
Junior problems

J61. Find all pairs (m,n) of positive integers such that

m2 + n2 = 13(m+ n).

Proposed by Titu Andreescu, University of Texas at Dallas, USA

First solution by Magkos Athanasios, Kozani Greece

Because our equation is symmetric without loss of generality we can assume
that m ≥ n. Rewrite the equation as n2 − 13n + m2 − 13m = 0. This is a
quadratic equation with respect to n. Its discriminant D = −m2 + 52m − 169
must be non-negative and m is a positive integer. Thus 0 < m ≤ 13

2 (1 +
√

2),
hence 0 < m ≤ 15.

Now, writing the equation in the form m(m− 13) + n(n− 13) = 0 we see that
it is impossible for m,n to be both greater that 13 or less that 13. Bceause we
assumed that m ≥ n, we get m ∈ {13, 14, 15}.

If m = 13, we get the solution (m,n) = (13, 13).

If m = 14, our equation becomes n2 − 13n + 14 = 0, which has no integral
solutions.

If m = 15, the equation becomes n2 − 13n + 30 = 0 and its integral solutions
are 3 and 10.

We conclude the solutions are (13, 13), (3, 15), (15, 3), (10, 15), (15, 10).

Second solution by Andrea Munaro, Italy

We have (m−6)2+(n−6)2−(m+n) = 72 and (m−7)2+(n−7)2+(m+n) = 98.
Adding these two equations we get

(m− 6)2 + (m− 7)2 + (n− 6)2 + (n− 7)2 = 170.

Clearlym,n ≤ 15. Because the equation is symmetric inm,n and it is quadratic,
we have to check solutions for 7 ≤ m ≤ 15. Remembering that a positive integer
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is a sum of two squares if and only iff each prime factor of the form 4k+3 appears
an even number of times in its factorization, the cases when m = 14, 11, 8 give
no solutions. For m = 15, we get n = 3 and n = 10. For m = 13, we get
n = 13. For m = 12 there are no solutions. For m = 10 we get symmetric
solution n = 15. Finally, for m = 9 and for m = 7 there are no solutions.

Thus the solutions are: (15, 3), (15, 10), (10, 15), (3, 15), (13, 13).

Third solution by Vishal Lama, Southern Utah University, Utah, USA

We have
m2 + n2 = 13(m+ n) (1),

where m,n ∈ N.

1st case: m = n. Then the only solution we obtain is m = n = 13.

Note that if (m,n) is a solution to the given equation, then so is (n,m). Thus
it is enough to consider one more case.

2nd case: m < n. From the Cauchy-Schwarz inequality we have

(m+ n)2 < 2(m2 + n2).

Therefore, (m+ n)2 < 2 · 13(m+ n), which implies m+ n < 26. Thus, we have
m+ n ≤ 25. Because m < n we get 1 ≤ m ≤ 12.

Now, consider n2 − 13n+m2 − 13m = 0 as a quadratic equation in n. Since n
is a positive integer, the discriminant ∆ = 169−4(m2−13m) must be a perfect
odd square. Let 169− 4(m2− 13m) = (2k+ 1)2 for some k ∈ N. Simplifying we
get

k(k + 1) = 42 +m(13−m).

The only possible values of the product k(k + 1) are

k(k + 1) = 54, 64, 72, 78, 82, 84.

Out of the six values for k(k + 1) above, only 72 = 8 · 9 is expressible as the
product of two consecutive positive integers. This corresponds to m = 3, 10.

Plugging m = 3 into (1) yields (n− 15)(n+ 2) = 0. Hence (3, 15) is a solution.

Plugging m = 10 into (1) again yields (n−15)(n+2) = 0. So (10, 15) is another
solution. These two pairs are the only possible solutions for m < n.

Hence, the only ordered pairs (m,n) satisfying (1) are

(3, 15), (10, 15), (13, 13), (15, 3), (15, 10).
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Also solved by Jose Luis Diaz-Barrero, Universitat Politecnica de Catalunya,
Spain; Shukurjon Shokirov, Samarqand, Uzbekistan Brian Bradie, Christopher
Newport University, USA; Salem Malikic Sarajevo, Bosnia and Herzegovina;
Daniel Campos Salas, Costa Rica; Arkady Alt, San Jose, California, USA;
Daniel Lasaosa, Universidad Publica de Navarra, Spain; Son Hong Ta, High
School for Gifted Students at Ha Noi University of Education, Vietnam; G.R.A.20
Math Problems Group, Roma, Italy; Courtis G. Chryssostomos, Larissa, Greece
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J62. Consider a right-angled triangle ABC with ∠A = 90◦. Let E ∈ AC and F ∈ AB
such that ∠AEF = ∠ABC and ∠AFE = ∠ACB. Denote by E′ and F ′ the
projections of E and F onto BC, respectively. Prove that

E′E + EF + FF ′ ≤ BC

and determine when equality holds.

Proposed by Alex Anderson, New Trier High School, Winnetka, USA

First solution by Daniel Campos Salas, Costa Rica

Note that 4ABC ∼ 4AEF ∼ 4E′EC ∼ 4F ′BF . Let a, b, c be the lengths of
BC,CA,AB, respectively.

From 4ABC ∼ 4AEF we have that AE = cx, AF = bx, EF = ax, for some
x < min{ bc ,

c
b}. In addition, from 4ABC ∼ 4E′EC we have

E′E =
AB · EC
BC

=
c(b− cx)

a
,

and analogously, FF ′ =
b(c− bx)

a
. Then,

E′E + EF + FF ′ =
c(b− cx)

a
+ ax+

b(c− bx)
a

=
x(a2 − b2 − c2) + 2bc

a

=
2bc
a
≤ b2 + c2

a
= BC,

as we wanted to prove. Equality holds if and only if AB = AC.

Second solution by Son Hong Ta, High School for Gifted Students at Ha Noi
University of Education, Vietnam

Denote by H,K the reflections of F ′ and E′ across AB,AC, respectively. Let G
be the orthogonal projection of C on BH. We have ∠KEC = ∠CEE′ = ∠B =
∠AEF , which implies that E,F and K are collinear. Similarly, H also lies on
EF . Hence we have

E′E + EF + FF ′ = KE + EF + FH = KH = CG ≤ BC.

Equality holds when CG = CB, i.e. G ≡ B. Thus BH ⊥ BC, yielding
EF ‖ BC. Hence ∠B = ∠C, or triangle ABC is an isosceles right-angled
triangle.

Also solved by Miguel Amengual Covas, Mallorca, Spain; Daniel Lasaosa, Uni-
versidad Publica de Navarra, Spain; Ricardo Barroso Campos Universidad de
Sevilla, Spain; Courtis G. Chryssostomos, Larissa, Greece; Vicente Vicario
Garcia, Huelva, Spain; Vishal Lama, Southern Utah University, Utah, USA
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J63. Find the least n such that no matter how we color an n×n lattice point grid in
two colors we can always find a parallelogram with all vertices to be monochro-
matic.

Proposed by Ivan Borsenco, University of Texas at Dallas, USA

First solution by Arnau Messegue Buisan, Barcelona, Spain

Let us change the n× n lattice point grid for a n× n cell grid, having a paral-
lelogram all whose vertices are monochromatic when the centers of the colored
cells form a parallelogram. Also for simplicity, we will say that the cells are or
colored, with the same color, or uncolored.

First, we see that there exist colorings for each n < 4 that do not contain any
parallelogram:

As a result of this, we have n ≥ 4. We prove that n = 4. For convenience we
will call the different values of uncolored cells separating two colored cells in the
same row, cell-distances in a row. For instance, in our 4 × 4 grid the different
possible values of cell-distances in a row are 2, 1, or 0. We prove that no matter

how you color
16
2

= 8 cells in a 4×4 grid, you always have in two different rows
two cell-distances in each one which are the same, proving then that these cells
form a parallelogram all whose vertices are monochromatic.

We distinguish three cases:

(i). We have one colored row: then the other four cells are in three different
rows, so at least there are two in the same row. Since the colored row has all
the possible cell-distances values, it is clear that the cell-distance in the two-
colored-cells row will coincide with one of them.

(ii). We have three colored cells in the same row, so the cell-distances in this
row can take at least two different values: then there are five colored left cells
that can be put in these ways:

- We have four of them in the same row: we are again in the case (i), which has
already been proven.
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- We have three colored cells in the same row: if we have two rows that have three
colored cells, in each row there are at least two possible values of cell-distances.
So, they necessary have on cell-distance which is the same.

- We have two colored cells in two different row: then, if the cell-distance of these
two rows is the same, the four colored cells form a parallelogram. Otherwise,
there is at least one cell-distance value which coincides with one of the cell-
distances in the three-colored-cells row.

(iii). We color two cells in each row: Then in each row there is only one cell-
distance value. Since there exists only three possible values, at least two of the
four rows have the same cell-distance, and we are done.

Second solution by Andrea Munaro, Italy

For n = 3, we color the points (1, 1), (1, 2), (2, 3), (3, 2) in the color X and the
rest in the color Y . Clearly, there is no monochromatic parallelogram.

For n = 4, we make the following observation: if there are two rows with
three points of the same color, then there exist a monochromatic parallelogram.
Consider three cases:

(i) There is a row a with four points of the same color X. Thus there is no row
from the remainings with at least two X colored points. Hence every other row
contains at least three points of color Y , and we are done.

(ii) There is a row a with exactly three X colored points. There exist at least
two rows b and c from the remainings with at least two points of color X. The
distance between points of the same color in each row can be 1, 2 or 3. In the row
a three points generate at least two different distances. Rows b and c generate
other two distances. By the Pigeonhole Principle the exist a pair of points that
have the same distance and they lie in the different rows. They are parallel and
hence form a parallelogram.

(iii) All rows have two X colored points. Recall that the distance between points
of the same color in each row can be 1, 2 or 3. We have four rows, thus by the
Pigeonhole Principle there will exist two pairs that are parallel and with the
same distance. They form a parallelogram and we are done.

Third solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

The minimum number is n = 4. For n = 3, color the top row and one of the
diagonals of the grid in one color, the other four lattice points in another. This
coloring yields no parallelogram with monochromatic vertices, so n ≥ 4.

