abc

= s3 + 2s3 + (r2 + 4Rr + s2)s + 4Rrs = s(4s2 + r2 + 8Rr).

Then our inequality becomes

3
5
≤ 4s2 − 16Rr − r2

4s2 + r2 + 8Rr
<

3
2
.

The left hand side of the inequality is equivalent to

13Rr + r2 ≤ s2,

and the right hand side is equivalent to

−56Rr − 5r2 < 4s2.

Using our lemmas we can conclude the result.

Also solved by Andrea Munaro, Italy; Daniel Campos Salas, Costa Rica; Daniel
Lasaosa, Universidad Publica de Navarra, Spain; Vinoth Nandakumar, Sydney
University, Australia; Samin Riasat, Notre Dame College, Dhaka, Bangladesh;
Esteban Jose Arreaga Ambeliz, Guatemala City, Guatemala; Paolo Perfetti,
Universita degli studi di Tor Vergata, Italy; Roberto Bosch Cabrera, Cuba.
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J75. Jimmy has a box with n not necessarily equal matches. He is able to construct
with them a cyclic n-gon. Jimmy then constructs other cyclic n-gons with these
matches. Prove that all of them have the same area.

Proposed by Ivan Borsenco, University of Texas at Dallas

Second solution by G.R.A.20 Math Problems Group, Roma, Italy

Two cyclic n-gons P and P ′ with the same sides, but not necessarly in the same
order, are inscribed in circles with the same radius and therefore they have the
same area (because it is equal to the sum of the areas of the n isosceles triangles
whose bases are the sides and the two other sides are equal to the radius).

Assume by contradiction that the radius R′ of the circle of P ′ is larger than the
radius R of the circle of P . On the sides of P ′ we construct the arcs of the circle
in which the P is inscribed (the arcs do not overlap because P ′ is convex). We
get a closed curve of lenght 2πR which contains an area larger than πR2. Since
among all closed curves of the same lenght, the circle is the one with the largest
area, we have a contradiction. Note that when Jimmy constructs a cyclic n-gon,
then keeping the same circle, he can swap any two adjacent sides and therefore
he can obtain any permutation of the sides.

Second solution by Mario Garcia Armas, Roberto Bosch Cabrera, Cuba

Let a1, a2, . . . , an be the n matches. We consider an arbitrary cyclic n-gon
of radius R constructed with these matches. Let βi be the central angle that
corresponds to the ai. By the Law of Cosines we have that a2

i = 2R2−2R2 cos βi.

Thus cos βi = 1 − a2
i

2R2 and we obtain βi = arccos
(
1− a2

i
2R2

)
. Let fi(x) =

arccos
(
1− a2

i
2x2

)
⇒ βi = fi(R) and let g(x) = f1(x) + f2(x) + · · · + fn(x), we

will prove that g(x) is strictly decreasing.

x < y, ⇒ 1− a2
i

2x2
< 1− a2

i

2y2

⇒ arccos
(

1− a2
i

2x2

)
> arccos

(
1− a2

i

2y2

)
⇒ fi(x) > fi(y)

It suffices to add over all of the i. The following equation has an unique solution:

g(x) = 2π,

since g(x) is continuos and strictly decreasing, the solution is x = R. It follows
that all cyclic n-gons constructed by Jimmy have the same radius and the area
of them is

S =
1
2
R2 sinβ1 +

1
2
R2 sin β2 + · · ·+ 1

2
R2 sinβn.
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Third solution by John T. Robinson, Yorktown Heights, NY, USA

Note that the triangle flipping operation illustrated by the figure is area pre-
serving (since that part of the n-gon below AC is unchanged, and the that part
above, namely the triangle ABC, still has the same area after being flipped).
Because with this operation we can construct all possible cyclic n-gons, we get
that all of them have the same area.

Also solved by Vinoth Nandakumar, Sydney University, Australia; Samin Ri-
asat, Notre Dame College, Dhaka, Bangladesh, Daniel Lasaosa, Universidad
Publica de Navarra, Spain
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J76. Let a, b, c ≥ 1 be real numbers such that a + b + c = 2abc. Prove that

3
√

(a + b + c)2 ≥ 3
√

ab− 1 + 3
√

bc− 1 + 3
√

ca− 1.

Proposed by Bruno de Lima Holanda, Fortaleza, Brazil

First solution by Athanasios Magkos, Kozani, Greece

We write the given equality as follows

1
ab

+
1
bc

+
1
ca

= 2 ⇔ ab− 1
ab

+
bc− 1

bc
+

ca− 1
ca

= 1.

Applying Hölder’s inequality to the triples (a, b, c), (b, c, a), (ab−1
ab , bc−1

bc , ca−1
ca ), we

get

(a + b + c)1/3 · (b + c + a)1/3 ·
(

ab− 1
ab

+
bc− 1

bc
+

ca− 1
ca

)1/3

≥

(
ab

ab− 1
ab

)1/3

+
(

bc
bc− 1

bc

)1/3

+
(

ca
ca− 1

ca

)1/3

=

3
√

ab− 1 + 3
√

bc− 1 + 3
√

ca− 1

and we are done.

Second solution by Vardan Verdiyan, Yerevan, Armenia

We are given that

0 ≤ (ab− 1) =
a + b− c

2c
,

thus by the AM-GM inequality

a + b + c =
∑ (a + b− c) + a + b

3
≥
∑

3
√

ab(a + b− c)

=
∑

3
√

2abc(ab− 1) =
∑

3
√

(a + b + c)(ab− 1).

Therefore 3
√

(a + b + c)2 ≥
∑

3
√

ab− 1 and we are done.

Third solution by Navid Safaei, Teheran, Iran

We have that
∑

a = 2abc and
∑ 1

ab = 2 ⇒ 3−
∑ 1

ab = 1 or
∑(

1− 1
ab = 1

)
. We

also know that a, b, c > 1. Thus each of the terms in the above sum is positive
and we can apply Holder’s Inequality to get

(a + b + c)
1
3 (b + c + a)

1
3

((
1− 1

ab

)
+
(

1− 1
bc

)
+
(

1− 1
ca

)) 1
3

Mathematical Reflections 2 (2008) 10



is greater or equal to

∑(
ab

(
1− 1

ab

)) 1
3

=
∑

3
√

ab− 1

and we are done.

Fourth solution by Paolo Perfetti, Universita degli studi di Tor Vergata, Italy

The given inequality is equivalent to

3
√

(a + b + c)2 ≥ 3

√
a + b− c

2c
+ 3

√
b + c− a

2a
+ 3

√
a + c− b

2b

By Hölder
3

√
a + b− c

2c
+ 3

√
b + c− a

2a
+ 3

√
a + c− b

2b
≤

(
(a+b−c)+(b+c−a)+(a+c−b)

)1/3

((
1

3
√

2a

)3/2

+
(

1
3
√

2b

)3/2

+
(

1
3
√

2c

)3/2
)2/3

.

Hence

(a + b + c)2 ≥ (a + b + c)
(

1√
2a

+
1√
2b

+
1√
2c

)2

,

or (using a + b + c = 2abc)

a + b + c ≥
√

ab +
√

bc +
√

ca,

which clearly holds.

Also solved by Arkady Alt, San Jose, California, USA; Daniel Campos Salas,
Costa Rica; Daniel Lasaosa, Universidad Publica de Navarra, Spain; Oleh Fayn-
shteyn, Leipzig, Germany; Salem Malikic, Sarajevo, Bosnia and Herzegovina;
Samin Riasat, Notre Dame College, Dhaka, Bangladesh; Vinoth Nandakumar,
Sydney University, Australia; Orif Olimovich Ibrogimov, Uzbekistan; Roberto
Bosch Cabrera, Cuba.
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J77. Prove that in each triangle

1
r

(
b2

rb
+

c2

rc

)
− a2

rbrc
= 4

(
R

ra
+ 1
)

.

Proposed by Dorin Andrica, Babes-Bolyai University and Khoa Lu Nguyen, MIT

First solution by Prithwijit De, Calcutta, India

We know the follwing facts:

ra =
∆

s− a
, rb =

∆
s− b

, rc =
∆

s− c
, r =

∆
s

, R =
abc

4∆
.

The left hand side of the equality may be simplified by using the above facts to
obtain

b2s(s− b) + c2s(s− c)− a2s(s− b)(s− c)
∆2

=
(b2 + c2 − a2)s2 + s(b + c)(b2 − bc− c2 + a2(b + c)s− a2bc)

∆2

=
s(b2 + c2 − a2)(s− b− c) + bc((b + c)s− a2)

∆2

=
2a2(b2 + c2 + bc)− a4 − (b4 + c4 − 2b2c2) + 2abc(b + c)− 4a2bc

4∆2

=
2(a2b2 + b2c2 + c2a2)− a4 − b4 − c4 + 2abc(b + c− a)

4∆2

=
16∆2 + 4abc(s− a)

4∆2
= 4 +

4∆R(s− a)
∆2

= 4 +
4R

ra
= 4

(
R

ra
+ 1
)

= R.H.S.

and we are done.

Second solution by Andrea Munaro, Italy

Let S and p be the area and semiperimeter of the triangle, respectively. Then
we have the well-known identities

S =
abc

4R
= rp =

√
p(p− a)(p− b)(p− c), ra =

S

p− a

and the respective cyclic ones. Using these the equality becomes

b2p(p− b) + c2p(p− c)− a2(p− b)(p− c)− abc(p− a) = 4S2

⇔ p

2
(a2b+ab2+b2c+bc2+c2a+ca2−a3−b3−c3−2abc) =

p

2
(b+c−a)(c+a−b)(a+b−c),

which is true.
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Third solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

It is well known that the semiperimeter s = 4R cos A
2 cos B

2 cos C
2 , then ra =

s tan A
2 = 4R sin A

2 cos B
2 cos C

2 , and similarly for the other two exinradii. It
is also well known that r = 4R sin A

2 sin B
2 sin C

2 , and that b+c−a
2 = s − a =

4R cos A
2 sin B

2 cos C
2 . It follows that rbrc = bc cos2 A

2 , rrbrc = ra (s− a)2, rb−r =
4R sin2 B

2 and rc − r = 4R sin2 C
2 . Therefore, using the Cosine Law

a2 = b2 + c2 − 2bc cos A = (b + c)2 − 4rbrc,

and the given equality is equivalent to

b2 (rc − r) + c2 (rb − r)− 2bcr

rrbrc
=

4R

ra
=

4R (s− a)2

rrbrc
,

b2 sin2 C

2
+ c2 sin2 B

2
− 2bc sin

A

2
sin

B

2
sin

C

2
= (s− a)2 .

But
b2 sin2 C

2
cos2

A

2
= (s− a)2 cos2

B

2
,

bc sin
B

2
sin

C

2
cos2

A

2
= (s− a)2 cos

B

2
cos

C

2
,

and the proposed equality is equivalent to

cos2
B

2
+ cos2

C

2
− 2 sin

A

2
cos

B

2
cos

C

2
= cos2

A

2
.

Since
cos2

A

2
+ 2 sin

A

2
cos

B

2
cos

C

2
= 1 + sin

A

2
cos

B − C

2

= 1 + cos
B + C

2
cos

B − C

2
= 1 +

cos B + cos C

2
= cos2

B

2
+ cos2

C

2
,

our proof is thus complete.

Also solved by Arkady Alt, San Jose, California, USA; Oleh Faynshteyn, Leipzig,
Germany; G.R.A.20 Math Problems Group, Roma; Salem Malikic, Sarajevo,
Bosnia and Herzegovina; Vicente Vicario Garcia, Huelva, Spain; Vinoth Nan-
dakumar, Sydney University, Australia; Roberto Bosch Cabrera, Cuba.
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J78. Let p and q be odd primes. Prove that for any odd integer d > 0 there is an
integer r such that the numerator of the rational number

p−1∑
n=1

[n ≡ r(mod q)]
nd

is divisible by p, where [Q] is equal to 1 or 0 as the proposition Q is true or
false.

Proposed by Robert Tauraso, Roma, Italy

First solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

If p < q, chose r = p. Then, n ≡ r (mod q) is always false for n = 1, 2, ..., p− 1,
and the rational number has numerator 0 divisible by p.

If p > q, positive integers a, b exist such that p = aq + b with b < q. If b is even,
take r = b

2 , and if b is odd, take r = q+b
2 . In either case, we have that b−2r ≡ 0

(mod q), or if n ≡ r (mod q), then p − n ≡ b − r ≡ r (mod q). Since n and
p − n cannot be equal because p is odd, all numbers n ∈ {1, 2, ..., p − 1} such
that n ≡ r (mod q) may be grouped up in distinct pairs of the form (n, p− n).
For each one of these pairs, their contribution to the total sum is

1
nd

+
1

(p− n)d
=

nd + (p− n)d

nd(p− n)d
.

But for odd d,

nd + (p− n)d = p
(
nd−1 − nd−2(p− n) + nd−3(p− n)2 − ... + (p− n)d−1

)
,

and the numerator of this fraction is divisible by p, but not its denominator,
since n and p − n are both smaller than prime p. Adding any number of such
fractions, a common factor p will always appear in the numerator, but never in
the denominator, qed.