Assume that the colors are red and blue in a 4×4 lattice with no parallelogram
with monochromatic vertices. The lengths of the segments defined by three
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points in a given row may take values (1, 1, 2) or (1, 2, 3). So, if two rows
contain three red points each, two parallel segments of length 2 are defined by red
vertices, and a parallelogram with monochromatic vertices exists. Furthermore,
if one of the rows in a 4 × 4 lattice has its 4 grid points red, then either there
is a row that contains two red points, or there exist three rows that have three
blue points, forming in each case a parallelogram with monochromatic vertices.
Because the distance of any two points in the same row is either 1, 2 or 3, if there
are at least two red points in each row, then two rows will contain red points at
the same distance, defining a parallelogram with monochromatic vertices. So,
since without loss of generality at least 8 of the 16 lattice points are red, then
there must be one row with 3 red points, two rows with 2 red points, and one
row with 1 red point. The distances between points in the row with 3 red points
must be (1, 1, 2), since otherwise a parallelogram with monochromatic vertices
would be defined by two of the points in this row, and the two points in one of
the rows with 2 red points. Thus, both rows with 2 red points are such that the
distance between red points is 3. But then these 4 points define a rectangle with
monochromatic vertices, a contradiction. Therefore for any n ≥ 4 we can always
find a 4× 4 sublattice of the n× n lattice that always contains a parallelogram
with monochromatic vertices.

Also solved by Jose H. Nieto S., Universidad del Zulia, Venezuela; Vishal Lama,
Southern Utah University, Utah, USA; G.R.A.20 Math Problems Group, Roma,
Italy
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J64. Let a, b, c be positive real numbers. Prove that
b+ c

a+ 3
√

4(b3 + c3)
+

c+ a

b+ 3
√

4(a3 + c3)
+

a+ b

c+ 3
√

4(a3 + b3)
≤ 2.

Proposed by José Luis Dı́az-Barrero, Barcelona, Spain

First solution by Oleh Faynshteyn, Leipzig, Germany

Observe that b3 + c3 = (b+ c)3 − 3bc(b+ c) ≥ (b+ c)3 − 3
4(b+ c)2 = 1

4(b+ c)3.
Using this fact we get

a+ 3
√

4(b3 + c3) ≥ a+ b+ c.

Analogously, we write for b+ 3
√

4(a3 + c3) and c+ 3
√

4(a3 + b3). We have

b+ c

a+ 3
√

4(b3 + c3)
+

c+ a

b+ 3
√

4(a3 + c3)
+

a+ b

c+ 3
√

4(a3 + b3)
≤

≤ b+ c

a+ b+ c
+

c+ a

a+ b+ c
+

a+ b

a+ b+ c
= 2,

and we are done.

Second solution by Magkos Athanasios, Kozani Greece

For positive reals x, y we have 4(x3 + y3) ≥ (x+ y)3, since

4(x3 + y3)− (x+ y)3 = 3(x+ y)(x− y)2 ≥ 0.

Therefore, the LHS of the inequality is less than or equal to
b+ c

a+ b+ c
+

c+ a

a+ b+ c
+

a+ b

a+ b+ c
= 2.

Remark: For positive reals xj , j = 1, 2, ..., n, we have

n2(x3
1 + x3

2 + ...+ x3
n) ≥ (x1 + x2 + ...+ xn)3.

This follows, for instance, from Power Mean Inequality or the Chebychev In-
equality. Thus we get the following generalization.∑ x2 + x3 + ...+ xn

x1 + 3
√

(n− 1)2(x3
2 + x3

3 + ...+ x3
n)
≤ n− 1.

Also solved by Nguyen Manh Dung, Hanoi University of Science, Vietnam; Per-
fetti Paolo, Dipartimento di matematica Universita degli studi di Tor Vergata,
Italy; Daniel Lasaosa, Universidad Publica de Navarra, Spain; O.O.Ibrogimov
Samarqand State University, Uzbekistan; Arkady Alt, San Jose, California,
USA; Salem Malikic Sarajevo, Bosnia and Herzegovina; Samin Riasat, Notre
Dame College, Bangladesh; Arnau Messegue Buisan, Barcelona, Spain; Son
Hong Ta, High School for Gifted Students at Ha Noi University of Education,
Viet Nam, Andrea Munaro, Italy
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J65. Prove that the interval (2n + 1, 2n+1− 1), n ≥ 2 contains an integer that can be
represented as a sum of n prime numbers.

Proposed by Radu Sorici, University of Texas at Dallas, USA

First solution by Arnau Messegue Buisan, Barcelona, Spain

Recall Bertrand’s Postulate, which was proved by P. Chebyshev, that states that
for each positive integer n > 1 there is a prime number p such that n < p < 2n.
Using this postulate there exist prime numbers p1, p2, . . . , pn, for n ≥ 2 such
that p1 = 3 and

2 < p2 < 22

22 < p3 < 23

...

2n−1 < pn < 2n.

Adding these up we get the desired result. Namely,

2+(1+2+22+. . .+2n−1) = 2n+1 < p1+p2+. . . .+pn < 1+2+22+. . .+2n = 2n+1−1.

Second solution by G.R.A.20 Math Problems Group, Roma, Italy

For n = 1 the interval (2n + 1, 2n+1 − 1) is empty. For n = 2, 3 we have that
3 + 3 = 6 ∈ (5, 7) and 2 + 3 + 5 = 10 ∈ (9, 15).

Now we prove that there is a prime p such that np ∈ (2n + 1, 2n+1 − 1) for any
n > 3. This means that

2n + 1
n

< p <
2n+1 − 1

n
.

By Bertrand’s postulate, for any integer a > 1 there is a prime p such that
a < p < 2a that is a+ 1 ≤ p ≤ 2a− 1. Therefore it suffices to prove that there
is an integer a > 1 such that

2n + 1
n

< a+ 1 and 2a− 1 <
2n+1 − 1

n
.

Hence
2n + 1
n

− 1 < a <
2n+1 − 1

2n
+

1
2

and the existence of a is proved as soon as the length of this open interval is
greater than 1

1 <
(

2n+1 − 1
2n

+
1
2

)
−
(

2n + 1
n

− 1
)

=
3
2

(
1− 1

n

)
Mathematical Reflections 6 (2007) 9



that is true for n > 3.

Also solved by Vishal Lama, Southern Utah University, Utah, USA; Vicente
Vicario Garcia, Huelva, Spain; Salem Malikic Sarajevo, Bosnia and Herzegov-
ina.
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J66. Let a0 = a1 = 1 and an+1 = 2an−an−1+2 for n ≥ 1. Prove that an2+1 = an+1an
for all n ≥ 0.

Proposed by Ivan Borsenco, University of Texas at Dallas, USA

First solution by O.O.Ibrogimov, Samarqand State University, Uzbekistan

Because an+1 + an−1 = 2an + 2, we have

a2 + a0 = 2a1 + 2
a3 + a1 = 2a2 + 2

...

am−1 + am+1 = 2am + 2

Summing up we get

a0 + a1 + 2(a2 + . . .+ am−1) + am + am+1 = 2(a1 + a2 + . . .+ am) + 2m,

yielding
am+1 = am +m.

From here it is not difficult to find that am = m2 −m+ 1. Then

an2+1 = (n2 + 1)2− (n2 + 1) + 1 = ((n+ 1)2− (n+ 1) + 1)(n2−n+ 1) = an+1an.

Second solution by Arkady Alt, San Jose, California, USA

Observe that an+1 − an − 2n = an − an−1 − 2(n − 1), for n ≥ 1. Therefore,
an+1 − an − 2n = c, where c is some constant. Because an+1 − an − 2n = c we
can conclude an = (n− 1)n + cn + b, for n ≥ 0. Initial conditions a0 = a1 = 1
give us c = 0 and b = 1, i.e. an = n2 − n+ 1, for n ≥ 0. Hence

an2+1 =
(
n2 + 1

)2 − (n2 + 1
)

+ 1 =
(
n2 − n+ 1

) (
n2 + n+ 1

)
= anan+1.

Third solution by Brian Bradie, Christopher Newport University, USA

The characteristic equation associated with the difference equation an+1 = 2an−
an−1 has a double root of 1; therefore, the complementary solution associated
with the difference equation an+1 = 2an − an−1 + 2 is

c1 + c2n
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for some constants c1 and c2. A particular solution for the nonhomogeneous
difference equation takes the form λn2 for some constant λ. Substituting this
form into the nonhomogeneous difference equation yields

λ(n+ 1)2 = 2λn2 − λ(n− 1)2 + 2 or λ = 1.

The general solution of an+1 = 2an − an−1 + 2 is then

an = c1 + c2n+ n2.

To satisfy the initial conditions a0 = a1 = 1, we find c1 = 1 and c2 = −1. Thus,

an = 1− n+ n2.

Now,

an2+1 = 1− (n2 + 1) + (n2 + 1)2

= n4 + n2 + 1
= (n2 − n+ 1)(n2 + n+ 1)
= (n2 − n+ 1)

[
(n+ 1)2 − (n+ 1) + 1

]
= anan+1.

Also solved by Salem Malikic Sarajevo, Bosnia and Herzegovina; Arnau Messegue
Buisan, Barcelona, Spain; Andrea Munaro, Italy; Daniel Campos Salas, Costa
Rica; Jose Hernandez Santiago, UTM, Oaxaca, Mexico; Daniel Lasaosa, Uni-
versidad Publica de Navarra, Spain; Jose H. Nieto S., Universidad del Zulia,
Venezuela; Son Hong Ta, Ha Noi University, Vietnam; Vicente Vicario Garcia,
Huelva, Spain; Vishal Lama, Southern Utah University, Utah, USA
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Senior problems

S61. Let ABC be a triangle. Prove that

1
sin A

2

+
1

sin B
2

+
1

sin C
2

≥ 4

√
R

r
,

where R and r are its circumradius and inradius, respectively.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

* There was a mistake in the initially published inequality. A lot of readers
pointed out this mistake. Originally proposed inequality was

1
sin A

2

+
1

sin B
2

+
1

sin C
2

≥ 6 3

√
R

2r
.

But due to the square root that we had, we changed it to the following

1
sin A

2

+
1

sin B
2

+
1

sin C
2

≥ 4

√
R

r
.

Solution by Daniel Campos Salas, Costa Rica

Recall the identity
r

R
= 4 sin A

2 sin B
2 sin C

2 . Our inequality is equivalent to√
sin B

2 sin C
2

sin A
2

+

√
sin A

2 sin C
2

sin B
2

+

√
sin A

2 sin B
2

sin C
2

≥ 2.