Second solution by John T. Robinson, Yorktown Heights, NY, USA

First note that if q ≥ p, by choosing r ≡ 0, n ≡ 0 (mod q) is false for 1 < n ≤
p− 1, so the numerator is 0 (which is divisible by p). Therefore in the following
we only consider the case q < p.

Lemma 1. If a + b ≡ 0 (mod m), then ad + bd = 0 modulo m, where d is a
positive odd integer.

Proof. Since a ≡ −b (mod m), by multiplying the LHS by a (d− 1) times and
the RHS by −b(d − 1) times we have ad ≡ (−b)d ≡ −(bd) (mod m) (since d is
odd), from which the result follows.
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Lemma 2. If a prime p divides the numerators of the fractions a/b and c/d, then
p divides the numerator of a/b + c/d.

Proof. Since a/b + c/d = (a ∗ d + b ∗ c)/(b ∗ d), we see that the numerator is
divisible by p (by assumption, p does not divide b or d).

Claim. If r is chosen as r = (p − q)/2 (p, q odd primes; p > q), then the
numerator of sum for 1 ≤ n ≤ p− 1 of [n ≡ r (mod q)]/nd is divisible by p.

Proof. We are summing terms for which n takes on values (p−q)/2, (p−q)/2+q =
(p+q)/2 (p−q)/2−q, (p+q)/2+q (p−q)/2−2∗q, (p+q)/2+2∗q etc., where this list
of pairs continues for (p−q)/2−k∗q > 0[a] (p+q)/2+k∗q < p[b] up to some non-
negative integer k. Note that for [a] we have k ∗q < (p−q)/2 k < (p−q)/(2∗q),
and for [b] we have k∗q < p− (p+q)/2 = (p−q)/2 k < (p−q)/(2∗q). Therefore
since the constraint on k is the same for the decreasing and increasing terms in
each pair in the list, every pair occurs up to the maximum value of k. (Note that
k could be 0, for example if p = 11, q = 7 then k < 2/7 which means there is
only one pair 2, 9 for this case; also note that (p−q)/2 ≥ 1 and (p+q)/2 ≤ p−1,
which means there is always at least one pair above). Next note that for each
pair, the sum of the two values of n, say n1 and n2, is p. Therefore for a given
pair (n1, n2), we have for this partial sum 1/nd

1 +1/nd
2 = (nd

1 +nd
2)/((nd

1)∗ (nd
2)).

By Lemma 1 the numerator is divisible by p. Finally, when we add the fractions
(1/nd

1 + 1/nd
2) together for all pairs (n1, n2), by Lemma 2 (noting that p cannot

divide any denominator since all n1, n2 < p) the numerator is divisible by p.

Third solution by Vinoth Nandakumar, Sydney University, Australia

In the case where p ≤ q, we may simply choose r = 0: then, among the numbers
(1, 2, 3..., p− 1) none of them are equal to 0 in Zq, so the sum is simply 0, and
0 is divisible by p. In the case where q ≤ p, we shall choose r so that q|p− 2r.
We can do this, since we select r to be the solution of the modular equation
2r ≡ p(mod q), which has a solution since p and q are odd primes (we choose
r so that 1 ≤ r ≤ q). So suppose the set of numbers such that n ≡ r(modq),
n ≤ p−1, is r, r+q, r+2q, ..., r+kq (here r+kq is the last term, that is at most
p−1). Since q|p−2r, q|(p−r)−r, so for some value, k′, we have p−r = k′q+r.
Then (k′ + 1)q + r = p − r + q > p (since q > p ≥ r). So that means not only
does p− r occur in the sequence r, r + q, r + 2q..., but it is also the last term in
the sequence - so that implies k′ = k and r + kq = p − r. Since kq = p − 2r,
and p is odd, this means kq is odd, so k is odd. That means there are an even
number of terms in the sequence r, r + q, r + 2q, ...r + kq. Thus we can pair the
first one with the last one, the second with the second-last and so-on; and the
sum of the numbers in each pair will be equal to r + (r + kq) = p. Working in
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Zp, our sum:
p−1∑
n=1

[n ≡ r(mod q)]
nd

will be equal to the sum, of pairs of terms of the form 1
td

+ 1
(p−t)d . But in Zp,

we have: 1
td

+ 1
(p−t)d = td+(p−t)d

(t(p−t))d . Since d is odd, we have td + (p− t)d = 0. This
means our sum, is equal to the sum of a string of 0s, and is thus 0 - so since a
fraction is only 0 in Zp when its numerator is divisible by p, it follows that the
numerator of our required sum is divisible by p, as required.
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Senior problems

S73. The zeros of the polynomial P (x) = x3 + x2 + ax + b are all real and negative.
Prove that 4a− 9b ≤ 1.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

First solution by Brian Bradie, VA, USA

Let r1, r2, and r3 be the zeros of P (x) = x3 + x2 + ax + b. Then

−1 = r1 + r2 + r3;
a = r1r2 + r1r3 + r2r3;
−b = r1r2r3;

and 4a− 9b = 4(r1r2 + r1r3 + r2r3) + 9r1r2r3. For each j, let Rj = −rj . Then
R1, R2, R3 are positive, with R1 + R2 + R3 = 1 and

4a− 9b = 4(R1R2 + R1R3 + R2R3)− 9R1R2R3.

If we eliminate R3 = 1 − R1 − R2 and then examine 4a − 9b along lines of
constant R1 + R2 – that is, R1 + R2 = k for 0 < k < 1 – we find

4a− 9b = 4 [R1(k −R1) + R1(1− k) + (1− k)(k −R1)]− 9R1(k −R1)(1− k)
= (5− 9k)R2

1 + (9k2 − 5k)R1 + 4(k − k2),

where, for each fixed k, 0 < R1 < k. Note that for each k, 4a− 9b is a parabola
with vertex located at (

k

2
,
9k3

4
− 21k2

4
+ 4k

)
.

For 0 < k < 5
9 , the parabolas open upward, while for 5

9 < k < 1, the parabolas
open downward. Examining the upward opening parabolas, we find that 0 <
4a − 9b < 1 when 0 < k < 5

9 . When 5
9 < k < 1, we find 0 < 4a − 9b ≤ 1,

with equality for k = 2
3 , R1 = 1

3 ; that is, for r1 = r2 = r3 = −1
3 . Hence, when

the zeros of the polynomial P (x) = x3 + x2 + ax + b are all real and negative,
0 < 4a− 9b ≤ 1.

Second solution by Ovidiu Furdui, Ohio, USA

We need the following lemma.

Lemma (Schur’s inequality). For any nonnegative real numbers a, b, and c
and any positive

real number r the following inequality holds
∑

cyclic

ar(a− b)(a− c) ≥ 0.
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When r = 1 we obtain that the following third degree Schur’s inequality holds

(a + b + c)3 + 9abc ≥ 4(a + b + c)(ab + bc + ca). (1)

Let x1, x2 and x3 be the roots of P and let α = −x1, β = −x2 and γ = −x3. It
follows,

based on Viete’s formulae, that α+β + γ = 1, αβ +βγ + γα = a, and αβγ = b.

On the other hand, inequality (1) implies that

(α + β + γ)3 + 9αβγ ≥ 4(α + β + γ)(αβ + βγ + γα),

from which it follows that 1 + 9b ≥ 4a, and the problem is solved.

Third solution by Salem Malikic, Sarajevo, Bosnia and Herzegovina

Let x1, x2, x3 < 0 be the roots of polynomial P. We can write P (x) = (x −
x1)(x− x2)(x− x3) and using Viete’s formula we find that

x1 + x2 + x3 = −1 x1x2 + x2x3 + x3x1 = a − x1x2x3 = b.

Let us make the following substitutions −x1 = x − x2 = y − x3 = z. Then
x, y, z are positive reals and we have

x + y + z = 1 xy + yz + zx = a xyz = b

and our inequality is equivalent to

x3 + y3 + z3 + 3xyz ≥ x2y + xy2 + x2z + xz2 + y2z + zy2

which is true by Schur’s inequality.

Also solved by Abhishek Deshpande, Mumbai, India; Andrea Munaro, Italy; An-
drei Iliasenco, Chisinau, Moldova; Andrei Frimu, Chisinau, Moldova; Arkady
Alt, San Jose, California, USA;Athanasios Magkos, Kozani, Greece; Daniel
Campos Salas, Costa Rica; Daniel Lasaosa, Universidad Publica de Navarra,
Spain; G.R.A.20 Math Problems Group, Roma, Italy; John Mangual, New York,
USA; John T. Robinson, Yorktown Heights, NY, USA; Navid Safaei, Teheran,
Iran; Oleh Faynshteyn, Leipzig, Germany; Paolo Perfetti, Universita degli studi
di Tor Vergata, Italy; Samin Riasat, Notre Dame College, Dhaka, Bangladesh;
Vardan, Verdiyan, Yerevan, Armenia; Vinoth Nandakumar, Sydney Univer-
sity, Australia; Orif Olimovich Ibrogimov, Uzbekistan; Roberto Bosch Cabrera,
Cuba.
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S74. Let a, b, c be positive real numbers such that a + b + c = 1. Prove that

(aa + ba + ca)
(
ab + bb + cb

)
(ac + bc + cc) ≥

(
3
√

a + 3
√

b + 3
√

c
)3

.

Proposed by Jose Luis-Diaz Barrero, Spain

First solution by Navid Safaei, Teheran, Iran

By Holder’s Inequality

(aa+ba+ca)
1
3 (ab+bb+cb)

1
3 (ac+bc+cc)

1
3 ≥

(
a

a+b+c
3 + b

a+b+c
3 + c

a+b+c
3

)
=
∑

3
√

a

and by cubing both sides we get the desired result.

Second solution by Paolo Perfetti, Universita degli studi di Tor Vergata, Italy

By the symmetry of both the L.H.S. and R.H.S. we can assume a ≥ b ≥ c so
that (a, b, c) majorizes (1/3, 1/3, 1/3) :

a ≥ 1/3, a + b ≥ 2/3, a + b + c = 1.

The inequality is

ln(aa + ba + ca) + ln(ab + bb + cb) + ln(ac + bc + cc) ≥ 3 ln( 3
√

a + 3
√

b + 3
√

c)

and if we show that f ′′(x) > 0, f(x) = ln(ax + bx + cx), it follows by the
majorization inequality for convex functions that f(a)+ f(b)+ f(c) ≥ f(1/3)+
f(1/3) + f(1/3) which is our inequality.

f ′′(x) =
(
(ab)x(ln a−ln b)2+(ac)x(ln a−ln c)2+(bc)x(ln b−ln c)2

)
(ax+bx+cx)−2 > 0.

The proof is completed.

Also solved by Andrei Frimu, Chisinau, Moldova; Arkady Alt, San Jose, Cal-
ifornia, USA; Daniel Campos Salas, Costa Rica; Daniel Lasaosa, Universidad
Publica de Navarra, Spain; Nguyen Manh Dung, Hanoi University of Science,
Vietnam; Andrei Iliasenco, Chisinau, Moldova; Samin Riasat, Notre Dame Col-
lege, Dhaka, Bangladesh; Vinoth Nandakumar, Sydney University, Australia;
Orif Olimovich Ibrogimov, Uzbekistan; Roberto Bosch Cabrera, Cuba.
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S75. Let ABC be a right triangle with ∠A = 90◦. Let D be an arbitrary point on BC
and let E be its reflection in the side AB. Denote by F and G the intersections
of AB with lines DE and CE, respectively. Let H be the projection of G onto
BC and let I be the intersection of HF and CE. Prove that G is the incenter
of triangle AHI.

Proposed by Son Hong Ta, Ha Noi University, Vietnam

First solution by Daniel Campos Salas, Costa Rica

We will use the trivial fact that if a point P in the interior of XY Z is such that
P lies on the bisector of angle Y XZ and ∠Y PZ = 90 + ∠Y XZ

2 then P is the
incenter. Note that G lies on segment AF and that AGHC is cyclic, so

∠AHG = ∠ACG = ∠ACE = ∠CED = ∠EDG = ∠FDG.

If H lies between C and D then DHGF is cyclic, which implies that ∠FDG =
∠FHG. If D lies between C and H, then HDGF is cyclic, which implies that
∠FDG = ∠FHG. In both cases, ∠FDG = ∠FHG, so ∠AHG = ∠FHG, and
this proves that G lies on the internal bisector of angle AHF .

In order to prove that G is in the interior of triangle AHI it is enough to show
that F lies between H and I. If D lies between C and H, then angles GFH and
CGF are both obtuse, which implies that rays CE and HF intersect beyond E
and F , respectively, as we wanted to prove. If H lies between C and D, then
DHGF is cyclic, so

∠GFH = ∠GDH = 180− ∠FDG− ∠C = 180− ∠ACG− ∠C,

where we have used the fact that ∠FDG = ∠ACG, as we proved it before.
Therefore,

∠GFH + ∠CGF = (180− ∠ACG− ∠C) + (90 + ∠ACG) > 180,

which implies that rays CE and HF intersect beyond E and F , respectively, as
we wanted to prove.