Let (x, y, z) = (s − a, s − b, s − c), where s is the semiperimeter and a, b, c are

the sidelengths of triangle ABC. Using the fact that sin A
2 =

√
yz

(x+ y)(x+ z)
,

our inequality transforms to√
x

y + z
+
√

y

x+ z
+
√

z

x+ y
≥ 2.

Note that x+ y + z ≥ 2
√
x(y + z). Thus√

x

y + z
+
√

y

x+ z
+
√

z

x+ y
≥ 2x
x+ y + z

+
2y

x+ y + z
+

2z
x+ y + z

= 2,

and we are done.

Also solved by Salem Malikic Sarajevo, Bosnia and Herzegovina; Son Hong
Ta, Ha Noi University, Vietnam; Oleh Faynshteyn, Leipzig, Germany; Daniel
Lasaosa, Universidad Publica de Navarra, Spain; Vicente Vicario Garcia, Huelva,
Spain
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S62. Let ABCD be a parallelogram and let X ∈ AB, Y ∈ BC,Z ∈ CD, and K ∈ AD
such that XZ ‖ BC ‖ AD and Y K ‖ AB ‖ CD. Let P = XZ ∩ Y K and
Q = BZ ∩DY . Prove that A,P,Q are collinear.

Proposed by Proposed by Juan Bosco Marquez and Francisco Javier Garcia
Capitan, Spain

First solution by Andrea Munaro, Italy

Applying Menelaus’s Theorem to the triangle CZB with transversal DQY we
get

CY

Y B
· BQ
QZ
· ZD
DC

= 1.

Because CY PZ and Y PXB are parallelograms we have CY
Y B = ZP

PX . Similarly
for AXZD and XBCZ we get ZD

DC = XA
AB . It follows that

ZP

PX
· XA
AB
· BQ
QZ

= 1,

and by the converse of Menelaus’s Theorem applied to the triangle BZX we
conclude that A,P,Q are collinear.

Second solution by Son Hong Ta, Ha Noi University, Vietnam

Denote by M the intersection of AP with BC and N the intersection of XZ
with DY . By the Thales theorem, we have

MY

Y B
=
MY

AK
=
PY

PK
=
PY

ZD
=
PN

NZ
.

On the other hand, MB ‖ ZP , hence we conclude that P,Q, and M are
collinear. Therefore A,P and Q are collinear as desired.

Third solution by Arnau Messegue Buisan, Barcelona, Spain

Let R = DX ∩ BZ, S = AR ∩ DB and S′ = CQ ∩ DB. Applying Ceva’s
theorem to the triangles ADB and BCD we get

DS ·BS′

SB · S′D
=
AX ·DK · CZ ·BY
XB ·KA · ZD · Y C

= 1

Thus S′ = S. Now, consider M = KX∩AR, N = ZY ∩CQ, T = KX∩DB and
T ′ = ZY ∩DB. We will use the following Lemma which we won’t prove, because
it has appeared in the article of Cosmin Pohoata, published in Mathematical
Reflections in the 2007 volume.
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Lemma. I n a triangle ABC consider three points X Y , Z on the side BC, CA,
AB, respectively. If X ′ is the point of intersection of Y Z with the extended
side BC, the the four-point (BXCX ′) forms and harmonic division if and only
if the cevians AX, BY and CZ are concurrent.

Applying the lemma to triangles ADB with cevians DX, BK and AS and
DBC with the cevians DY , ZB and CS we get that the four point (BSDT )
and (BSDT ′) are harmonic. Thus, we have that T = T ′, that is, lines XK, BD
and Y Z are concurrent.

Finally, we recall Desargue’s theorem. It states that if two triangles are in
perspective with respect to a center they are in perspective with respect to
an axis. Since triangles XBY and KDZ are in perspective with respect to
T , they are in perspective with respect to an axis. This means that points
A = XB ∩KD, Q = BZ ∩DY and P = ZX ∩ Y K are collinear which is what
we wanted to prove.

Also solved by Courtis G. Chryssostomos, Larissa, Greece; Ricardo Barroso
Campos Universidad de Sevilla, Spain; Daniel Campos Salas, Costa Rica; Daniel
Lasaosa, Universidad Publica de Navarra, Spain; O.O.Ibrogimov student of
Samarqand State University, Uzbekistan; Salem Malikic Sarajevo, Bosnia and
Herzegovina; Andrei Iliasenco, Chisinau, Moldova; Vicente Vicario Garcia,
Huelva, Spain; Vishal Lama, Southern Utah University, Utah, USA
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S63. Let a, b, c be positive real numbers such that ab+ bc+ ca ≥ 3. Prove that

a√
a+ b

+
b√
b+ c

+
c√
c+ a

≥ 3√
2
.

Proposed by Pham Huu Duc, Ballajura, Australia

First solution by Son Hong Ta, Ha Noi University, Vietnam

By the Holders Inequality, we get(∑ a√
a+ b

)(∑ a√
a+ b

)(∑
a(a+ b)

)
≥ (a+ b+ c)3.

Therefore, it remains to prove that

2(a+ b+ c)3 ≥ 9(a2 + b2 + c2 + ab+ bc+ ca.

Let x = a + b + c, y = ab + bc + ca, we have y ≥ 3 and the inequality above
transforms to

2x3 ≥ 9(x2 − y).

It is enough to prove 2x3+27 ≥ 9x2, that immediately follows from the AM-GM
inequality.

Second solution by Perfetti Paolo, Dipartimento di matematica Universita degli
studi di Tor Vergata, Italy

By the Cauchy-Schwarz inequality we have(∑
cyc

a
√
a+ b

)(∑
cyc

a√
a+ b

)
≥ (a+ b+ c)2

Again using the Cauchy-Schwarz inequality we get
√
a+ b+ c

√
a(a+ b) + b(b+ c) + c(c+ a) ≥ a

√
a+ b+ b

√
b+ c+ c

√
a+ c.

Then it is enough to prove that

(a+ b+ c)3/2√
a2 + b2 + c2 + ab+ bc+ ca

≥ 3√
2
,

or
2(a+ b+ c)3 ≥ 9(a2 + b2 + c2 + ab+ bc+ ca).

After elementary algebra we have

2(a+ b+ c)3 − 9(a+ b+ c)2 + 9(ab+ bc+ ca) ≥ 0.
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Using the fact ab+ bc+ ca ≥ 3, it is enough to prove that

2(a+ b+ c)3 − 9(a+ b+ c)2 + 27 ≥ 0.

Denote x = a + b + c, then 2x3 − 9x2 + 27 = (x − 3)2(x + 3
2) ≥ 0, and we are

done.

Third solution by Daniel Campos Salas, Costa Rica

Let f(x) = 1√
x

for all positive reals x. Note that f ′′(x) = 3

4
√
x5
> 0, then f is

convex. From Jensen’s weighted inequality we have

∑
cyc

af(a+ b) ≥ (a+ b+ c)f


∑
cyc

a(a+ b)

a+ b+ c

.

This implies that

∑
cyc

a√
a+ b

≥

√
(a+ b+ c)3

a2 + b2 + c2 + ab+ bc+ ca
.

Then, it is enough to prove that

2(a+ b+ c)3 ≥ 9(a2 + b2 + c2 + ab+ bc+ ca),

or equivalently,

4(a+ b+ c)6 ≥ 81(a2 + b2 + c2 + ab+ bc+ ca)2.

We will prove that

4(a+ b+ c)6 ≥ 27(ab+ bc+ ca)(a2 + b2 + c2 + ab+ bc+ ca)2,

which combined with the hypothesis gives the desired result. Let
x = a2 + b2 + c2 and y = ab+ bc+ ca. Note that

4(a+ b+ c)6 − 27(ab+ bc+ ca)(a2 + b2 + c2 + ab+ bc+ ca)2

= 4(x+ 2y)3 − 27y(x+ y)2

= (x− y)2(4x+ 5y),

which is clearly nonnegative and this completes the proof.
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Fourth solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Denote by x =
√
b+ c, y =

√
c+ a, z =

√
a+ b. We have to prove

y2 + z2 − x2

2z
+
z2 + x2 − y2

2x
+
x2 + y2 − z2

2y
≥ 3√

2
.

Assume that x+ y+ z is known. Then, using Lagrange’s multipliers method in
order to find the minimum of the LHS, we find

xyz (λ− 1) =
y3z − z3y + x3 (z − y)

x

=
z3x− x3z + y3 (x− z)

y

=
x3y − y3x+ z3 (y − x)

z
,

or xyz (x+ y + z) (λ− 1) = 0. Since x, y, z are positive, λ = 1, and

(y − z)
(
y2z + z2y − x3

)
= (z − x)

(
z2x+ x2z − y3

)
= (x− y)

(
x2y + y2x− z3

)
= 0.

Assume without loss of generality that x ≤ y, z. Then, y = z, and the LHS is
y + x

2 = x+y+z
2 . Therefore it is sufficient to prove that x+ y + z ≥ 3

√
2.

Let us consider triangle ∆XY Z such that the lengths of the sides opposite
angles X,Y, Z are respectively x, y, z. Then,

0 < cosX =
y2 + z2 − x2

2yz
=

a

y
√
a+ b

=
a

√
c+ a

√
a+ b

< 1,

and similarly its cyclic permutations. Our triangle is well defined and has acute
angles. The condition ab+ bc+ ca ≥ 3 can be written as

3 ≤ xyz (z cosX cosY + x cosY cosZ + y cosZ cosX)

= 2Rxyz sinX sinY sinZ =
x2y2z2

4R2
= 4S2,

where R and S are the circumradius and area of ∆XY Z. But it is well known
that, of all triangles that have a certain area, the perimeter is minimum when
the triangle is equilateral. Since S ≥

√
3

2 , the perimeter x+ y + z of ∆XY Z is
larger than or equal to the perimeter of an equilateral triangle with sides

√
2,

and we are done.

Also solved by Salem Malikic Sarajevo, Bosnia and Herzegovina; Oleh Fayn-
shteyn, Leipzig, Germany; Son Hong Ta, Ha Noi University, Vietnam; Vishal
Lama, Southern Utah University, Utah, USA
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S64. Let ABC be a triangle with centroid G and let g be a line through G. Line
g intersects BC at a point X. The parallels to lines BG and CG through A
intersect line g at points Xb and Xc, respectively. Prove that

1
−−→
GX

+
1
−−→
GXb

+
1
−−→
GXc

= 0.