This result and the fact that G lies in the internal bisector of angle AHF
implies that G lies on the internal bisector of angle AHI. Note that ∠AGI =
90 + ∠ACG = 90 + ∠AHI

2 , and this completes the proof.
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Second solution by Dinh Cao Phan, Vietnam

We have ∠GAC = ∠GHC = 90◦. Thus AGHC is a cyclic quadrilateral, so
∠ACG = ∠AHG(1) and ∠GHD = ∠GFD = 90◦. Quadrilateral FHDG is
cyclic, so ∠GDF = ∠GHF (2). Point E is the reflection of D through AB
thus EGD is isosceles, so ∠GDE = ∠GED(3). From (2) and (3) we conclude
that ∠GED = ∠GHF. Because DE⊥AB and AC⊥AB we have that DE‖AC,
therefore, ∠GED = ∠ACG and so ∠ACG = ∠GHF (4). From (1) and (4) we
have that ∠AHG = ∠IHG meaning HG is the bisector of ∠AHI. Triangles
EGK and HGI are similar thus ∠GIH = ∠GKE. Since BFKH is a cyclic
quadrilateral ∠GKE = ∠GBH, therefore, ∠GIH = ∠GBH, hence, BIGH is a
cyclic quadrilateral and so ∠BIC = 90◦. Quadrilateral BIAC is cyclic, hence,
∠IAB = ∠ICB because ∠GAH = ∠GCH thus ∠IAG = ∠GAH. GA is thus
the bisector of ∠HAI. G is the intersection of the angle bisector of ∠HAI and
∠AHI or G is the incenter of triangle AHI, and we are done.

Third solution by Ricardo Barroso Campos, Spain

The quadrilateral GHDF is cyclic so ∠GHF = ∠GDF = α. GF is the per-
pendicular bisector of triangle GDE so ∠GDF = ∠GEF = α. Line CA is
pararell to DE so ∠GEF = ∠GCA = α. The quadrilateral CAGH is also
cyclic so ∠GCA = ∠GHA = α. HG is the bisector of ∠AHF = ∠AHI. Let M
be the circle circumscribed to ABC. M ∩ CG = {C, J}, thus ∠ABJ = α,
and ∠BJA = 90◦. Quadrilateral BJGH, is cyclic, and ∠GHJ = α, and
J = I. ACBI is cyclic too thus ∠BAI = ∠BCI = β, AGHC is cyclic so
∠HAG = ∠HCG = β. We conclude that AG bisects ∠HAI and thus G is on
the biectors of ∠HAI and ∠AHI meaning G is the incenter of AHI.

Also solved by Salem Malikic, Sarajevo, Bosnia and Herzegovina; Andrei Frimu,
Chisinau, Moldova; Vicente Vicario Garca, Huelva, Spain; Universidad Publica
de Navarra, Spain; Andrea Munaro, Italy; Vinoth Nandakumar, Sydney Uni-
versity, Australia; Roberto Bosch Cabrera, Cuba.
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S76. Let x, y, and z be complex numbers such that

(y + z)(x− y)(x− z) = (z + x)(y − z)(y − x) = (x + y)(z − x)(z − y) = 1.

Determine all possible values of (y + z)(z + x)(x + y).

Proposed by Alex Anderson, New Trier High School, Winnetka, USA

First solution by Vinoth Nandakumar, Sydney University, Australia

First, we note that x− y 6= 0, since if x− y = 0, then (y + z)(x− y)(x− z) = 0.
Thus we can divide both sides of the equation (y+z)(x−y)(x−z) = (z+x)(y−
z)(y − x) by x− y:

(y + z)(x− z) + (z + x)(y − z) = 0

xy + xz − zy − z2 + yz + yx− z2 − zx = 0

xy = z2.

If x = 0, then since x − y, x − z 6= 0, y, z are non-zero. Then yz(y − z) =
(z + x)(y− z)(y− x) = (x + y)(z − x)(z − y) = yz(z − y), so since yz 6= 0, then
y−z = 0, which is a contradiction. Thus x, y, z are non-zero. Since xy = z2, we
obtain

x

z
=

z

y
. Similarly, zx = y2, and

z

y
=

y

x
. Let ω =

y

x
=

z

y
=

x

z
. Clearly

ω3 = (
y

x
)(

z

y
)(

x

z
) = 1, but since ω 6= 1 (if ω = 1, then x− y = 0), it follows that

ω2 + ω + 1 =
ω3 − 1
ω − 1

= 0.

Thus we have y = xω, z = yω = xω2. Substituting back into the equation
(y + z)(x− y)(x− z) = 1:

(ωx + ω2x)(x− ωx)(x− ω2x) = 1

⇔ x3(ω + ω2)(1− ω)2(1 + ω) = 1.

Using the identity ω2 + ω + 1 = 0, we obtain ω + ω2 = −1, (1 − ω)2 = −3ω,
1 + ω = −ω2, so:

x3(−1)(−3ω)(−ω2) = 1,

x3(−3) = 1,

x3 =
−1
3

.
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Now, we can compute (x + y)(y + z)(z + x):

(x + y)(y + z)(x + z) = (x + ωx)(ωx + ω2x)(x + ω2x)
= x3(1 + ω)(ω)(1 + ω)(1 + ω2)

=
−1
3

(−ω2)(ω)(−ω2)(−ω)

=
−1
3

(−ω6)

=
1
3
.

Thus, the only possible value of (x + y)(y + z)(z + x) is 1
3 .

Second solution by Daniel Campos Salas, Costa Rica

Note that x, y, z are all distinct. Dividing the first equation by x − y we have
that

(y + z)(x− z) = (z + x)(z − y),

which implies that xy = z2. Analogously, yz = x2 and zx = y2. Note that if
x = 0 then z = 0, which is a contradiction. Thus, x, y, z are all nonzero. It
follows that

xy · x2 = z2 · yz,

which implies x3 = z3. It follows analogously that x3 = y3 = z3. Since x, y, z
are all distinct we have that (x, y, z) = (k, ωk, ω2k), or (x, y, z) = (k, ω2k, ωk),
where ω = cos 2π

3 + i sin 2π
3 and k is a complex number. In both cases we have

that

(y + z)(x− y)(x− z) = (z + x)(y − z)(y − x) = (x + y)(z − x)(z − y) = −3k3,

and

(y + z)(z + x)(x + y) = −k3.

From these relations we conclude that the only possible value of
(y + z)(z + x)(x + y) is 1

3 .

Third solution by John T. Robinson, Yorktown Heights, NY, USA
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Let a = x + y, b = y + z, and c = z + x. Then since c− b = x− y, a− c = y− z,
and b − a = z − x, the three equations are equivalent to a · (b − a) · (c − a) =
1 b · (a − b) · (c − b) = 1 c · (a − c) · (b − c) = 1 and we are asked to find all
possible values for abc (note that neither a, b, nor c can be zero; therefore abc
is non-zero which means we can divide by it later).

Multiplying the three equations out, we have
a3 − (b + c)a2 + abc = 1[1]
b3 − (a + c)b2 + abc = 1[2]
c3 − (a + b)c2 + abc = 1[3]

Rearranging terms and factoring out a2, b2, and c2 from [1], [2], and [3] respec-
tively we then have
a2(a− b− c) = 1− abc[4]
b2(b− a− c) = 1− abc[5]
c2(c− a− b) = 1− abc[6]

The following identity [A] will be useful:

(a−b−c)(b−a−c)(c−a−b) = a3+b3+c3−a2(b+c)−b2(a+c)−c2(a+b)+2abc.

If we add [1], [2], and [3] together we have

a3 − (b + c)a2 + b3 − (a + c)b2 + c3 − (a + b)c2 + 3abc = 3.

Using [A] this becomes (a− b− c)(b− a− c)(c− a− b) + abc = 3[B]

If we now multiply [4], [5], and [6] together we have

(abc)2(a− b− c)(b− a− c)(c− a− b) = (1− abc)3 [C]

Let X = abc. Combining [B] and [C] we have

(a− b− c)(b− a− c)(c− a− b) = 3−X = (1−X)3/X2.

Simplifying 3 −X = (1 −X)3/X2 : 3X2 −X3 = 1 − 3X + 3X2 −X3. Thus
1 = 3X and so X = 1/3.

Thus abc = 1/3, that is, the only possible value for (y + z)(z + x)(x + y) is 1/3.

Also solved by Vardan Verdiyan, Yerevan, Armenia; Daniel Lasaosa, Univer-
sidad Publica de Navarra, Spain; Paolo Perfetti, Universita degli studi di Tor
Vergata, Italy; Roberto Bosch Cabrera, Cuba.
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S77. Let ABC be a triangle and let X be the projection of A onto BC. The circle
with center A and radius AX intersects line AB at P and R and line AC at Q
and S such that P ∈ AB and Q ∈ AC. Let U = AB ∩XS and V = AC ∩XR.
Prove that lines BC, PQ, UV are concurrent.

Proposed by F. J. Garcia Capitan, Spain and J. B. Romero Marquez, Spain

First solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Since X, U,R, and X, V, S, are triplets of collinear points, Menelaus’ theorem
ensures that BX

XC · CU
UA · AR

RB = 1 and CX
XB · BV

V A · AS
SC = 1. Call Y = BC ∩ UV .

Therefore, again by Menelaus’ theorem,

BY

Y C
=

UA

CU
· BV

V A
=

BX2

CX2
· AR

BR
· CS

AS
=

c cos2 B

b cos2 C
· 1 + sin C

1 + sin B

=
c− c sinB

b− b sinC
=

PB

CQ
=

QA

CQ
· PB

AP
,

where we have applied the Sine Law, and used that AX = AP = AQ = AR =
AS = b sinC = c sinB, BX = c| cos B|, and CX = b| cos C|, where a, b, c are
obviously the lengths of the sides opposing vertices A,B, C. Therefore, by the
reciprocal of Menelaus’ theorem, Y, P, Q are collinear, or BC, PQ, UV meet at
Y.

Second solution by Andrei Iliasenco, Chisinau, Moldova

Denote by Y the intersection of BC and PQ and by Z the intersection of BC
and UV. It would suffice to prove that BY

Y C = BZ
ZC .

From Menelaus’ theorem for triangle ABC and secants PQ, UV, SX, RX we
get:

1)
BY

Y C
=

BP

AP
· AQ

CQ
=

BP

CQ

2)
BZ

ZC
=

BU

AU
· AV

CV

3)
BU

AU
=

SC

AS
· BX

CX

4)
AV

CV
=

AR

BR
· BX

CX
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Because AX⊥BC, BC is tangent to the circle with radius AX, so:

5) BX2 = BP ·BR and CX2 = CQ · CS.

Multiplying (3) by (4), using (1), (2), and (5) we get:

BZ

ZC
=

SC

AS
· BX

CX
· AR

BR
· BX

CX
=

BX2

CX2
· SC

BR
=

BP ·BR · SC

CQ · CS ·BR
=

BP

CQ
=

BY

Y C
.

Also solved by Andrea Munaro, Italy; Salem Malikic, Sarajevo, Bosnia and
Herzegovina; Daniel Campos Salas, Costa Rica; Roberto Bosch Cabrera, Cuba;
Vicente Vicario Garca, Huelva, Spain; Vinoth Nandakumar, Sydney University,
Australia.
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S78. Let ABCD be a quadrilateral inscribed into a circle C(O,R) and let (Oab),
(Obc), (Ocd), (Oad) be the symmetric circles to C(O) with respect to AB,
BC, CD, DA, respectively. The pairs of circles (Oab), (Oad); (Oab), (Obc);
(Obc), (Ocd); (Ocd), (Oad) intersect again at A′, B′, C ′, D′. Prove that A′, B′, C ′, D′

lie on a circle of radius R.

Proposed by Mihai Miculita, Oradea, Romania

First solution by Andrei Frimu, Chisinau, Moldova

We prove that the quadrilateral A′B′C ′D′ is congruent to ABCD and the
conclusion follows. Let M,N,P, Q be the reflections of O with respect to
BC, AB,DA, and CD, respectively. Then it is easy to see that A′, B′, C ′, D′

are reflections of A,B, C, D with respect to NP, MN,QM and PQ respectively.
We are going to show that AD′QO is a rhombus. Indeed, let X, Y be the mid-
points of OP and QP respectively. Then X is the midpoint of AD and Y is
the midpoint of PQ. Since XY is median line in 4OPQ and 4ADD′, we get
AD′‖XY ‖OQ and AD′ = 2XY = OQ = R. Hence AD′QO is a parallelo-
gram with AD′ = OQ = R. Since OA = R, AD′QO is a rhombus. Similarly,
BC ′QO is a rhombus, hence BC ′ = AD′ = R and BC ′‖OQ‖AD′. It follows
that ABC ′D′ is a parallelogram, so C ′D′ = AB and C ′D′‖AB. Working anal-
ogously for other sides of the quadrilateral, we obatin the conclusion.

Second solution by Andrei Iliasenco, Chisinau, Moldova

Suppose the circumcircle of the quadrilateral is the unit circle, and the complex
coordinates of it are a, b, c, d. Because (OAB) is simmetric to C(O) with respect
to AB, the coordinate of the center of (OAB) is a + b. Similarly we can find the
coordinates of the other centers.

The equations of the circles (OAB) and (OAD) will be following:

(a + b− x)(a + b− x) = (a + b− b)(a + b− b) = a ∗ a = 1

(a + d− x)(a + d− x) = (a + d− d)(a + d− d) = a ∗ a = 1.

Solving these equations we derive that two intersections of circles (OAB) and
OAD will have the coordinates a and a+b+d. Because Á must be different from
A the complex coordinate of Á is a + b + d. Similarly we derive the coordinates
of the other points of intersections of the circles. Then

Á− B́ = (a + b + d)− (a + b + c) = d− c.

Therefore ÁB́ is equal and parallel to the CD. By analogy we derive similar
relations between all other sides of quadrilateral ABCD and ĆD́ÁB́. Therefore
quadrilateral ĆD́ÁB́ is congruent to ABCD and has the same circumradius.
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Third solution by Roberto Bosch Cabrera, Cuba

We proceed by coordinate geometry. Setting O = (0, 0), A = (a1, a2), B =
(b1, b2), C = (c1, c2), D = (d1, d2) we have that the midpoint of AD is (a1+d1

2 , a2+d2
2 )

and the center of the circle (Oad) is (a1 + d1, a2 + d2), the midpoint of AB is
(a1+b1

2 , a2+b2
2 ) and the center of the circle (Oab) is (a1 + b1, a2 + b2), now the

midpoint of the segment that joins both centers is (a1+d1+a1+b1
2 , a2+d2+a2+b2

2 ).

Let A′ = (x, y) we obtain:

a1 + x

2
=

a1 + d1 + a1 + b1

2
a2 + y

2
=

a2 + d2 + a2 + b2

2

and so A′ = (a1 + b1 + d1, a2 + b2 + d2).
Analogously B′ = (a1 + b1 + c1, a2 + b2 + c2), C ′ = (b1 + c1 + d1, b2 + c2 + d2),
D′ = (a1 + c1 + d1, a2 + c2 + d2).

A′B′ =
√

(c1 − d1)2 + (c2 − d2)2 = CD

B′C ′ =
√

(a1 − d1)2 + (a2 − d2)2 = AD

C ′D′ =
√

(a1 − b1)2 + (a2 − b2)2 = AB

D′A′ =
√

(b1 − c1)2 + (b2 − c2)2 = BC

A′C ′ =
√

(a1 − c1)2 + (a2 − c2)2 = AC

B′D′ =
√

(b1 − d1)2 + (b2 − d2)2 = BD.

By Ptolemy’s theorem in the quadrilateral ABCD and the latter equations we
have:

A′B′ · C ′D′ + D′A′ ·B′C ′ = CD ·AB + BC ·AD = AC ·BD = A′C ′ ·B′D′

and so A′B′C ′D′ is cyclic by Ptolemy’s theorem. Note that4ACD = 4A′B′C ′.
It follows that the radius of the circle is R, and we are done.

Also solved by Raul A. Simon, Chile; Daniel Lasaosa, Universidad Publica de
Navarra, Spain; Vinoth Nandakumar, Sydney University, Australia.
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Undergraduate problems

U73. Prove that there is no polynomial P ∈ R[X] of degree n ≥ 1 such that P (x) ∈ Q
for all x ∈ R\Q.

Proposed by Ivan Borsenco, University of Texas at Dallas, USA

First solution by Andrei Frimu, Chisinau, Moldova

If there were such q polynomial than we could build an injection f : R \ Q →
{0, 1, 2, . . . , n}×Q in the following way: take some t ∈ R\Q. Let P (t) = y ∈ Q.
The equation P (x) = y has k ≤ n solutions. Let them be t1 < t2 < . . . < tk.
Clearly t = ti for some 1 ≤ i ≤ k ≤ n. Define f(t) = (i, y). It is clear why this
function is injective. The set {0, 1, 2, . . . , n} ×Q is countable, hence Imf must
be countable too. Then g : R \ Q → Imf , g(x) = f(x) is a bijection, so g−1

exists, hence R \Q is countable, impossible.

Second solution by Arkady Alt, San Jose, California, USA

We will prove the statement of problem using induction on the degree n ≥ 1.

Suppose that P (x) = ax + b, where a, b ∈ Rand a 6= 0, such that P (x) ∈ Q

for all x ∈ R \Q. Since x + 1,
x

2
∈ R \Q and P (x + 1) , P

(x

2

)
∈ Q then

a = P (x + 1)− P (x) ∈ Qand b = 2P
(x

2

)
− P (x) ∈ Q.

Hence, x =
P (x)− b

a
∈ Q and that contradicts that x ∈ R \Q.

Let n ≥ 2. Suppose that the statement of problem holds for polynomials of
degree

m ∈ {1, 2, ..., n− 1} we should to prove that there is no polynomial P ∈ R [X]

of degree n such that P (x) ∈ Q for all x ∈ R \Q. Suppose the opposite

P (x) = a0x
n + a1x

n−1 + ·+ an−1x + an, where a0 6= 0, holds P (x) ∈ Q for all
x ∈ R \Q.

Since x + 1 ∈ R \Q then P (x + 1) ∈ Q and for P1 (x) := P (x + 1)− P (x)
holds

1 ≤ deg P1 (x) < n, P1 (x) ∈ Q for any x ∈ R \Q. Thus we get a contradiction
with earlier asumption of the induction, and so we are done.

Third solution by G.R.A.20 Math Problems Group, Roma, Italy
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Since R \Q is uncountable and Q is countable there is a rational number q ∈ Q
such that P (x) = q for an infinite number of x ∈ R \ Q. This contradicts
the fact that the polynomial P , which is not constant, has at most n ≥ 1 real
solutions.

Also solved by John T. Robinson, Yorktown Heights, NY, USA; Orif Olimovich
Ibrogimov, Uzbekistan; Vinoth Nandakumar, Sydney University, Australia; Paolo
Perfetti, Universita degli studi di Tor Vergata, Italy; Roberto Bosch Cabrera,
Cuba
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U74. Prove that there is no differentiable function f : (0, 1) → R for which sup
x∈E

|f ′(x)| =

M ∈ R, where E is a dense subset of the domain, and |f | is nowhere differen-
tiable on (0, 1).

Proposed by Paolo Perfetti, Universita degli studi di Tor Vergata, Italy

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Assume that a non-empty interval (a, b) ⊂ (0, 1) exists such that f(x) 6= 0 for
all x ∈ (a, b). Since f is differentiable on (a, b), thus continuous, f does not
change signs on (a, b), and |f | = f on all of (a, b) or |f | = −f on all of (a, b),
hence |f | is differenciable on (a, b), reaching a contradiction. Therefore, in every
non-empty subinterval of (0, 1), at least one point x has zero image. Since f is
differentiable, hence continuous, then f is identically zero on (0, 1), hence |f |
is constant (zero) and thus differentiable, reaching a new contradiction. There
is therefore no function f : (0, 1) → R, differentiable on (0, 1), such that |f | is
nowhere differentiable in (0, 1).
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U75. Let P be a complex polynomial of degree n > 2 and let A and B be 2 × 2
complex matrices such that AB 6= BA and P (AB) = P (BA). Prove that
P (AB) = cI2 for some complex number c.

Proposed by Titu Andreescu, University of Texas at Dallas, USA and Dorin
Andrica, Babes-Bolyai University, Romania

First solution by G.R.A.20 Math Problems Group, Roma, Italy

Let t = tr(AB) = tr(BA) and d = det(AB) = det(BA) then the characteristic
polynomial of AB and BA are the same and

(AB)2 = tAB − dI2 and (BA)2 = tBA− dI2.

This means that any power of (AB)k with k ≥ 2 can be reduced to a linear
combination of AB and I2 and that (BA)k can be reduced to a linear combina-
tion of BA and I2 with the same coefficients. Hence there are complex numbers
c1 and c2 such that

P (AB) = c1AB + c2I2 , P (BA) = c1BA + c2I2,

and
P (AB)− P (BA) = c1(AB −BA) = 0

which means that c1 = 0 because AB 6= BA and finally

P (AB) = P (BA) = c2I2.

Second solution by Jean-Charles Mathieux, Dakar University, Senegal

Denote by χM the characteric polynomial of a matrix M . We know that χAB =
χBA. By Euclid’s division, there is a complex polynomial R of degree at most
1, and a complex polynomial Q, such that P = QχAB + R. R(X) = bX + c,
for some b, c ∈ C, and χAB(AB) = χAB(BA) = 0. So P (AB) = bAB + cI2 =
P (BA) = bBA + cI2. Since AB 6= BA, we have b = 0 and P (AB) = cI2.

Third solution by Orif Olimovich Ibrogimov, Uzbekistan

Lemma. For any n× n matrices A and B

PAB(λ) = PBA(λ)

where Pc(λ) is the characteristic polynomial of C. Proof. 1-case: Assume
that at least one of A and B is nonsingular. Without loss of generality we may
assume that B is nonsingular. Then since AB = B−1BAB we have

det(AB − λE) = det(B−1BAB − λE) = det(BA− λE) i.e. PAB(λ) = PBA(λ).
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2-case: Both of A and B are singular. Since det(B) = 0 for any 0 < ε << 1 we
have det(B + εE) 6= 0 and PA(B+εE)(λ) = P(B+εE)A(λ) . Then

lim
ε→0

PA(B+εE)(λ) = lim
ε→0

P(B+εE)A(λ)

i.e. PAB(λ) = PBA(λ) and poof is completed. Let P be a complex polynomial
of degree n > 2. Then we have P (λ) = r(λ)PABλ + c1λ + c2. Using Hamilton-
Cayley theorem we have P (AB) = c1AB + c2E and P (BA) = c1BA + c2E.
Then c1AB + c2E = c1BA + c2E therefore c1(AB − BA) = 0 and this means
that c1 = 0 i.e. P (AB) = c2E.

Fourth solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

It is well known that the trace of the product of two square matrices is inde-
pendent on the multiplication order, so let us call t the trace of AB and BA.
Furthermore, det(AB) = det(A) det(B) = det(B) det(A) = det(BA), so the
characteristic equation of AB and BA is the same, λ2− tλ+det(A) det(B) = 0,
and the eigenvalues λ1, λ2 of AB and BA are the same. Let

D =
(

λ1 0
0 λ2

)
.

Invertible matrices Q,R exist such that AB = QDQ−1 and BA = RDR−1, and
therefore QP (D)Q−1 = P (AB) = P (BA) = RP (D)R−1, where

P (D) =
(

p1 0
0 p2

)
=
(

P (λ1) 0
0 P (λ2)

)
.

Thus,
(
R−1Q

)
P (D) = P (D)

(
R−1Q

)
. We notice that the diagonal terms of

these products are always equal, but the off-diagonal terms are equal if and
only if either P (λ1) = P (λ2) or the off-diagonal terms of R−1Q are zero. Now,
if R−1Q = E is a diagonal matrix (ie, if a diagonal matrix E exists such that
Q = RE), and since the product of diagonal matrices is conmutative, then
D = EDE−1, and BA = REDE−1R−1 = QDQ−1 = AB, which is absurd. We
may then call c = P (λ1) = P (λ2), and P (D) = cI2. It trivially follows that
P (AB) = P (BA) = cI2.

Also solved by Roberto Bosch Cabrera, Cuba
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U76. Let f : [0, 1] → R be an integrable function such that
∫ 1

0
xf(x)dx = 0. Prove

that
∫ 1

0
f2(x)dx ≥ 4

(∫ 1

0
f(x)dx

)2

.

Proposed by Cezar Lupu, University of Bucharest, Romania and Tudorel
Lupu, Constanza, Romania

First solution by Arkady Alt, San Jose, California, USA

Since

1∫
0

f (x) dx =

1∫
0

(
1− 3x

2
+

3x

2

)
f (x) dx

=

1∫
0

(
1− 3x

2

)
f (x) dx +

3
2

1∫
0

xf (x) dx

=

1∫
0

(
1− 3x

2

)
f (x) dx

and
1∫
0

(
1− 3x

2

)2

dx =
1
4
. Then by the Cauchy Inequality

(
1∫
0

f (x) dx

)2

=
(

1∫
0

(
1− 3x

2

)
f (x) dx

)2

≤
1∫
0

(
1− 3x

2

)2

dx ·
1∫
0

f2 (x) dx =

1
4

1∫
0

f2 (x) dx.

Equality occurs if f (x) = 1− 3x

2
. Next we see that

1∫
0

f (x) dx =

1∫
0

(
1− 3x

2

)
dx =

1
4
,

1∫
0

xf (x) dx =

1∫
0

x

(
1− 3x

2

)
dx = 0

and
1∫
0

f2 (x) dx =
1∫
0

(
1− 3x

2

)2

=
1
4
.