Proposed by Darij Grinberg, Germany

First solution by Francisco Javier Garcia Capitan, Spain

Let us prove the following lemma:

Lemma. If a line g through G intersects BC, CA and AB at X, Y and Z,
respectively, then

1
−−→
GX

+
1
−−→
GY

+
1
−→
GZ

= 0. (1)

B CX

A J

Y
G

Z

M

Proof. We have (BCM∞) = −1, where M is the midpoint of BC and ∞
denotes the infinite point of BC. After a projection of the line BC onto g with
respect to the point A we get (ZY GJ) = −1, where J is the intersection of g
with the parallel to BC through A, i.e. J is the harmonic conjugate of G with
respect to the pair B,C. Thus we have

2
−→
GJ

=
1
−−→
GY

+
1
−→
GZ

. (2)

Now, the parallelism of AJ and BC and the relation AG : GM = 2 : 1 gives−→
GJ = −2

−−→
GX, and this with (2) proves (1).

B CX

A

G

Y Y

X

X

Mb c

b

c
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Let the parallel lines through A to the BG and CG intersect BC at points Yb
and Yc, respectively. It is not difficult to see that triangle AYbYc is obtained by a
homotethy with center M and ratio 3. In other words Yb and Yc are reflections of
C and B with respect to B,C. We can write

−→
Y b = 2

−→
B −
−→
C and

−→
Y c = 2

−→
C −
−→
B ,

and therefore we have
−→
A +

−→
Y b +

−→
Y c =

−→
A +

−→
B +

−→
C = 3

−→
G , hence G is also

the centroid of triangle AYbYc. Applying our lemma to this triangle we get the
desired result.

Second solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

In homogeneous barycentric coordinates, we may express any point X on the
line BC (whose equation is wB + wC = 1), as (wA, wB, wC) ≡ (0, ρ, 1− ρ).

If wB = wC = 1
2 , then X is the midpoint of BC, and g passes through A, or

Xb = Xc = A, and
−−→
GXb =

−−→
GXb = −2

−−→
GX, clearly satisfying the given relation.

If wB = 0 or wB = 1, then X = C and X = B, respectively, resulting in g being
coincident with GC and GB, respectively, or

−−→
GXb = −

−−→
GX and

−−→
GXc = −

−−→
GX,

with Xc and Xb being at infinity, respectively, which again satisfy the given
relation. In any other case, ρ 6= 0, 1

2 , 1.

Line g passes through G ≡
(

1
3 ,

1
3 ,

1
3

)
and X ≡ (0, ρ, 1− ρ). The equation of g is

(1− 2ρ)wA + (ρ− 1)wB + ρwC = 0. The respective parallels to GB and GC
through A have respective equations wB + 2wC = 0 and 2wB + 2wC = 0, or
united to the normalization condition wA + wB + wC = 1, we may find

Xb ≡
(

2− ρ
3− 3ρ

,
2− ρ
2− 4ρ

,
2ρ− 1
3− 3ρ

)
,

Xc ≡
(

1 + ρ

3ρ
,
1− 2ρ

3ρ
,
4ρ− 2

3ρ

)
.

Now, since X,Xb, Xc are collinear with G, then denoting by [XY Z] the area of
triangle XY Z,

−−−→
XXb
−−→
XG

=
[BXbC]
[BGC]

=
2−ρ
3−3ρ

1
3

=
2− ρ
1− ρ

,

−−→
GXb =

(
1− 2− ρ

1− ρ

)
−−→
GX =

−−→
GX

ρ− 1
.

Similarly,
−−−→
XXc
−−→
XG

=
[BXcC]
[BGC]

=
1+ρ
3ρ
1
3

=
1 + ρ

ρ
,

−−→
GXc =

(
1− 1 + ρ

ρ

)
−−→
GX = −

−−→
GX

ρ
.
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Finally,
1
−−→
GX

+
1
−−→
GXb

+
1
−−→
GXc

=
1 + (ρ− 1)− ρ

−−→
GX

= 0,

and we are done.

Third solution by Son Hong Ta, Ha Noi University, Vietnam

Denote by M,N the intersections of the lines AXb, AXc with the sideline BC,
respectively. We can easily prove that

−−→
MB =

−−→
BC =

−−→
CN . Now, we have

−−→
GX

(
1
−−→
GX

+
1
−−→
GXb

+
1
−−→
GXc

)
= 1 +

−−→
GX

−−→
GXb +

−−→
GX

−−→
GXc

= 1 +
−−→
BX
−−→
BM

+
−−→
CX
−−→
CN

= 1 +
−−→
BX
−−→
CB
−
−−→
CX
−−→
CB

= 1 +
−−→
BC
−−→
CB

= 0.

Hence 1−−→
GX

+ 1−−→
GXb

+ 1−−→
GXc

= 0, and we are done.

Also solved by Andrei Iliasenco, Chisinau, Moldova
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S65. Let n be an integer greater than 1 and let X be a set with n+ 1 elements. Let
A1, A2, . . . , A2n+1 be subsets of X such that the union of any n has at least n
elements. Prove that among these 2n + 1 subsets there exist three such that
any two of them have a common element.

Proposed by Gabriel Dospinescu, Ecole Normale Superieure, France

First solution by Jose H. Nieto S., Universidad del Zulia, Venezuela

We will prove that among the 2n+ 1 subsets there are three whose intersection
is non-empty. Let us call classes the given subsets Ai. If some x ∈ X belongs
to three classes,we are done. Otherwise, each x ∈ X belongs at most to two
classes, hence the number p of ordered pairs (x,Ai) with x ∈ Ai is at most
2(n + 1). But clearly p =

∑2n+1
i=1 |Ai|, where |Ai| is the number of elements in

Ai. Therefore there are at most n + 1 classes with 2 or more elements, and at
least n classes with 0 or 1 elements. If some class Ai is empty, the union of Ai
and n−1 other classes with 0 or 1 elements would contain less than n elements,
a contradiction. Hence no class is empty. If k is the number of classes with 2
or more elements, then the other 2n+ 1− k classes contain exactly one element
each. Hence 2k + (2n + 1− k) ≤ p ≤ 2(n + 1), i.e., k ≤ 1. This means that at
least 2n classes contain exactly one element. But there are only n+ 1 elements,
and n + 1 < 2n (since n > 1), hence there are two identical classes Ai = Aj
with one element. If we take other n− 2 one-element classes, we have n classes
whose union contain at most n− 1 elements, a contradiction.

Second solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Let us assume that 2n + 1 sets may be found such that no three of them have
pairwise non-empty intersection, and let us work our way to a contradiction.
Each element of X appears at most in two sets Ai. Thus the sum of the cardinals
of the Ai cannot be larger than 2n+ 2.

Let order the sets A1, A2, . . . , A2n+1 such that set Ai+1 has at least as many
elements as set Ai for i = 1, 2, . . . , 2n. It is clear that the sum of the cardinals
of A1, A2, . . . , An is at least n, since their union contains at least n elements.
Similarly, the sum of the cardinals of An+1, An+2, . . . , A2n is at least n. Let us
consider two different cases:

a) Assume that A2n+1 contains one element. Then no Ai contains more than one
element, or each Ai must contain exactly one element for the sums of cardinals
considered above to be at least n. But all elements should be different, a
contradiction.

b) Assume that A2n+1 contains at least two elements. Then the sum of the
cardinals of A1, A2, . . . , A2n is at most (2n+2)−2 = 2n, and it is at least 2n, or
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it is exactly 2n, and the sum of the cardinals of A1, A2, . . . , An and the sum of
the cardinals of An+1, An+2, . . . , A2n are both exactly n. Since An+j has at least
as many elements as An+1−j (j = 1, 2, . . . . , n), and the sum of the cardinals
of the first set is equal to the sum of the cardinals of the second set, then A1

and A2n, and hence A2, A3, . . . , A2n−1, contain all exactly the same number of
elements, which can only be 1.

Therefore each Ai contains exactly one element, except for A2n+1, which may
contain either one or two. Furthermore, no two Ai (i = 1, 2, . . . , 2n) may contain
the same element, since otherwise, taking these two sets, and any other n − 2
different sets out of A1, A2, . . . , A2n, their union would contain at most n − 1
different elements, a contradiction. But then there would be at least 2n different
elements in X, a contradiction. The conclusion follows.
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S66. Consider a triangle ABC and let D and E be the reflections of vertices B and C
into AC and AB, respectively. Let F = BE ∩CD and let Ha be the projection
of the altitude from A onto BC. Denote by Fa, Fb, Fc the projections of F onto
BC,CA,AB, respectively. Prove that Fa, Fb, Fc, Ha are concyclic.

Proposed by Mihai Miculita, Oradea, Romania

First solution by Ricardo Barroso Campos Universidad de Sevilla, Spain

Note that Fa lies on the circle with diamter FB. Thus ∠FcFaF = ∠FcBF =
∠B = 180−∠FaBFc = ∠FcFFa, hence triangle FcFaF is isosceles. Because Fa
lies on the circle with diamter FC, we have that triangle FbFaF is also isosceles,
so line FcFb is perpendicular to FFa and is parallel to BC.

Now, let J be the second intersection point of the circumcircle of triangle FcFaFb
with the line BC. Clearly, FaJFbFc is a regular trapezium. We have

∠JFbFc = ∠FaFcFb =
1
2
∠FaFcF =

1
2
∠FaBF =

1
2

(180◦ − 2∠B) = 90◦ − ∠B.

Hence FbJ is perpendicular to AFc. Similarly, FcJ is perpendicular to AFb and
J is the orthocenter of the triangle AFbFc. Thus AJ is perpendicular to BC
and Ha = J and therefore points Fa, Fb, Fc, Ha are concyclic.