Second solution by Li Zhou, Florida, USA
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Let p(x) = 6x−4, then
∫ 1
0 xp(x)dx = 0 and

∫ 1
0 p(x)2dx = 4. Let a =

∫ 1
0 f(x)dx.

Then

0 ≤
∫ 1

0
[f(x) + ap(x)]2dx

=
∫ 1

0
f(x)2dx + 2a

∫ 1

0
(6x− 4)f(x)dx + a2

∫ 1

0
p(x)2dx

=
∫ 1

0
f(x)2dx− 8a

∫ 1

0
f(x)dx + 4a2

=
∫ 1

0
f(x)2dx− 4a2,

completing the proof.

Third solution by Paolo Perfetti, Universita degli studi di Tor Vergata, Italy

If
∫ 1
0 f(x)dx = 0 there is nothing to prove so we assume

∫ 1
0 f(x)dx 6= 0. The

inequality is invariant respect to the multiplication by a constant and then we

take F (x) = f(x)
(∫ 1

0 f(x)dx)
)−1

. By observing that any function of the form

pc(x) = cx− 2
3c satisfies

∫ 1
0 xpc(x)dx = 0, we consider the function F (x)−pc(x)

and the quantity
∫ 1
0 (F (x) − pc(x))2dx yielding (use repeatedly

∫ 1
0 xF (x) =∫ 1

0 xpc(x)dx = 0 and
∫ 1
0 F (x)dx = 1)

0 ≤
∫ 1

0
(F − pc)2dx =

∫ 1

0
F (F − pc)−

∫ 1

0
pc(F − pc)dx

=
∫ 1

0
F (F − cx +

2
3
c)dx +

2
3
c

∫ 1

0
(F − pc)dx

=
∫ 1

0
F 2dx +

2
3
c +

2
3
c− 2

3
c(

c

2
− 2

3
c)

=
∫ 1

0
F 2dx +

4
3
c +

c2

9

and we look for c such that −4
3c− c2

9 ≥ 4. It is evident that only c = −6 satisfies
the request and we are done.

Fourth solution by G.R.A.20 Math Problems Group,Roma, Italy

Let a ∈ R, then by Cauchy-Schwartz inequality∫ 1

0
12 dx ·

∫ 1

0
(f(x) + ax)2 dx ≥

(∫ 1

0
1 · (f(x) + ax) dx

)2

.
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that is ∫ 1

0
f2(x) dx + 2a

∫ 1

0
xf(x) dx +

a2

3
≥
(
µ +

a

2

)2
.

where µ =
∫ 1
0 f(x) dx. Since

∫ 1
0 xf(x) dx = 0∫ 1

0
f2(x) dx ≥ sup

a∈R

{
−a2

12
+ µa + µ2

}
= 4µ2 = 4

(∫ 1

0
f(x) dx

)2

.

The constant 4 is the best one since for f(x) = 3x− 2 the equality holds.

Also solved by John T. Robinson, Yorktown Heights, NY, USA; Orif Olimovich
Ibrogimov, Uzbekistan; Roberto Bosch Cabrera, Cuba.
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U77. Let f : R → R be a function of class C2. Prove that if the function
√

f(x) is
differentiable, then its derivative is a continuous function.

Suggested by Gabriel Dospinescu, Ecole Normale Superieure, France

First solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Note that taking x′ = x− a for any real-valued a, the problem is not changed,
and we need only to prove the continuity of the derivative of

√
f(x) at x = 0

for all functions satisfying the given conditions. We may consider three cases:

1) f(0) 6= 0. By continuity of f(x), we have that f ′(x)

2
√

f(x)
is a well-defined and

continuous function at x = 0, and it is the derivative of
√

f(x).

2) f(0) = 0 in an open interval that contains 0. Then
√

f(x) is zero (therefore
constant) in a non-empty open interval that contains 0, and the derivative of√

f(x) is zero in that given interval, hence continuous at x = 0.

3) f(0) = 0 but no open interval exists that contains 0 and where f(x) is
identically 0. Since f(x) is non-negative (otherwise

√
f(x) would not be defined

as a real-valued function) and
√

f(x) is non-negative by definition, then f(x)
is tangent to the horizontal axis at x = 0. Note that we need only to prove that√

f(x) is also tangent to the horizontal axis at x = 0, ie, that limx→0

√
f(x)

x = 0.
Assume that it is not so. Therefore, a non-zero real value a exists such that

limx→0

√
f(x)

x = a, or equivalently, limx→0
f(x)
x2 = a. Therefore, for any given

ε > 0, a sufficiently small δ > 0 exists such that for all 0 < |x| < δ, it holds
that

∣∣f(x)− ax2
∣∣ < ε2, which leads to

∣∣∣√f(x)−
√
|a||x|

∣∣∣ < ε. In other words,√
f(x) behaves in a sufficiently small, but nonzero, interval around x = 0 like

|x|, and it is therefore not differentiable at x = 0. Contradiction, or a = 0 and√
f(x) is tangent to the horizontal axis at x = 0. The result follows.

Second solution by John Mangual, New York, USA

Since f(x) is differentiable and g(x) =
√

f(x) is differentiable we get

d

dx

√
f(x) =

f ′(x)√
f(x)

. (1)

Now we wish to establish continuity of the expression on the right. In other
words, we wish to establish the following limit:

lim
ε→0

f ′(x + ε)√
f(x + ε)

=
f ′(x)√
f(x)

.
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We do not know a priori this limit should hold. Instead we can write:

L = lim
ε→0

[
f ′(x + ε)√
f(x + ε)

− f ′(x)√
f(x)

]
= lim

ε→0

f ′(x + ε)
√

f(x)− f ′(x)
√

f(x + ε)√
f(x + ε)f(x)

.

Because f(x) is C2 and because
√

f(x) is differentiable we can make the fol-
lowing substitutions in the limit:

• f ′(x + ε) ≈ f ′(x) + εf ′′(x)
•
√

f(x + ε) ≈
√

f(x) + εf ′(x)/
√

f(x).

These both fall out of Taylor’s theorem. The error term vanishes as ε goes to
zero. Finally,

L = lim
ε→0

ε ·
f ′′(x)

√
f(x)− f ′(x)2√

f(x + ε)f(x)
= 0.

This limit is 0 because f(x) is continuous.

Third solution by Roberto Bosch Cabrera, Cuba

Let g(x) =
√

f(x). We will first find g′(x). If f(x) 6= 0 we have:

g′(x) =
f ′(x)

2
√

f(x)

Now we consider x such that f(x) = 0.

g′(x) = lim
h→0

g(x + h)− g(x)
h

= lim
h→0

g(x + h)
h

= lim
h→0

g′(x + h)

by L’Hopital’s Rule.
So

g′(x) = lim
h→0

f ′(x + h)
2
√

f(x + h)
= lim

h→0

f ′′(x + h)
f ′(x+h)√

f(x+h)

=
f ′′(x)
2g′(x)

by L’Hopital’s Rule.
We have

2g′(x)2 = f”(x) ⇒ g′(x) =

√
f ′′(x)√

2
.

We need to prove that g′(x) is continuos, it suffices prove

lim
h→0

(
g′(x + h)− g′(x)

)
= 0 x : f(x) = 0

since f ′(x)

2
√

f(x)
and

√
f ′′(x)√

2
are continuous functions

lim
h→0

(
g′(x + h)− g′(x)

)
= 0 ⇔ lim

h→0
g′(x + h) = g′(x)

and we are done.
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U78. Let n =
∏k

i=1 pi, where p1, p2, . . . , pk are distinct odd primes. Prove that there
is a A ∈ Mn(Z) with Am = In if and only if the symmetric group Sn+k has an
element of order m.

Proposed by Jean-Charles Mathieux, Dakar University, Senegal

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

We obvserve first that an additional necessary condition for the problem is that
Aj 6= In for j = 1, 2, ...,m − 1, since otherwise we could take A = In, and
Am = In for all integer m, the number of elements of Sn+k are finite, and so is
the number of values that their orders may take.

Consider a matrix A ∈ Mn(Z) such that Am = In. Obviously, A is diagonaliz-
able, and the eigenvalues of A are λ such that λn = 1, ie, the eigenvalues of A
are roots of unity. Assume now that a prime p exists such that n+1 < p ≤ n+k.
Obviously, an element γ ∈ Sn+k exists that may be decomposed in one p-cycle
and n + k − p 1-cycles, its order being p. If the proposed statement were true,
then Ap = In, or the eigenvalues of A are p-th roots of unity, ie, roots of the
polynomial xp−1. Therefore, the characteristic polynomial of A is an n-degree
integer polynomial with n < p−1, whose roots are p-th roots of unity. If all the
eigenvalues are 1, an invertible matrix exists such that A = P−1InP = In, so
not all of them are 1. Therefore, some eigenvalue of A is a root of xp−1

x−1 , which
is well-known to be an integer polynomial, irreducible in Z[X], and by Abel’s
irreducibility theorem, the characteristic polynomial of A of degree n is divisible
by xp−1

x−1 of degree p− 1 > n, which is absurd. The proposed statement is then
false whenever a prime p exists such that n + 1 < p ≤ n + k. Two particular
counterexamples are found for p1 = 3, p2 = 5, n = 15, and n + 2 = 17 is prime,
or for p1 = 3, p2 = 5, p3 = 7, and n + 2 = 107 is prime.

Assume now that for some integer l, n may be expressed as q1+q2+...+ql−l+1
for distinct primes q1, q2, ..., ql, ie, that n+ l−1 may be decomposed as the sum
of l primes (for example, for n = 7, 7 = 3 + 5 − 2 + 1, and for n = 13,
13 = 3 + 5 + 7 − 3 + 1). Assume now that integer matrices Aj may be found
with characteristic equations xqj−1

x−1 for j = 1, 2, ..., l. For example,for q1 = 3
and q2 = 5 and q3 = 7 we may find

A1 =
(
−1 −1
1 0

)
, A2 =


0 −1 0 0
1 −1 −1 0
0 −1 0 −1
0 0 1 −1

 ,
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A3 =



0 −1 0 0 0 0
1 −1 −1 0 0 0
0 −1 0 −1 0 0
0 0 1 0 −1 0
0 −1 0 −1 0 −1
0 0 0 0 1 0

 .

Construct then a matrix A as a diagonal of boxes Aj ,

A =


1 0 0 ... 0
0 A1 0 ... 0
0 0 A2 ... 0
... ... ... ... ...
0 0 0 ... Al

 .

Am is then a diagonal of boxes 1, Am
1 , Am

2 , ..., Am
l with zeros elsewhere, and it

will be equal to In iff each one of the Am
j is Iqj−1, ie, iff m is a common multiple

of q1, q2, ..., ql, since the eigenvalues of Aj are qj-th roots of unity. Therefore,
Am = In iff q1q2...ql divides m. But this means that, if an element γ ∈ Sn+k

exists of order m, it must contain at least one q1-cycle, at least one q2-cycle,
and so on, or n+k ≥ q1 + q2 + ...+ ql = n+ l−1, or k+1 ≥ l. It is now obvious
that, if n may be expressed as the product of k primes, it will most probably
be expressable as the sum of more than k+1 primes, and in none of these cases
the proposed statement will be true, as shown above. For example, for n = 13,
we may take q1 = 3, q2 = 5, q3 = 7, for which the proposed statement is false.

We have therefore shown that: 1) The existance of an element γ ∈ Sn+k of
order m does not necessarily mean that a matrix A ∈ Mn(Z) will exist such
that Am = In with Aj 6= In for j = 1, 2, ..., n, and 2) the existance of a matrix
A ∈ Mn(Z) such that Am = In with Aj 6= In for j = 1, 2, ..., n does not
necessarily mean that an element γ ∈ Sn+k of order m will exist.

What is true, however, is that if an element γ ∈ Sn of order m exists, then a
matrix A ∈ Mn(Z) exists such that Am = In. Since any element of Sn may be
decomposed in a number of disjoint cycles, if an element of order m exists, then
n = n1 + n2 + ... + nC , where γ is decomposed in one n1-cycle, one n2-cycle,
and so on, and m is the least common multiple of n1, n2, ..., nC . We will show
that, for any nc with c = 1, 2, ..., C, it is possible to find an nc × nc matrix
Ac such that Anc

c = Inc . Since the nc cycle in γ is equivalent of a cycle γ′ of
the first nc positive integers, construct matrix Ac as follows: Ac(i, j) = 1 if the
position of 1 after performing the cycle γ′ i times is the j-th, 0 otherwise. Note
that multiplying by Ac to the left an nc× nc matrix is equivalent to cycling its
rows by γ′. Therefore, multiplying by Anc

c is equivalent to performing the cycle
nc times, ie, Anc

c = Inc . Note also that, for any j = 1, 2, ..., nc − 1, Aj 6= Inc ,
since otherwise the nc-cycle would contain a j-cycle, j < nc, which is absurd.
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Construct now the box matrix

A =


An1 0 0 ... 0
0 An2 0 ... 0
0 0 An3 ... 0
... ... ... ... ...
0 0 0 ... AnC

 .