Second solution by Andrei Iliasenco, Chisinau, Moldova

First we prove that BC ‖ FbFc, or CFb/AC = BFc/AB. Using definitions of
the points F, Fa, Fb we can easily express the angles of 4CFFb,4BCF through
the angles of 4ABC. Using the Law of Sines all these triangles we get

CFb
AC

=
CF cosC
AC

=
BC

sin(180− 2B)
sin(180− 2A)

cosC

AC
=
BC

AC

sin 2B
sin 2A

cosC =

=
2 sinA sinB cosB
2 sinB sinA cosA

cosC =
cosB cosC

cosA
(1)

Analogously to (1) we have

BFc
AB

=
cosB cosC

cosA
=
CFb
AC

(2)

Hence BC ‖ FbFc. Let H be the projection of the altitude from A onto FbFc.
Let us prove, that 4ACHa is similar to 4FcHaH, or AHa/CHa = FcH/HHa.
By the Law of Sines for 4ACHA we have

AHa

CHA
=
AC sinC
AC cosC

=
sinC
cosC

(3)
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Using BC ‖ FcFb, similarity of 4ABHa and 4AFcH and (2), we get

HaH

AHa
=
BFc
AB

=
cosB cosC

cosA
(4)

FcH

BHa
=
AFc
AB

=
BFc
AB

+ 1 =
cosB cosC

cosA
+ 1 =

cosB cosC + cosA
cosA

=
sinB sinC

cosA
(5)

Using (3), (4) and (5) we have

FcH

HHa
=
BHa

sinB sinC
cosA

AHa
cosB cosC

cosA

=
AB cosB sinB sinC
AB sinB cosB cosC

=
sinC
cosC

=
AHa

CHA
.

Hence 4ACHa is similar to 4FcHaH. Analogously, 4ABHa is similar to
4FbHaH.

Thus ∠FbHaFc = ∠FbHAH + ∠FcHaH = ∠ACHa + ∠ABHa = ∠B + ∠C.
But the quadrilaterals FFaCFb and FFaBFc are cyclic, because ∠FFaC =
∠FFbC = π/2 and ∠FFaB = ∠FFcB = π/2. So ∠FcFaFb = ∠FcFaF +
∠FFaFb = ∠FcBF + ∠FCFb = ∠B + ∠C = ∠FbHaFc. It follows that quadri-
lateral FaFbFcHa is cyclic.

Also solved by Salem Malikic Sarajevo, Bosnia and Herzegovina; Daniel Lasaosa,
Universidad Publica de Navarra, Spain; Son Hong Ta, High School for Gifted
Students at Ha Noi University of Education, Viet Nam; Andrea Munaro, Italy
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Undergraduate problems

U61. Find the sum of the series
∞∑
i=1

∞∑
j=1

i!j!
(i+ j + 1)!

.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

First solution by Brian Bradie, Christopher Newport University, USA

For each i,

j!
(i+ j + 1)!

=
1

(j + 1)(j + 2) · · · (j + i+ 1)

=
1
i

(
1

(j + 1)(j + 2) · · · (j + i)
− 1

(j + 2)(j + 3) · · · (j + i+ 1)

)
.

Thus,

∞∑
i=1

∞∑
j=1

i!j!
(i+ j + 1)!

=
∞∑
i=1

i! · ∞∑
j=1

j!
(i+ j + 1)!


=

∞∑
i=1

(
i! · 1

i(i+ 1)!

)

=
∞∑
i=1

1
i(i+ 1)

=
∞∑
i=1

(
1
i
− 1
i+ 1

)
= 1.

Second solution by G.R.A.20 Math Problems Group, Roma, Italy

Letting nk = n(n− 1) · · · (n− k + 1), we note that

∆j

(
1

(i+ j)i

)
=

1
(i+ j + 1)i

− 1
(i+ j)i

=
j + 1− (i+ j + 1)

(i+ j + 1)(i+ j) · · · (j + 1)

=
−i

(i+ j + 1)i(j + 1)
,
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Therefore

i!j!
(i+ j + 1)!

=
i!

(i+ j + 1)i(j + 1)
= −(i− 1)!∆j

(
1

(i+ j)i

)
,

and it follows that
∞∑
i=1

∞∑
j=1

i!j!
(i+ j + 1)!

=
∞∑
i=1

−(i− 1)!
∞∑
j=1

∆j

(
1

(i+ j)i

)

=
∞∑
i=1

−(i− 1)!
(
− 1

(i+ 1)i

)

=
∞∑
i=1

1
i(i+ 1)

= 1

Also solved by Daniel Lasaosa, Universidad Publica de Navarra, Spain; O.O.Ibrogimov
student of Samarqand State University, Uzbekistan; Vishal Lama, Southern
Utah University, Utah, USA
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U62. Let x1, x2, . . . , xn > 0 such that x1 + x2 + . . . + xn = n and let yk = n − xk,
k = 1, 2, . . . , n. Prove that

xx1
1 · x

x2
2 · · ·x

xn
n ≥

(
y1

n− 1

)y1
·
(

y2

n− 1

)y2
· · ·
(

yn
n− 1

)yn

.

Proposed by Cezar Lupu, University of Bucharest, Romania

First solution by Perfetti Paolo, Dipartimento di matematica Universita degli
studi di Tor Vergata, Italy

Applying the logarithm at both sides of the inequality we get
n∑
k=1

xk lnxk ≥
n∑
k=1

(n− xk) ln
(
n− xk
n− 1

)
= (n− 1)

n∑
k=1

n− xk
n− 1

ln
(
n− xk
n− 1

)
Recall the general inequality for convex functions

n∑
k=1

F (xk) + n(n− 2)F
(∑n

k=1 xk
n

)
≥ (n− 1)

n∑
k=1

F

(
S − xk
n− 1

)
,

where S =
∑n

k=1 xk. Because the function x lnx is convex and S = n in our
case, we conclude the proof.

Second solution by Vishal Lama, Southern Utah University, Utah, USA

We use the Generalized Cauchy Inequality:

p1a1 + p2a2 + . . .+ pnan
p1 + p2 + . . .+ pn

≥ (ap11 a
p2
2 . . . apn

n )
1

p1+p2+...+pn ≥ p1 + p2 + . . .+ pn
p1
a1

+ p2
a2

+ . . .+ pn

an

,

where ai > 0, pi > 0,∀ 1 ≤ i ≤ n.

Let L = xx1
1 · x

x2
2 · · ·xxn

n and R =
(

y1

n− 1

)y1
·
(

y2

n− 1

)y2
· · ·
(

yn
n− 1

)yn

.

We have to prove that L ≥ R. Setting ai = xi and pi = xi,∀ 1 ≤ i ≤ n, and
using the right hand inequality of the GCI above, we get

L
1

x1+x2+...+xn ≥ x1 + x2 + . . .+ xn
x1
x1

+ x2
x2

+ . . .+ xn
xn

= 1.

Now, setting ai =
yi

n− 1
and pi = yi,∀ 1 ≤ i ≤ n, and using the left inequality

of the GCI above, we get

y21
n−1 + y22

n−1 + . . .+ y2n
n−1

y1 + y2 + . . .+ yn
≥ R

1
y1+y2+...+yn ,
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or
(n− x1)2 + (n− x2)2 + . . .+ (n− xn)2

n(n− 1)2
≥ R

1
n(n−1) ,

because y1 + y2 + . . .+ yn = (n− x1) + (n− x2) + . . .+ (n− xn) = n(n− 1).

Consider f(x) = (n−x)2, where x ∈ (0, n). We have f ′′(x) = −2, which implies
that f(x) is concave down. Using Jensen’s inequality we have

f

(
x1 + x2 + . . .+ xn

n

)
≥ f(x1) + f(x2) + . . .+ f(xn)

n
,

hence
f(1) ≥ 1

n

(
(n− x1)2 + (n− x2)2 + . . .+ (n− xn)2

)
,

or

1 ≥ (n− x1)2 + (n− x2)2 + . . .+ (n− xn)2

n(n− 1)2

Combining obtained inequalities we get L ≥ 1 ≥ R, and we are done.

Third solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

The natural logarithm is a strictly increasing function, thus we have to prove

n∑
k=1

(yk ln yk − xk lnxk) ≤ ln (n− 1)
n∑
k=1

yk =
(
n2 − n

)
ln (n− 1) .

Let us assume that we know the values of x3, x4, . . . , xn such that the LHS is
maximum, and let us call n− k = x3 +x4 + ...+xn < n. Then, we need to find
the maximum of

y2 ln y2 − x2 lnx2 + y1 ln y1 − x1 lnx1 = (n− k + x1) ln (n− k + x1)

− (k − x1) ln (k − x1) + (n− x1) ln (n− x1)− x1 lnx1,

where 0 < x1 < k < n. Taking the first derivative of this last expression with
respect to x1, we find

ln
(

(n− k + x1) (k − x1)
x1 (n− x1)

)
.

This first derivative is continuous in the (0, k) interval, reaching a value of 0
when k (n− k) = 2 (n− k)x1, i.e., then x1 = x2 = k

2 . The second derivative,
evaluated for this value of x1, is − 8(n−k)

k(2n−k) , which is negative, and the maximum
of the expression in the given interval is achieved when x1 = x2. Due to
symmetry between variables, we may perform this same optimization procedure
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for all xi, xj for i 6= j, which proves that the maximum of the LHS of the
proposed expression is obtained when all xi are equal to 1, yielding

n∑
k=1

(yk ln yk − xk lnxk) ≤ n ((n− 1) lnn− 1 ln 1) =
(
n2 − n

)
ln (n− 1) , q.e.d.
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U63. Let f and g be polynomials with complex coefficients and let a be a nonzero
complex number. Prove that if

(f(x))3 = (g(x))2 + a

for all x ∈ C, then the polynomials f and g are constant.

Proposed by Magkos Athanasios, Kozani, Greece

First solution by G.R.A.20 Math Problems Group, Roma, Italy

Consider polynomial (f(x))3−(g(x))2 which is identically equal to the constant
a. Therefore the degree of f is 2n and the degree of g is 3n for some non-negative
integer n. Assume to the contrary that f and g are not constant, that is n > 0.
Since a 6= 0, if f(x0) = 0, then g(x0) 6= 0. Taking the derivative we get

3(f(x))2f ′(x) = 2g(x)g′(x).

Hence if f(x0) = 0, then g′(x0) = 0. This means that every zero of the poly-
nomial (f(x))2 is a zero of the polynomial g′(x) with at least same multiplicity
of f2. Hence 2 times the degree of f , 4n, is less or equal than the degree of g′,
3n− 1, a contradiction. Thus the polynomials f and g are constant.