Obviously, Aj is the box matrix whose diagonal is Aj
n1 , A

j
n2 , ..., A

j
nC , and each

box will be the identity box iff j is a multiple of the corresponding nc, or Aj = In

iff j is a multiple of each one of the nc, ie, a multiple of m. The result follows.
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Olympiad problems

O73. Let a, b, c be positive real numbers. Prove that

a2

b
+

b2

c
+

c2

a
+ a + b + c ≥ 2(a + b + c)3

3(ab + bc + ca)
.

Proposed by Pham Huu Duc, Ballajura, Australia

First solution by Navid Safaei, Tehran, Iran

3
(∑

ab
)

(LHS) = 3
(∑

ab
)(a2

b
+

b2

c
+

c2

a
+ a + b + c

)
= 3

(∑
a3 +

ab3

c
+

ca3

b
+

bc3

a
+ a2c + c2b + b2a +

∑
a2b + 3abc

)
= 3

∑
a3 + 3

(
ab3

c
+

ca3

b
+

bc3

a

)
+ 3(a2c + c2b + b2a) + 3

∑
a2b + 9abc.

Thus

3
(∑

ab
)

(LHS)− 2
(∑

a
)3

=
∑

a3 − 3abc + 3
(

ab3

c
+

ca3

b
+

bc3

a

)
− 3(a2c + c2b + b2a).

Now by the AM-GM inequality we have

ab3

c
+

ca3

b
≥ 2

√
ab3

c
× ca3

b
= 2a2b

etc,. By adding these inequalities we have

ab3

c
+

ca3

b
+

bc3

a
≥ a2c + c2b + b2a.

And it remains to prove that
∑

a3 ≥ 3abc which is known to be true.

Second solution by Nguyen Manh Dung, Vietnam

Write the inequality as follows∑
cyc

(
a2

b
− 2a + b

)
≥
(

2(a + b + c)3

3(ab + bc + ca)
− 2(a + b + c)

)

⇔
∑
cyc

(a− b)2

b
≥ a + b + c

3(ab + bc + ca)

∑
cyc

(a− b)2

⇔ (b− c)2A + (c− a)2B + (a− cb2C ≥ 0,
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where

A = 2(a + b)− c +
3ab

c
, B = 2(b + c)− a +

3bc

a
, C = 2(c + a)− b +

3ca

b
.

Taking into account the identity

(b−c)2A+(c−a)2B+(a−cb2C =
[(a− c)B + (a− b)C]2 + (b− c)2(AB + BC + CA)

B + C
,

it suffieces to show that B + C > 0 and AB + BC + CA > 0. We have

B + C = 4c + a + b +
3bc

a
+

3ca

b
> 0

and

AB + BC + CA = 9(a2 + b2 + c2) + 21(ab + bc + ca) + 3
∑
cyc

ab(a + b)
c

> 0.

Equality holds if and only if a = b = c.

Third solution by Daniel Campos Salas, Costa Rica

Rewrite the inequality as

a2

b
+

b2

c
+

c2

a
− (a + b + c) ≥ 2(a + b + c)3

3(ab + bc + ca)
− 2(a + b + c).

The left-hand side expression equals

(a− b)2

b
+

(b− c)2

c
+

(c− a)2

a
,

and the right-hand side equals

(a + b + c)
(
(a− b)2 + (b− c)2 + (c− a)2

)
3(ab + bc + ca)

.

We have to prove that

∑
cyc

(
3(ab + bc + ca)

b
− (a + b + c)

)
(a− b)2 =

∑
cyc

(
2a− b + 2c +

3ac

b

)
(a− b)2 ≥ 0.

We will prove the stronger inequality
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∑
cyc

(2a− b + 2c) (a− b)2 ≥ 0.

Since the inequality is cyclic with respect to a, b, c, we can assume without
loss of generality that a ≥ b, c. Note that 2a − b + 2c, 2b − c + 2a ≥ 0, so, if
2c−a+2b ≥ 0, we are done. Suppose that 2c−a+2b < 0. From the inequality

2
(
(a− b)2 + (b− c)2

)
≥ (a− c)2,

we have that

(2c− a + 2b)(c− a)2 ≥ 2(2c− a + 2b)(a− b)2 + 2(2c− a + 2b)(b− c)2.

Thus, ∑
cyc

(2a− b + 2c) (a− b)2

≥ (2a− b + 2c + 2(2c− a + 2b))(a− b)2

+(2b− c + 2a + 2(2c− a + 2b))(b− c)2

= (3b + 6c)(a− b)2 + (6b + 3c)(b− c)2 ≥ 0,

as we wanted to prove.

Also solved by Andrea Munaro, Italy; Arkady Alt, San Jose, California, USA;
Andrei Frimu, Chisinau, Moldova; Athanasios Magkos, Kozani, Greece; Daniel
Lasaosa, Universidad Publica de Navarra, Spain; G.R.A.20 Math Problems
Group,Roma, Italy; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Uni-
versita degli studi di Tor Vergata, Italy; Oleh Faynstein, Leipzig, Germany;
Roberto Bosch Cabrera, Cuba; Samin Riasat, Notre Dame College, Dhaka,
Bangladesh; Vinoth Nandakumar, Sydney University, Australia; Salem Ma-
likic, Sarajevo, Bosnia and Herzegovina.
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O74. Consider a non-isosceles acute triangle ABC such that AB2+AC2 = 2BC2. Let
H and O be the orthocenter and the circumcenter of triangle ABC, respectively.
Let M be the midpoint of BC and let D be the intersection of MH with the
circumcircle of triangle ABC such that H lies between M and D. Prove that
AD,BC, and the Euler line of triangle ABC are concurrent.

Proposed by Daniel Campos Salas, Costa Rica

First solution by Andrei Iliasenco, Chisinau, Moldova

It is well known that the intersection N of MH with the circumcircle is the
same as the intersection of AO with the circumcircle. Hence AN is a diameter
of the circumcircle and AD⊥MH. Let PQ be the intersection of AD with
BC. We have that AH⊥MQ and MH⊥AQ. Therefore H is the orthocenter
of triangle AMQ, so QH⊥AM . If we prove that OH⊥AM we are done. Let
OA be ~a, OB be ~b, OC be ~c. It is clear that ~a2 = ~b2 = ~c2 = r2. Then:

6 ~OH∗ ~AM = 6~a+~b+~c
3 ∗(a−~b+~c

2 ) == 2~a2−~b2−~c2+~a~c+~a~b−2~b~c = = ~a~c+~a~b−2~b~c =
~b2+~c2−2~a2+~a~c+~a~b−2~b~c = 2(~b−~c)2−(~a−~c)2−(~a−~b)2 = 2BC2−AC2−AB2 = 0

Second solution by Vinoth Nandakumar, Sydney University, Australia

First we prove the following Lemma:
Lemma: If ABC is a triangle such that AB2 + AC2 = 2BC2, then the Euler
Line is perpendicular to the median through A.
Proof : Let G be the centroid of triangle ABC, and let M be the midpoint
of BC. We seek to prove that OG is perpendicular to AM . Since G divides
the line AM in the ratio 2 : 1, we have AG = 2

3AM , and GM = 1
3AM . Using

Apollonius Theorem, we compute:

AG2 −GM2 =
(

2
3
AM

)2

−
(

1
3
AM

)2

=
AM2

3

=
2(b2 + c2)− a2

12

=
a2

4

Furthermore, using Pythagoras’ Theorem in triangle BOM ,

AO2 −OM2 = BO2 −OM2

= BM2

=
a2

4
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Thus it follows AO2 − OM2 = AG2 − GM2. Suppose the foot of the per-
pendicular from O to AM is G′. Then AG2 − GM2 = AO2 − OM2 =
(AG′2 + OG′2) − (MG′2 + OG′2) = AG′2 − MG′2. However, as the point G′

moves along the line AM from A to M , the quantity AG′2 −MG′2 decreases,
and since G, G′ both lie on AM , it follows that G and G′ coincide, so OG is
perpendicular to AM , as required.

Now consider the point H ′, the reflection of H in the midpoint M of BC.
Clearly BHCH ′ is a rhombus, so ∠BH ′C = ∠BHC = 180− A, so ∠BH ′C +
∠BAC = 180, so H ′ lies on the cirumcircle of ABC. But, ∠ACH ′ = ∠H ′CB+
∠ACB = C + ∠HBC = 90, so AH ′ is a diameter of the circumcircle. Thus
∠ADM = ∠ADH ′ = 90.
Consider triangle AHM . From results above, the three altitudes of this triangle
are HG, AD, and BC. Since the three altitudes of any triangle are concurrent,
it follows that AD, BC, and the Euler line of ABC, HG, meet at a point.

Also solved by Andrei Frimu, Chisinau, Moldova; Daniel Lasaosa, Universidad
Publica de Navarra, Spain; Pak Hin Lee, Hong Kong.
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O75. Let a, b, c, d be positive real numbers such that a2 + b2 + c2 + d2 = 1. Prove
that √

1− a +
√

1− b +
√

1− c +
√

1− d ≥
√

a +
√

b +
√

c +
√

d.

Proposed by Vasile Cartoaje, Ploiesti, Romania

First solution by Athanasios Magkos, Kozani, Greece

The inequality takes the form
∑

(
√

1− a−
√

a) ≥ 0. We have

√
1− a−

√
a =

1− a− a√
1− a +

√
a

=
1− 2a√

1− a +
√

a
≥ 1√

2

∑
(1− 2a),

where in the last step we used the estimate (x + y)2 ≤ 2(x2 + y2) applied to
the numbers

√
1− a,

√
a. Hence, it suffices to prove that∑

(1−2a) ≥ 0 ⇔ 4−2(a+b+c+d) ≥ 0 ⇔ 4(a2+b2+c2+d2) ≥ (a+b+c+d)2,

which is clearly true (for instance using Power Mean.)

Second solution by Paolo Perfetti, Universita degli studi di Tor Vergata, Italy

If one of the coordinates is equal to 1, the inequality is clearly true being√
1− a +

√
1− b +

√
1− c +

√
1− d −

√
a −

√
b −

√
c −

√
d = 2 by a2 + b2 +

c2 + d2 = 1. By continuity (1) is true for any quadruple (a, b, c, d) where one of
the coordinates is sufficiently close to the value 1.

If one of the coordinates, say a, is equal to zero the inequality is true as well.
Indeed we have

1 +
√

1− b +
√

1− c +
√

1− d ≥
√

b +
√

c +
√

d (2)

i.e.
1 +

1− 2b√
b +

√
1− b

+
1− 2c

√
c +

√
1− c

+
1− 2d√

d +
√

1− d
≥ 0.

The concavity of
√

x yields

1 +
√

2(1− 2b) +
√

2(1− 2c) +
√

2(1− 2d) ≥ 0 =⇒ b + c + d ≤ 1 + 3
√

2
2
√

2
.

By power–maeans–inequality and b2 + c2 + d2 = 1 we have

b + c + d

3
≤
(b2 + c2 + d2

3

)1/3
= 1/

√
3 =⇒ b + c + d ≤

√
3,
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and
√

3 < (1 + 3
√

2)/2
√

2 (the inequality is strict). It follows that if one of the
coordinates close enough to zero, (1) is true.

Motivated by these observations we study (1) as a constrained minimum prob-
lem introducing the Lagrange multipliers. Let

f(a, b, c, d) =
√

1− a +
√

1− b +
√

1− c +
√

1− d−
√

a−
√

b−
√

c−
√

d

defined on the set D
.= {δ ≤ a, b, c, d ≤ δ′} where δ and δ′ are so close respec-

tively to 0 and 1 that (1) holds. The lack of continuity of the derivative of
√

x
at x = 0 and

√
1− x at x = 1 forces us to introduce δ and δ′. Let’s define

F (a, b, c, d, λ) = f(a, b, c, d)− λ(a2 + b2 + c2 + d2 − 1).

We have to solve the system S
.= {Fa = Fb = Fc = Fd = 0, Fλ = 0} and

Fa = − 1
2
√

1− a
− 1

2
√

a
− 2λa.

The equation Fa − Fb = 0 is equivalent to

H(a, b) .=
Fa

a
− Fb

b
=

1
2b
√

b
− 1

2a
√

a
+

1
2b
√

1− b
− 1

2a
√

1− a
= 0.

The graph of the function 1
2x
√

x
+ 1

2x
√

1−x
has the two asymptotes at x = 0 and

x = 1 and only one minimum at x = xm 6= 1/2 with 0 < xm < 1. It follows
that the equation H(a, b) = 0 is solved by a = b = a0 or a = a0 and b = b0 6= a0

with δ ≤ a0 < xm and xm < b0 ≤ δ′. The other five combinations: Fa
a −

Fb
c = 0,

Fa
a − Fb

d = 0, Fa
b − Fb

c = 0, Fa
b − Fb

d = 0, Fa
c − Fb

d = 0, have the same structure
hence the possible solutions of S are:

{a = b = c = d = 1/2}, {a = b = a0, c = d = b0},
{a = b = c = a0, d = b0},
{a = a0, b = c = d = b0}

and the other eleven combinations. In five of them two of the coordinates are
equal to a0 and the other two are equal to b0. In six of them three coordinates
are equal to a0 or b0 and the fourth to b0 or a0. We prove that

1){a = b = a0, c = d = b0} or 2){a = b = c = a0, d = b0} or 3){a = a0, b = c = d = b0}

are all incompatible with a2 + b2 + c2 + d2 = 1.

1) Being a0 < b0,
Fa
a − Fc

c = 0 implies 1
a0
√

1−a0
> 1

b0
√

1−b0
hence (a0 − b0)(b0 +

a0 − a2
0 − a0b0 − b2

0) > 0 or b0 + a0 − a0b0 − a2
0 − b2

0 = b0 + a0 − a0b0 − 1
2 < 0.

a2
0 + b2

0 = 1
2 has been used. Moreover we have (a0 + b0)2 = 1

2 + 2a0b0 hence
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(1
2 + 2a0b0)1/2 < 1

2 + a0b0 or 4x2 − 4x − 1 > 0 where x = a0b0. We would end
with x < (1−

√
2)/2 or x > (1 +

√
2)/2 and both of them are impossible.

2) a0 < b0.
Fa
a −

Fd
d = 0 implies 1

a0
√

1−a0
> 1

b0
√

1−b0
namely a0 + b0−a0b0−a2

0−
b2
0 < 0 as before. Employing 3a2

0+b2
0 = 1 we get (a0+b0)−(a0+b0)2+a0b0 < 0.

We note that a0 + b0 < 1 and then the inequality is false. That a0 + b0 < 1
follows by 3a2

0 + b2
0 = 1.

3) a0 < b0. That Fa
a − Fd

d = 0 is incompatible with 3a2
0 + b0 = 1 follows exactly

as in 2) due to the symmetry of the inequality a0 + b0 − a0b0 − a2
0 − b2

0 < 0

The conclusion of our argument is that the only critical point of the gra-
dient of the function F (a, b, c, d, λ) is the point (1/2, 1/2, 1/2, 1/2,−

√
2) and

f(1/2, 1/2, 1/2, 1/2) = 0.

On the boundary of D we have already shown the validity of (1).

The conclusion is that on the boundary of the domain we have f(a, b, c, d) > 0.
The Weierstrass theorem on the continuous functions on compact sets assures
the existence of maximum and minimum of f and then the point (1/2, 1/2, 1/2, 1/2)
must be a minimum.

Third solution by Oleh Faynshteyn, Leipzig, Germany

From the condition it follows that (a, b, c, d) ∈ (0, 1) and

1 = a2 + b2 + c2 + d2 ≥ 1
4
(a + b + c + d)2, a + b + c + d ≤ 2.

We have
√

a =

√
a(1− a)√
1− a

≤ 1
2
√

1− a
.

Then

√
a +

√
b +

√
c +

√
d ≤ 1

2

(
1√

1− a
+

1√
1− b

+
1√

1− c
+

1√
1− d

)
.

It suffices to prove that

2(
√

1− a+
√

1− b+
√

1− c+
√

1− d) ≥ 1√
1− a

+
1√

1− b
+

1√
1− c

+
1√

1− d

or ∑
cyc

(
2
√

1− a− 1√
1− a

)
≥ 0
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which is equivalent to ∑
cyc

1− 2a√
1− a

≥ 0.

By applying the Cauchy-Schawrz inequality, we have∑
cyc

1− 2a√
1− a

≥ 4(4− 2(a + b + c + d))√
1− a +

√
1− b +

√
1− c +

√
1− d

≥ 0.

Equality holds if a = b = c = d = 1
2 .

Also solved by Daniel Lasaosa, Universidad Publica de Navarra, Spain; G.R.A.20
Math Problems Group, Roma, Italy; Vinoth Nandakumar, Sydney University,
Australia; Roberto Bosch Cabrera, Cuba.
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O76. A triple of different subsets Si, Sj , Sk of a set with n elements is called a “tri-
angle”. Define its perimeter by

|(Si ∩ Sj) ∪ (Sj ∩ Sk) ∪ (Sk ∩ Si)| .

Prove that the number of triangles with perimeter n is
1
3
(2n−1 − 1)(2n − 1).

Proposed by Ivan Borsenco, University of Texas at Dallas, USA

First solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Let us call sm, m = 1, 2, ..., n the elements of the n-element set S out of which
subsets S1, S2 and S3 are chosen. Each triangle may be represented by a n× 3
matrix, where element in position (m, l) equals 1 if sm is in Sl, 0 otherwise, for
l = 1, 2, 3. The conditions of the problem require that 1) no two columns are
equal, otherwise the corresponding subsets would be equal, and 2) each row
contains at least 2 1’s, otherwise an element of S would not be in any of the
intersections, and the cardinal of the union would be less than n. Provided
that these two conditions are met, it is obvious that the sets are distinct, and
that the cardinal of the union equals the cardinal n of S.

Therefore, each row can take 4 different values, (0, 1, 1), (1, 0, 1), (1, 1, 0) and
(1, 1, 1), for a total of 4n possible combinations. However, some are not allowed,
since they would result in two columns being equal. In fact, columns 1 and 2 are
equal if and only if the only values taken by the rows are (1, 1, 0) and (1, 1, 1),
out of which there are a total of 2n possible combinations. We may calculate
in the same way the number of permutations that we need to discard in order
to avoid the combinations such that columns 1 and 3 are equal, and columns
2 and 3 are equal. Note however that, out of the 2n combinations such that
two columns are equal, one corresponds to the entire matrix being 1’s, and
will appear thus in the three calculations, or the total number of combinations
that are not allowed out of the 4n is 3 (2n − 1) + 1 = 3 · 2n − 2, for a total
of 4n − 3 · 2n + 2 allowed combinations. Finally, note that in counting these
combinations, we have counted each triangle six times, since a permutation
of the three columns leaves the triangle unchanged but produces a different
matrix. The total number of triangles with perimeter n is then

4n − 3 · 2n + 2
6

=
2
(
2n−1

)2 − 3 · 2n−1 + 1
3

=

(
2 · 2n−1 − 1

) (
2n−1 − 1

)
3

.

Second solution by G.R.A.20 Math Problems Group, Roma, Italy
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Let Xn be the set of n elements. We say that a triple of subsets of Xn is a
degenerate triangle if the subsets are not all different. If Si = Sj then

(Si ∩ Sj) ∪ (Sj ∩ Sk) ∪ (Sk ∩ Si) = Si ∪ (Si ∩ Sk) = Si

and it follows that a degenerate triangle has perimeter n if and only if at least
two of its subsets are equal to Xn. Therefore the number of degenerate triangles
of Xn with perimeter n is the number of subsets of Xn, that is 2n. Let an be
the number of non-degenerate triangles of Xn with perimeter n, then we would
like to prove that

an =
1
3
(2n−1 − 1)(2n − 1).

For n = 1 there are no non-degenerate triangles and a1 = 0. We can construct
any non-degenerate triangle of Xn+1 from the triangles of Xn. If the triangle
of Xn is non-degenerate then the new element have be added to at least two
subsets: there are 3 + 1 = 4 different ways to do that. If the triangle of Xn

is degenerate and different from {Xn, Xn, Xn} then the new element has to be
added to one of the two sets which are equal to Xn and to third one: only 1
way. Hence we have the linear recurrence:

a1 = 0, an+1 = 4 · an + 1 · (2n − 1) = 4an + 2n − 1

which can be easily solved

an =
1
6
4n − 1

2
2n +

1
3

=
1
3
(2n−1 − 1)(2n − 1).

Third solution by John Mangual, New York, USA

Let us consider the disjoint union of, T1 = (Si ∩ Sj)\Sk, T2 = (Sj ∩ Sk)\Si,
T3 = (Sk ∩ Si)\Sj and T4 = Si ∩ Sj ∩ Sk. The union of these four sets had
better contain all n elements. Therefore let us try to place each of the numbers
{1, 2, . . . , n} into T1, T2, T3 or T4 so that Si, Sj , Sk are all distinct. By inclusion-
exclusion, we can initially place elements into the Ti arbitrarily and remove
those sets which do not fit our criterion. There are 4n ways of doing this first
step. However, we have to remove the case where exactly two of Si, Sj , Sk are
distinct. If Si = Sj , then Si = Si ∩ Sj = Sj , so we are placing elements into T1

or T4. There are 2n ways of doing this. However, we could have set Si = Sk or
Sj = Sk instead, so there are 3 ways of picking the “different” set totaling 3 ·2n

exceptions. This removes the case when Si = Sj = Sk three times, so we must
add back 2. Now we’ve counted the number of ways of placing {1, 2, . . . , n} into
distinct labeled sets Si, Sj , Sk, but we’ve overcounted the triangles by a factor
of 6 so:

#{Triangles} =
4n − 3 · 2n + 2

6
=

1
3
(2n − 1)(2n−1 − 1).
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Fourth solution by Vinoth Nandakumar, Sydney University, Australia

Name the elements of the subset 1, 2, ...n. First we count the number of subsets
Si, Sj , Sk, which have perimeter n, such that Si and Sj are identical, but not
the same as Sk. Call such a subset a bad triangle. Clearly the repeated subset
must be the complete subset (1, 2...n) - since if an element, say i, is missing,
then i will not appear in any of the sets Si∩Sj , Si∩Sk, Sj ∩Sk. Once Si and Sj

are both the complete set, (1, 2, 3...n), then Sk can be chosen arbitrarily, and
will satisfy the condition. Thus the number of bad triangles is 2n− 1 (since Sk

cannot be the same as Si and Sj).
Now we prove by induction that the number of triangles with perimeter n is
1
3(2n−1 − 1)(2n − 1). For n = 1, the claim is true, since there are no triangles
with perimeter 1, and 1

3(20− 1)(21− 1) = 0. For n = 2, the claim is true, since
there is one triangle with perimeter 1: (1), (2), (1, 2). Suppose the claim is true
for n = m. We seek to prove the claim for n = m + 1.
First, list the 2m − 1 bad triangles, which are triples of subsets of (1, 2, 3...m).
For each bad triangle (Si, Sj , Sk), where Si = Sj , consider adding the new ele-
ment, m + 1, to sets Si, Sk - now these 3 subsets form a satisfactory triangle of
perimeter m + 1, with respect to the set (1, 2, 3...m + 1) (since Si and Sk are
different, so the subsets are different). Also, we can easily check that if we are
only allowed to add the element m + 1 to any set (Si, Sj , Sk), or to keep it the
same, there is no other way of obtaining a triangle with perimeter m+1 from a
bad triangle with perimeter m. Thus, from each bad triangle, by adding m+1,
we obtain exactly one triangle of perimeter m+1 - so in this fashion, we obtain
2m − 1 triangles of perimeter m + 1 (with respect to set (1, 2, 3...m + 1)).
Now consider any triangle with respect to set (1, 2...m). For each triangle,
(Si, Sj , Sk), from it we can obtain 4 triangles with respect to the set (1, 2...m+
1), by: adding the element m + 1 to sets Si, Sj ; or sets Si, Sk; or sets Sj , Sk;
or sets Si, Sj and Sk. Thus for each of the 1

3(2m−1 − 1)(2m − 1) triangles with
perimeter m, we can obtain 4 triangles with perimeter m+1 - so in this fashion,
we obtain 4

3(2m−1 − 1)(2m − 1) triangles.
Together, the number of triangles with perimeter m + 1 that we have con-
structed, is:

2m − 1 + (
4
3
(2m−1 − 1)(2m − 1)) = (2m − 1)(1 +

4
3
(2m−1 − 1))

=
1
3
(2m − 1)(3 + 4 ∗ 2m−1 − 4)

=
1
3
(2m − 1)(2m+1 − 1)

Now, it remains to see that we have not missed any triangles with perimeter
m + 1 in our construction. But this is simple: For any triangle of perimeter
m + 1 with respect to set (1, 2, 3...m + 1), the element m + 1 must occur in at
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least two of the three subsets Si, Sj , Sk - and if we remove the element m+1 in
whichever subsets it occurs in, we will have, (with respect to the set (1, 2...m)),
either a bad triangle, or a triangle with perimeter m. In either case, we have
accounted for the triangle of perimeter m+1 in our construction; this completes
the induction.
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O77. Consider the polinomials f, g ∈ R[X]. Prove that there is a nonzero polynomial
P ∈ R[X, Y ] such that P (f, g) = 0.