Second solution by Suchandal Pal, Florida State University

We prove the following lemma:

Lemma. There do not exist non-constant polynomials f, g ∈ C[x] and a constant
α ∈ C such that f2(x) = α+ g2(x).

Proof. f2(x)− g2(x) = (f(x)− g(x)) (f(x) + g(x)) = α. Thus f − g and f + g
are constant, so their linear combinations, specifically f and g are constant.

Returning to the problem we have g2(x) = (f(x)−a1/3)(f2(x)+a1/3f(x)+a2/3).
Note that if f(x)− a1/3 and f2(x) + a1/3f(x) + a2/3 share a common root x0,
then f(x0) = a1/3 and f2(x0) + a1/3f(x0) + a2/3 = 3a1/3 = 0,⇔ a = 0, a
contradiction.

Therefore each of them must be the square of a polynomial in C[x]. For sim-
plification we write a1/3 = β. Hence f(x) = m2

1(x) + β, thus

(m2
1(x) + β)2 + β(m2

1(x) + β) + β = m4
1(x) + 3m2

1(x)β + 3β2

= (m2
1(x) + γ1)(m2

1(x) + γ2),

where γ1 = −3β+β
√
−3

2 , γ2 = −3β−β
√
−3

2 .

Mathematical Reflections 6 (2007) 31



By the same argument these two polynomials (m2
1(x) + γ1), (m2

1(x) + γ2) share
no roots. Thus each of them must be the square of a polynomial. Thus,
m2

1(x)+γ1 = m2
2(x) and m2

1(x)+γ2 = m2
3(x). Therefore m2

2(x)−γ1+γ2 = m2
3(x)

and using our lemma we get the desired contradiction.

Third solution by Vishal Lama, Southern Utah University, Utah, USA

We use the following theorem in our solution below.

Mason-Stothers Theorem: If f, g, h ∈ C[t] are relatively prime polynomials,
not all constant, and if f = g + h, then

max{deg(f),deg(g),deg(h)} ≤ N0(fgh)− 1,

where deg(f) denotes the degree of f , and N0(fgh) denotes the number of
distinct zeroes of the polynomial fgh.

In our problem, we have for all x ∈ C, (f(x))3 = (g(x))2 + a, where f, g ∈ C[t]
and a is a non-zero complex number.

If f is a constant, then so is g, and vice versa, and we are done. Suppose f and
g are not constant functions. We prove that this leads to a contradiction.

We first note that f and g are relatively prime polynomials, for otherwise, if f
and g have a common factor x− c, say, then, we have (f(c))3 = (g(c))2 + a⇒
0 = 0 + a ⇒ a = 0, a contradiction. Hence, f, g and a are relatively prime,
which implies f3, g2 and a are relatively prime as well. Again, we note that if
deg(f) = n and deg(g) = m, then we must have 3n = 2m, which implies 2 | n.
Therefore, n = 2k for some k ∈ N. Hence, deg(f) = 2k and deg(g) = 3k for
some k ∈ N.

Thus max{deg(f3),deg(g2),deg(a)} = max{6k, 6k, 0} = 6k.

Also N0(f3g2a)−1 = N0(fg)−1 ≤ deg(f) + deg(g)−1 = 2k+ 3k−1 = 5k−1.

Hence using the Mason-Stothers theorem, we conclude 6k ≤ 5k − 1, which
implies k ≤ −1, a contradiction! The problem is solved.

Remark. The Mason-Stother’s theorem is considered the polynomial version of
the yet unproved ABC conjecture in modern Number Theory.

Also solved by Daniel Lasaosa, Universidad Publica de Navarra, Spain
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U64. Let x be a real number. Define the sequence (xn)n≥1 recursively by x1 = 1 and
xn+1 = xn + nxn, n ≥ 1. Prove that

∞∏
n=1

(
1− xn

xn+1

)
= e−x.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

First solution by Arkady Alt, San Jose, California, USA

From xn+1 = xn + nxn we get
xn+1

n!
=
xn

n!
+

xn
(n− 1)!

, for n ≥ 1. Then

n∑
k=1

xk

k!
=

n∑
k=1

(
xk+1

k!
− xk

(k − 1)!

)
=
xn+1

n!
− x1

0!
=
xn+1

n!
− 1,

yielding
xn+1

n!
=

n∑
k=0

xk

k!
.

It follows that
n∏
k=1

(
1− xk

xk+1

)
=

n∏
k=1

(
xk+1 − xk

xk+1

)
=

n∏
k=1

kxk
xk+1

= n!
n∏
k=1

xk
xk+1

=
n!
xn+1

.

Thus
∞∏
n=1

(
1− xn

xn+1

)
= lim

n→∞

n!
xn+1

=
1

lim
n→∞

n∑
k=0

xk

k!

=
1
ex

= e−x.

Second solution by Brian Bradie, Christopher Newport University, USA Using
the recurrence relation, we find

N∏
n=1

(
1− xn

xn+1

)
=

N∏
n=1

xn+1 − xn

xn+1

=
N∏
n=1

nxn
xn+1

=
x1

x2
· 2x2

x3
· 3x3

x4
· · · · · NxN

xN+1

=
N !
xN+1

. (1)

Next, we establish that

xn = (n− 1)!
n−1∑
k=0

xk

k!
. (2)
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For n = 1,

x1 = 0!
0∑

k=0

xk

k!
= 1,

as required. Moreover, if equation (2) holds, then

xn+1 = xn + nxn = xn + n!
n−1∑
k=0

xk

k!
= n!

n∑
k=0

xk

k!
.

Thus, equation (2) holds for all n by induction. Finally, combining equations
(1) and (2), we find

∞∏
n=1

(
1− xn

xn+1

)
= lim

N→∞

N !
xN+1

= lim
N→∞

1∑N
k=0

xk

k!

=
1
ex

= e−x.

Third solution by Jose Hernandez Santiago, UTM, Oaxaca, Mexico

Our proof leans heavily on the following straightforward property of the se-
quence {xn}∞n=1: for all n ∈ N

xn+1 = xn + nxn−1 + n(n− 1)xn−2 + . . .+ n!x+ n! (1)

Let us denote with Pk the k-th partial product of
∏∞
n=0

(
1− xn

xn+1

)
. Using

mathematical induction we prove that the equality

Pk =
(

1− x

x2

)(
1− x2

x3

)
· . . . ·

(
1− xk

xk+1

)
(2)

=
1

xk

k! + xk−1

(k−1)! + . . .+ x
1! + 1

(3)

holds true for every k ∈ N. This is clearly the case for k = 1. Let us suppose
our identity remains valid for k. Since

Pk+1 = Pk
(

1− xk+1

xk+2

)
=

(
1

xk

k! + xk−1

(k−1)! + . . .+ x
1! + 1

)(
1− xk+1

xk+2

)

=
xk+2 − xk+1(

xk

k! + xk−1

(k−1)! + . . .+ x
1! + 1

)
xk+2

,
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and (1) allows us to conclude that

Pk+1 =
(k + 1)xk + (k + 1)kxk−1 + . . .+ (k + 1)!x+ (k + 1)!(

xk

k! + xk−1

(k−1)! + . . .+ x
1! + 1

)
xk+2

=
(k + 1)!
xk+2

=
(k + 1)!

xk+1 + (k + 1)xk + . . .+ (k + 1)!x+ (k + 1)!

=
1

xk+1

(k+1)! + xk

k! + . . .+ x
1! + 1

.

From (2) and (3) it follows that

∞∏
n=0

(
1− xn

xn+1

)
=

∞∏
n=1

(
1− xn

xn+1

)
= lim

k→∞
Pk

= lim
k→∞

1
xk

k! + xk−1

(k−1)! + . . .+ x
1! + 1

=
1

limk→∞

(
xk

k! + xk−1

(k−1)! + . . .+ x
1! + 1

)
=

1∑∞
k=0

xk

k!

=
1
ex

= e−x,

and we are done.

Also solved by Daniel Lasaosa, Universidad Publica de Navarra, Spain; O.O.Ibrogimov
student of Samarqand State University, Uzbekistan; G.R.A.20 Math Problems
Group, Roma, Italy; Vishal Lama, Southern Utah University, Utah, USA

Mathematical Reflections 6 (2007) 35



U65. Let A,B,C be 3 × 3 invertible matrices such that their elements are in the
interval [0, 1] and entries in each row sum up to 1. Prove that AC−1BA−1CB−1

and CA−1BC−1AB−1 have the same trace.

Proposed by Jean-Charles Mathieux, Dakar University, Sénégal

Solution by G.R.A.20 Math Problems Group, Roma, Italy

Let X = AC−1BA−1CB−1, then det(X) = 1. Moreover, since each row of A,
B and C sum up to 1, then Av = Bv = Cv = v with v = (1, 1, 1)′. Hence
A−1v = B−1v = C−1v = v and Xv = X−1v = v. This means that 1 is one of
the eigenvalues of X. Let λ and µ be the other eigenvalues of X. Therefore

tr(X−1) = 1 + λ−1 + µ−1 =
1 + λ+ µ

λµ
=

tr(X)
det(X)

= tr(X).

Finally,

tr(AC−1BA−1CB−1) = tr(X) = tr(X−1)
= tr(BC−1AB−1CA−1) = tr(CA−1BC−1AB−1),

because the trace of a matrix product is invariant by cyclic permutation.

Another solution by G.R.A.20 Math Problems Group, Roma, Italy

Let M = AC−1BA−1CB−1 and N = CA−1BC−1AB−1.

Since N,M ∈ R3×3, then

PN (x) = det(xI −N) = x3 − tr(N)x2 + a x− det(N)

and
PM (x) = det(xI −M) = x3 − tr(M)x2 + b x− det(M).

Moreover, N−1 = BA−1CB−1AC−1 and

PN−1(x) = det(xI−N−1) = x3−a det(N)−1x2 +tr(N) det(N)−1x−det(N)−1.

Because the characteristic polynomial is invariant with respect to cyclic per-
mutations then PM (x) = PN−1(x), which implies that{

a = tr(M) det(N)
b = tr(N) det(M)

.

Since λ = 1 is an eigenvalue of A,B,C with respect to the same eigenvector
[1 1 1]t, then the same holds for M and N and therefore

PN (1) = 1− tr(N) + tr(M) det(N)− det(N) = 0
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Finally, we note that

det(N) = det(C) det(A)−1 det(B) det(C)−1 det(A) det(B)−1 = 1.

Thus tr(N) = tr(M) and we are done.
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U66. Let V = {v1, v2, . . . , vk, . . .} be a set of vectors in Rn containing n linearly
independent vectors. A finite subset S ⊂ V is called ”crucial” if the set V \ S
contains no n independent vectors, but every set V \ T where T ⊂ S does.
Prove that there are finitely many ”crucial” subsets.

Proposed by Iurie Boreico, Harvard University, USA

Solution by Iurie Boreico, Harvard University, USA

Let S be a crucial set. Let VS be the vector space spanned by V \ S, then
adding any vector from S to VS we will be able to span Rn, which implies that
VS is a subspace of dimension n−1 and all but the vectors in S are in VS . Now
let W =

⋂
VS , where the intersection is taken over all crucial subsets. It is

clear that W is a intersection of some finite collection of vector spaces VS , say
W = VS1

⋂
VS2 . . .

⋂
VSm (we can also prove m ≤ n). As all but finitely many

vectors belong to VSi , we conclude that all but finitely many vectors belong to
W . But we know that the vectors from S do not belong to VS , so not to W, for
any crucial subset S. It remains to see that we have finitely many vectors not
belonging to W , so finitely many ways to compose S from them.
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Olympiad problems

O61. Let a, b, c be positive numbers such that 4abc = a+ b+ c+ 1. Prove that

b2 + c2

a
+
c2 + a2

b
+
a2 + b2

c
≥ 2(ab+ bc+ ca).

Proposed by Ciupan Andrei, Bucharest, Romania

First solution by Magkos Athanasios, Kozani Greece

From the condition given and AM-GM Inequality we have

4abc = a+ b+ c+ 1 ≥ 4 4
√
abc,

hence abc ≥ 1 and a + b + c = 4abc − 1 ≥ 3abc. Clearly x2 + y2 ≥ 2xy, then
LHS is greater than or equal to

2bc
a

+
2ca
b

+
2ab
c

=
2
abc

(
(ab)2 + (bc)2 + (ca)2

)
≥ 2

3abc
(ab+ bc+ ca)2.

The last inequality follows from the inequality 3(x2 + y2 + z2) ≥ (x+ y + z)2.

Therefore, it suffices to prove that ab + bc + ca ≥ 3abc. Recall well known
inequality ab + bc + ca ≥

√
3abc(a+ b+ c). Hence it suffices to prove that

a+ b+ c ≥ 3abc, and we are done.

Second solution by Daniel Campos Salas, Costa Rica

Observe that it is enough to prove that

2bc
a

+
2ca
b

+
ab

c
≥ 2(ab+ bc+ ca),

or equivalently

bc

a
+
ca

b
+
ab

c
≥ ab+ bc+ ca.

From the Cauchy-Schwarz inequality we have

bc

a
+
ca

b
+
ab

c
≥ (ab+ bc+ ca)2

abc+ abc+ abc
=

(ab+ bc+ ca)2

3abc
.
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Then, it is enough to prove that ab+bc+ca ≥ 3abc, or equivalently, 1
a + 1

b + 1
c ≥

3. This inequality is the left hand side inequality of problem J41, and this
completes the proof.

Third solution by Vishal Lama, Southern Utah University, Utah, USA

Applying the AM-GM inequality we get

abc =
a+ b+ c+ 1

4
≥ 4
√
a · b · c · 1, (1)

yielding abc ≥ 1. Without any loss of generality assume that a ≥ b ≥ c.

We have 1
a ≤

1
b ≤

1
c and b2 + c2 ≤ c2 + a2 ≤ a2 + b2 Applying Chebyshev’s

inequality to the sequences above we obtain

1
3

(
b2 + c2

a
+
c2 + a2

b
+
a2 + b2

c

)
≥ b2 + c2 + c2 + a2 + a2 + b2

3
·

1
a + 1

b + 1
c

3
,

or

b2 + c2

a
+
c2 + a2

b
+
a2 + b2

c
≥ 2(a2 + b2 + c2)(ab+ bc+ ca)

3abc
, (2)

Using Cauchy-Schwarz inequality we get

(a2 + b2 + c2 + 12)(12 + 12 + 12 + 12) ≥ (a · 1 + b · 1 + c · 1 + 1 · 1)2 = (4abc)2,

or
a2 + b2 + c2 ≥ 4(abc)2 − 1.

Using the above result in (2), we get

b2 + c2

a
+
c2 + a2

b
+
a2 + b2

c
≥ 2(4(abc)2 − 1)(ab+ bc+ ca)

3abc
≥ 2(ab+ bc+ ca).

The last inequality follows from the fact that 4(abc)2 − 3abc− 1 ≥ 0, which is
equivalent to (abc− 1)(4abc+ 1) ≥ 0, and we are done.

Also solved by Kee-Wai Lau, Hong Kong, China; Daniel Lasaosa, Universi-
dad Publica de Navarra, Spain; G.R.A.20 Math Problems Group, Roma, Italy;
Salem Malikic Sarajevo, Bosnia and Herzegovina; Perfetti Paolo, Dipartimento
di matematica Universita degli studi di Tor Vergata, Italy; Arkady Alt, San
Jose, California, USA
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O62. Consider the Cartesian plane. Let us call a point X rational if both its coordi-
nates are rational numbers. Prove that if a circle passes through three rational
points, then it passes through infinitely many of them.

Proposed by Ivan Borsenco, University of Texas at Dallas, USA

Solution by G.R.A.20 Math Problems Group, Roma, Italy

Knowing the coordinates of these three points Pi = (xi, yi) for i = 1, 2, 3 we
can find the center O = (x0, y0) by intersecting the axes of the segments P1P2

and P1P3:{
(y2 − y1)(x0 − (x1 + x2)/2)− (x2 − x1)(y0 − (y1 + y2)/2) = 0
(y3 − y1)(x0 − (x1 + x3)/2)− (x3 − x1)(y0 − (y1 + y3)/2) = 0

Since the coefficients of this linear system are rational also the solution (x0, y0)
is rational. Now let Pn = (xn, yn) for n ≥ 4 where{

xn = x0 + pn(x3 − x0)− qn(y3 − y0)
yn = y0 + qn(x3 − x0) + pn(y3 − y0)

with pn =
n2 − 1
n2 + 1

and qn =
2n

n2 + 1

then

||Pn − P0||2 = (xn − x0)2 + (yn − y0)2 = (x3 − x0)2 + (y3 − y0)2 = ||P3 − P0||2

that is {Pn}n≥4 is a sequence of infinite points on the circle.

Also solved by Daniel Lasaosa, Universidad Publica de Navarra, Spain; Vicente
Vicario Garcia, Huelva, Spain; Vishal Lama, Southern Utah University, Utah,
USA
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O63. Let M and N be two points inside the circle C(O) such that O is the midpoint
of MN and let S be an arbitrary point on this circle. Let E and F be the
second intersections of the lines SM and SN with the circle. Tangents at E
and F to C(O) intersect each other at I. Prove that the perpendicular bisector
of the segment MN passes through the midpoint of SI.

Proposed by Son Hong Ta, Ha Noi University, Vietnam

First solution by Arnau Messegue Buisan, Barcelona, Spain

Consider the complex plane. We denote by z de complex number which rep-
resents the point Z. Without loss of generality we may assume that C(O) is
the unit circle, and m and n are parallel to the real axis. Taking this fact
into account, we have that m = −n and n̄ = n. Let s be the complex which
represents S, then the points E and F are represented by the complex numbers
e and f which can be easily found:

s− n
s̄− n̄

=
e− s
ē− s̄

⇒ e =
s− n
ns− 1

,

s+ n

s̄+ n̄
=
f − s
f̄ − s̄

⇒ f = − s+ n

ns+ 1
.

From this one can find the complex number which represents the point I. We
will denote it by j:

j =
2ef
e+ f

⇒ j =
(s− n)(s+ n)
s(n2 − 1)

.

The midpoint of the segment SI, represented by the complex number k will be

k =
n2(s2 − 1)
2s(n2 − 1)

.

As we can see, k̄ = −n
2(s2 − 1)

2s(n2 − 1)
= −k. Thus k belongs to the imaginary axis,

that is to the perpendicular bisector of MN .

Second solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Consider a system of coordinates such that the center of the circle is the origin
O ≡ (0, 0), the radius of the circle is 1, and the horizontal axis X coincides
with line MN . Then, 0 < ρ < 1 exists such that M ≡ (ρ, 0), N ≡ (−ρ, 0).
Furthermore, angle 0 ≤ α < 2π exists such that S ≡ (xS , yS) = (cosα, sinα).
Point E has coordinates that are solutions of the system formed by the circle
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equation x2 + y2 = 1 and the equation of line SM , y
x−ρ = sinα

(cosα−ρ) . Expressing
y as a function of x in the second equation, and substituting in the first, we
obtain

sin2 α (x− ρ)2

(cosα− ρ)2
+ x2 = 1;

(x− cosα)
((

1 + ρ2 − 2ρ cosα
)
x−

(
2ρ−

(
1 + ρ2

)
cosα

))
= 0.

The first solution corresponds to point S, and E ≡ (xE , yE), where

xE =
2ρ−

(
1 + ρ2

)
cosα

1 + ρ2 − 2ρ cosα
,

and substitution in the equation for line SM gives

yE = −
(
1− ρ2

)
sinα

1 + ρ2 − 2ρ cosα
.

In an entirely analogous way, we may find that F ≡ (xF , yF ), where

xF = −
2ρ+

(
1 + ρ2

)
cosα

1 + ρ2 + 2ρ cosα
, yF = −

(
1− ρ2

)
sinα

1 + ρ2 + 2ρ cosα
.

Now, tangents to circle x2 + y2 = 1 at E and F obey, respectively, equations
y = 1−xEx

yE
and y = 1−xF x

yF
. Their point of intersection I ≡ (xI , yI) satisfies

both, and

xI =
yE − yF

xF yE − xEyF
= −

4ρ
(
1− ρ2

)
sinα cosα

4ρ (1− ρ2) sinα
= − cosα = −xS .

Now, the x coordinate of the midpoint of SI is xI+xS
2 = 0, or it is on the line

with equation x = 0, which is the perpendicular bisector of MN , and we are
done.
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O64. Let Fn be the n-th Fibonacci number. Prove that for all n ≥ 4, Fn + 1 is not
a prime.