Proposed by Iurie Boreico, Harvard University, USA

Solution by Vinoth Nandakumar, Sydney University, Australia

Define polynomial Pa,b(x) = f(x)ag(x)b, for a, b non-negative integers. First
suppose 2 polynomials, Pa,b(x) and Pc,d(x) are the same, for two distinct pairs
of integers a, b and c, d. Then we have f(x)ag(x)b − f(x)cg(x)d = 0, so we can
choose P (x, y) = xayb − xcyd, and P (f, g) = 0, as required. Now suppose all
polynomial Pa,b(x) are distinct. Let f(x) have degree k and g(x) have degree l.
Consider all polynomials of the form Pa,b(x), which have degree, at most 4kl.
We can count, that there must be at least 8kl such polynomials: the polynomial
Pa,b(x) has degree ka + lb, so the number of such polynomials is equal to the
number of pairs (a, b) of integers such that ka+lb ≤ 4kl. Consider the quadrant
of Cartesian plane, with both x and y co-ordinate being non-negative. For each
lattice point (a, b), with a, b integers, assign it the value ka + lb. The number
of pairs (a, b) with ka + lb ≤ 4kl is equal to the number of lattice points lying
underneath, or on, the line ka + lb = 4kl, which passes through (0, 4k) and
(4l, 0). The number of such points, is at least half the number of points lying
in a rectangle of dimensions 4k and 4l, which is 8kl. Thus we have at least
8kl polynomials Pa,b(x), with degree at most 4kl. Consider the vector space
of polynomials, P (R, 4kl), which have degree at most 4kl. This vector space
has a basis of (1, x, x2, ...x4kl), and thus has dimension 4kl + 1. It is a well-
known result in linear algebra, that in any finite dimensional vector space, the
length of any linearly independent list is at most the length of a basis - so
thus, any 4kl + 2 polynomials in the vector space P (R, 4kl), cannot be linearly
independent. Consequently, our list of 8kl distinct polynomials of form Pa,b(x),
cannot be linearly independent. Thus we can find suitable constants λi,j , not
all of which are zero, where 0 ≤ ki + lj ≤ 4kl, such that

∑
i,j λi,j ∗ Pi,j(x) = 0.

Now choose polynomial P (x, y) =
∑

i,j λi,j ∗xi ∗ yj . It follows that P (f, g) = 0,
and since P is a non-zero polynomial, we are done.
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O78. Let ABC be a triangle and let M , N , P be the midpoints of sides BC, CA,
AB, respectively. Denote by X, Y , Z the midpoints of the altitudes emerging
from vertices A, B, C, respectively. Prove that the radical center of the circles
AMX, BNY , CPZ is the center of the nine-point circle of triangle ABC.

Proposed by Cosmin Pohoata, Bucharest, Romania

First solution by Andrei Frimu, Chisinau, Moldova

Let ω be the center of the nine-point circle. Our aim is to show that the power
of ω with respect to each of the circumscribed circles of the triangles AMX,
BNY and CPZ is constant. Let Γ(T, x) be the circumcircle of 4AMX. Let
us calculate the power of ω wrt Γ.
The power is ρ(ω, Γ) = TM2 − Tω2. Let us compute Tω2. We use the well-
known fact that OG : Gω = 2 : 1 and apply Stewart Theorem for triangle TωO
and cevian TG. We get

3TG2 = 2Tω2 + TO2 − 2
3
Oω2.

Our aim is to prove that TM2 − Tω2 is constant, or, ignoring the 2
3Oω2 (since

it does not depend on our choice of AMX), we must prove that

EA = 2TM2 − 3TG2 + TO2

does not depend on the initial choice of AMX. Note that ρ(O,Γ) = TM2−TO2.
Let R be a point in the plane such that quadrilateral RAXM is an isosceles
trapezoid. Then R ∈ Γ and RM‖AX⊥BC, hence O ∈ RM . Assume the
parallel through A to BC intersects OR in S. Then 4ARS ≡ 4HMA′, where

A′ is the foot of the altitude from A. Hence SR = XA1 =
ha

2
, and OS =

h−OM . Let t = OM . Then TM2−TO2 = ρ(O,Γ) = OM ·OR = t

(
3h

2
− t

)
.

Then

TO2 = TM2 − t

(
3h

2
− t

)
,

and consequently

EA = 2TM2 − 3TG2 + TM2 − t

(
3h

2
− t

)
= 3TM2 − 3TG2 − t

(
3h

2
− t

)
.

By Leibniz, 3TG2 = TA2 + TB2 + TC2− 1
3(a2 + b2 + c2), hence it is enough to

show that

3TM2 − TA2 − TB2 − TC2 − t

(
3h

2
− t

)
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is constant. Note that TM = TA and 2TM2 = TB2 + TC2 − 1
2BC2, thus we

must show that

PA =
1
2
BC2 + t

(
3h

2
− t

)
is constant.
Now that we got rid of T we are left with an identity in the triangle, namely,
we are going to prove that

PA =
1
2
BC2 + t

(
3h

2
− t

)
=

3(a2 + b2 + c2)
8

−R2,

hence it is a constant value and the proof ends.

To see this, note that t = R cos A, t2 = R2 − a2

4
and h =

2S

a
=

bc sinA

a
=

bc

2R
.

Hence,

PA =
1
2
BC2 + t

(
3h

2
− t

)
=

a2

2
+

3
4
bc cos A−

(
R2 − a2

4

)
Since bc cos A = 1

2(b2 + c2 − a2), we finally get

PA =
3(a2 + b2 + c2)

8
−R2

Second solution by Donlapark Pornnopparat, Thailand

Let ω1, ω2 and ω3 be circumcircles of triangles AMX,BNY and CPZ respec-
tively. Let H be the orthocenter and R be the center of the nine-point circle ω
of triangle ABC. Let RM intersect ω1 at point E and RN intersect ω2 at point
F . Denote by H1 and H2 the midpoints of AH and BH, respectively. Because
EM passes through the center R of ω and it is well-known that H1 is on ω and
H1M is a diameter of ω, therefore E,H1, R,M lie on a line. In the same way,
we have F,H2, R, N lie on a line. Denote be U and V the feet of altitudes from
A and B of triangle ABC, respectively. It is obvious that quadrilateral ABUV
is cyclic. By the Power of a Point Theorem, we have,

HA ·HU = HB ·HV(
HA

2

)(
AU

2
− HA

2

)
=

(
HB

2

)(
BV

2
− HB

2

)
AH1(AX −AH1) = BH2(BY −BH2)

AH1 ·H1X = BH2 ·H2Y

EH1 ·H1M = FH2 ·H2N.
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But H1M = H2N are diameters of ω, therefore we have EH1 = FH2. Then
we have,

RM ·RE = RM(RH1 + EH1)
= RN(RH2 + FH2)
= RN ·RF.

Thus the Powers of Point of R with respect to ω1 and ω2 are equal. In the
same way, we get that the Powers of Point R with respect to ω1, ω2 and ω3 are
equal. Thus we conclude that R is the radical center of ω1, ω2 and ω3.

Third solution by Vinoth Nandakumar, Sydney University, Australia

For convenience, we first relabel the vertices:
Problem: Let the midpoints of sides BC, AC, AB of scalene triangle ABC be
A1, B1, C1, and the midpoints of the altitudes from A, B, C, be A2, B2, C2.
Prove that the radical centre of the circumcircles of AA1A2, BB1B2, CC1C2 is
the nine-point centre N of ABC.
Clearly, A2 lies on B1C1 (the dilation (A, 1

2) maps the foot of the altitude from
A, which lies on BC to A2, so A2 lies on the image of line BC, which is C1B1).
A′, the midpoint of B1C1, is the foot of perpendicular from N to B1C1. Let
the circle ΓA through A,A1, A2 meet B1C1 again at A3, and let its centre be
OA. Let the foot of the perpendicular from OA to A2A3, i.e., the midpoint of
A2A3, be A′′. Let the sidelengths of triangle A1B1C1 be a, b, c respectively. We
compute that the power of N with respect to ΓA is symmetric with respect to
the three sides (from here the conclusion follows, since the power of N with
respect to the three circles will be same).
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Since A2 lies on ΓA, the power of N with respect to ΓA is OAN2 −OAA2
2:

OAN2 −OAA2
2 = ((OAA′′ + A′N)2 + A′A′′2)− (OAA′′2 + A2A

′′2)
= ((OAA′′ + A′N)2 −OAA′′2)− (A′′A2

2 −A′A′′2)
= A′N(2OAA′′ + A′N)− (A′′A2 −A′A′′)(A′′A2 + A′A′′)
= A′N(AA2 + A′N)−A′A2(A′′A′ + A′′A3)
= A′N(AA2 + A′N)−A′A2 ∗A′A3

Here A′A2 ∗ A′A3 = AA′2 = 2b2+2c2−a2

4 using Power of a Point theorem in
AA1A2A3 and Apollonius’ Theorem. If HA is orthocentre of AB1C1, since
4AB1C1 ≡ 4A1B1C1, AA2 = AHA + HAA2. Also, A′N = 1

2AHA (if N ′, G
are the circumcentre and centroid of AB1C1 then A′N ‖ AHA and 4AHAG ∼
4A′N ′G, so the result follows since AG = 2GA′). Thus:

OAN2 −OAA2
2 = A′N(AA2 + A′N)−AA2 ∗A′A3

=
1
2
AHA(

3
2
AHA + HAA2)−

2b2 + 2c2 − a2

4

=
3
4
AH2

A +
1
2
AHA ∗HAA2 −

a2 + b2 + c2

2
+

3a2

4

=
3
4
(AH2

A + a2) +
1
2
AHA ∗HAA2 −

a2 + b2 + c2

2

Now, it is sufficient to prove that both expressions AH2
A +a2 and AHA ∗HAA2

are symmetric in the variables a, b and c. Indeed, if the feet of the perpendic-
ular from C1 to AB1 is X, then firstly we must prove that AH2

A + B1C
2
1 =

C1H
2
A + AB2

1 . This follows from the fact that the quadrilateral AHAB1C1 has
perpendicular diagonals, and the sum of the squares of opposite sides of any
such quadrilateral are equal. Secondly, we must prove that AHA ∗ HAA2 =
C1HA ∗HAX. This is a consequence of Power of a Point theorem in quadrilat-
eral AXC1A2, which is concyclic since ∠AXC1 = ∠AA2C1 = 90.
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Fourth solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

If ABC is equilateral, circles AMX,BNY, CPZ degenerate to lines AM,BN,CP ,
which meet at the center (and also nine-point center) of ABC; the result triv-
ially follows in this particular case.

If ABC is not equilateral but isosceles, wlog at A, then circle AMX degenerates
to line AM , which is a symmetry axis of ABC. Therefore, circles BNY, CPZ
are symmetric around AM , and must hence meet at two points on AM . The
radical center cannot then be defined; however, the nine-point center lies some-
where between the two points where circles BNY, CPZ meet, on line AM .

We will thus assume henceforth that ABC is not isosceles. Choose a Cartesian
coordinate system such that the x-axis coincides with line BC, and A is on the
positive half of the y-axis. Then, the origin (0, 0) is the foot of the altitude
from A, and A ≡ (0, h), X ≡

(
0, h

2

)
, where h is the length of the altitude from

A. Furthermore, we may take wlog B ≡ (−b cos C, 0) and C ≡ (c cos B, 0),
and since M is the midpoint of BC, using the theorem of the sine and calling
R the circumradius of ABC, then M ≡ (R sin(C −B), 0). The circumcenter
OA ≡ (xA, yA) and circumradius RA of circle AMX satisfy then yA = 3h

4 (since
OA is on the perpendicular bisector y = 3h

4 of AX), and

x2
A +

h2

16
= R2

A = (xA −R sin(C −B))2 +
9h2

16
;
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OA ≡
(

R sin(C −B)
2

+
h2

4R sin(C −B)
,
3h

4

)
,

R2
A =

h4

16R2 sin2(C −B)
+

5h2

16
+

R2 sin2(C −B)
4

.

It is also well known that the nine-point circle of ABC passes through M
and through the foot of the altitude from A, or its center F has x-coordinate
xF = R sin(C−B)

2 , since it is on the perpendicular bisector x = R sin(C−B)
2 of

AM . Since the nine-point circle has radius R
2 , then the y-coordinate of the

nine-point center must be yF = R cos(C−B)
2 , which is consistent with the well-

known triangle center function cos(B −C) for F . The power of the nine-point
center F with respect to the circumcircle of AMX is then R2

A − FO2
A, where

FO2
A =

(
h4

16R2 sin2(C −B)

)
+
(

R2 cos2(C −B)
4

− 3Rh cos(C −B)
4

+
9h2

16

)
.

Now, h = c sinB = b sinC = 2R sinB sinC = R cos(C −B) + R cos A, and

FO2
A =

h4

16R2 sin2(C −B)
+ R2 cos2(C −B) + 6 cos(C −B) cos A + 9 cos2 A

16
,

R2
A =

h4

16R2 sin2(C −B)
+R2 4 + cos2(C −B) + 10 cos(C −B) cos A + 5 cos2 A

16
,

R2
A−FO2

A =
R2

4
+

R2

4
cos A (cos(C −B)− cos(A)) = R2 1 + 2 cos A cos B cos C

4
.

This last expression is invariant under permutation of A,B, C, or it will also
be the power of F with respect to circles BNY and CPZ. The result follows.
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