Proposed by Dorin Andrica, Cluj-Napoca, Romania

First solution by Vicente Vicario Garcia, Huelva, Spain

Let us recall two famous identities.

Cassini’s identity: If Fk is the k-th Fibonacci number, then

F 2
k = Fk−1Fk+1 + (−1)k+1.

Gelin-Cesaro identity: If Fk is the k-th Fibonacci number, then

F 4
k = Fk−2Fk−1Fk+1Fk+2 + 1.

Using the Gelin-Cesaro identity we obtain the following factorization

(F 2
k + 1)(Fk − 1)(Fk + 1) = Fk−2Fk−1Fk+1Fk+2 + 1.

Then if Fk + 1 = p, where p is prime, we get p | Fk+2. This goes from the
fact Fk−2, Fk−1 < p, Fk+1 < 2Fk = 2p and gcd(Fi, Fi+1) = 1. Observe that
2Fk < Fk+2 < 3Fk, thus 2p < Fk+2 < 3p, for k ≥ 4, a contradiction. The
conclusion follows.

Second solution by Nguyen Trong Tung, Hanoi University of Technology, Hanoi,
Vietnam

We need the following lemma:

Lemma. An = F 4
n+2 − FnFn+2Fn+3Fn+4 = 1 for all n ≥ 0.

Proof. Indeed,for all n ≥ 1 we have

An = (Fn+1 + Fn)4 − FnFn+1(2Fn+1 + Fn)(2Fn+1 + 3Fn + Fn−1)

= F 4
n+1 + F 4

n − 2F 2
n+1FnFn−1 − (Fn−1 + Fn)F 2

n(Fn + 3Fn−1)

= F 4
n+1 − FnFn−1(F 2

n + 3FnFn+1 + 2F 2
n+1)

= F 4
n+1 − FnFn−1(Fn + Fn+1)(Fn + 2Fn+1)

= F 4
n+1 − FnFn−1Fn+2Fn+3

= An−1

Thus we get An = A0 = 1 for all n ≥ 0. The lemma is proved.
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Returning back the original problem, using our lemma we have

(Fn − 1)(Fn + 1)(F 2
n + 1) = Fn−2Fn−1Fn+1Fn+2.

Suppose that Fn + 1 = p, for some prime p. Hence we must have one of two
situations

(i) p | Fn+1, thus p | Fn−1 − 1, false!

(ii) p | Fn+2, hence p | Fn+1 − 1 and p | Fn−1 − 2, also false for n > 4. The
problem is solved.

Third solution by G.R.A.20 Math Problems Group, Roma, Italy

By Cesaro identity, for n ≥ 2, we have

Fn−2Fn−1Fn+1Fn+2 = F 4
n − 1 = (F 2

n + 1)(Fn + 1)(Fn − 1).

Assume that p = Fn + 1 is a prime and n ≥ 5 (F4 + 1 = 4 is not prime), then

Fn−2Fn−1Fn+1Fn+2 = (p2 − 2p+ 2)p(p− 2).

and therefore p divides one of the factors Fn−2, Fn−1, Fn+1, Fn+2.

Because 0 < 2 = F3 ≤ Fn−2 < Fn−1 < Fn = p − 1 < p, p cannot divide Fn−2

and Fn−1.

Because p < p+ 2 = F4 + Fn ≤ Fn+1 = Fn−1 + Fn < 2Fn = 2p− 2 < 2p, thus
p cannot divide Fn+1.

Because 2p < 2p+1 = (p−1)+(p+2) ≤ Fn+2 = Fn+Fn+1 < 3Fn = 3p−3 < 3p,
p cannot divide Fn+2.

Therefore we get a contradiction and Fn + 1 is not a prime for n ≥ 4.

Also solved by Kee-Wai Lau, Hong Kong, China; Daniel Lasaosa, Universidad
Publica de Navarra, Spain
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O65. Let ABC be a triangle and let D, E, and F be the tangency points of its incircle
γ(I) with BC, CA, and AB, respectively. Let X1 and X2 be the intersections
of line EF with the circumcircle ρ(O) of triangle ABC. Similarly, define Y1,
Y2, and Z1, Z2. Prove that the radical center of the circles DX1X2, EY1Y2,
and FZ1Z2 lies on line OI.

Proposed by Cosmin Pohoata, Romania and Darij Grinberg, Germany

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Denote by A′, B′, C ′ the second points where AI,BI,CI intersect the circum-
circle of ABC, respectively. Denote by OD, OE , OF the midpoints of B′C ′,
C ′A′, A′B′, respectively.

Lemma 1. OD, OE , OF are the centers of the circles DX1X2, EY1Y2, FZ1Z2.

Proof. Recalling the length of the median we get

ODA
2 =

AB′2 +AC ′2

2
− B′C ′2

4
, ODB

2 =
BB′2 +BC ′2

2
− B′C ′2

4
,

and ODC
2 =

CB′2 + CC ′2

2
− B′C ′2

4
,

and similarly for OE and OF . Using Stewart’s theorem we have

ODD
2 =

CD ·ODB2 +BD ·ODC2

BC
−BD · CD

and

ODE
2 =

AE ·ODC2 + CE ·ODA2

CA
− CE ·AE.

Finally, B′C ′ ⊥ IA, as ∠B′A′A = ∠B
2 , ∠A′B′C ′ = ∠A′B′B + ∠C ′B′B =

∠A+∠C
2 . Therefore A′B′ ‖ X1X2 because EF ⊥ IA. Since A′B′, X1X2 are

parallel chords of a given circle, the midpoint OE of A′B′ is at the same distance
to X1 and X2. Using Stewart’s theorem,

ODE
2 =

EX2 ·ODX2
1 + EX1 ·ODX2

2

X1X2
− EX1 · EX2 = ODX

2
1 −AE · CE,

where we have also used that EX1 · EX2 is the power of E with respect to
the circumcircle of ABC. Thus we have to prove ODX1 = ODD, using the
previous expressions we find the equivalent condition

AE ·ODC2 + CE ·ODA2

CA
=
CD ·ODB2 +BD ·ODC2

BC
−BD · CD.
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It is known that AE = AF = b+c−a
2 , BF = BD = c+a−b

2 and CD = CE =
a+b−c

2 . Using the Law of Sines, it easy to prove that CA′ = BA′ = 2R sin A
2 ,

AB′ = CB′ = 2R sin B
2 and BC ′ = AC ′ = 2R sin C

2 , and also that

AA′ = 2R cos 2B+A
2 = 2R cos B−C2 , BB′ = 2R cos C−A2 and CC ′ = 2R cos A−B2 .

Plugging these results, our expression is equivalent to

(b− a)
(
CC ′2 −BC ′2

)
− b

(
BB′2 − CB′2

)
+ ab (c+ a− b) = 0.

Now,

CC ′2 −BC ′2

4R2
= cos2 A−B

2
− cos2 A+B

2
= sinA sinB =

ab

4R2
,

BB′2 − CB′2

4R2
= cos2 C −A

2
− cos2 C +A

2
= sinC sinA =

ca

4R2
,

and the conclusion follows.

Lemma 2. The radical center R of the circles DX1X2, EY1Y2 and FZ1Z2 is
the orthocenter of DEF .

Proof. The power of the point D with respect to the circles EY1Y2 and FZ1Z2

are equal, since DY1 · DY2 and DZ1 · DZ2 are equal. Therefore, D is in the
radical line of EY1Y2 and FZ1Z2. Furthermore, this radical line is perpendicular
to the line OEOF that joins the centers of both circles, and since OE , OF are
the respective midpoints of C ′A′, A′B′, then OEOF ‖ B′C ′ ‖ EF , and the
radical line is the altitude from D onto EF . Analogously, we prove that the
radical lines of circles FZ1Z2 and DX1X2, and of circles DX1X2 and EY1Y2,
are respectively the altitudes from E and F onto FD and DE. These radical
lines meet at the radical center, which is the orthocenter R of DEF .

Lemma 3. The Euler line of ODOEOF is line OI.

Proof. Because AI ⊥ B′C ′, BI ⊥ C ′A′ and CI ⊥ A′B′, I is the orthocenter
of A′B′C ′, and since O is also the circumcenter of A′B′C ′, the midpoint N
of OI is the nine-point center of A′B′C ′, i.e., the circumcenter of ODOEOF .
Furthermore, OOD, OOE and OOF are the perpendicular bisectors of B′C ′,
C ′A′ and A′B′, or they are the corresponding altitudes from OD, OE and
OF onto OEOF , OFOD and ODOE , and O is the orthocenter of ODOEOF .
Therefore, ON , and hence OI, is the Euler line of ODOEOF .

We are now ready to prove that the orthocenter of DEF , and hence the radical
center of circles DX1X2, EY1Y2 and FZ1Z2, lies on the line OI. Since DEF
and ODOEOF are homothetic, there exist a point P where DOD, EOE and
FOF concur. The line joining the respective circumcenters I and N of DEF
and ODOEOF , also passes through P . Therefore, P is on OI. But the line
joining the respective orthocenters R and O of DEF and ODOEOF , passes
also through P . Since P is on OI, then R is also on OI, and we are done.
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O66. Let m a fixed positive integer. Prove that there is a constant c(m) such that
for each integer n > 0, there is a prime number p < c(m)n with the following
property: the equation k2m ≡ n(mod p) has integer solutions while the equation
k2m ≡ −n(mod p) does not have integer solutions.

Proposed by Adrian Zahariuc, Princeton University, USA

Solution by Adrian Zahariuc, Princeton University, USA

The main fact is the following classical result

Lemma. If a, b,m ∈ N and p is an odd prime such that p | a2m
+ b2

m
, then

either p | a and p | b or p ≡ 1(mod 2m+1).

Proof. If p | a, then p | b, so take (p, a) = (p, b) = 1. We have a2m ≡
−b2m

(mod p), so(
ab−1

)2m

≡ −1(mod p),
(
ab−1

)2m+1

≡ 1(mod p)⇒
(
ab−1

)(2m+1,p−1) ≡ 1(mod p)

If 2m+1 does not divide p− 1, then (p− 1, 2m+1) | 2m hence(
ab−1

)2m

≡ 1(mod p)⇒ −1 ≡ 1(mod p),

which is clearly false, so 2m+1 | p− 1.

Let us solve the original problem. Define Nj = 22m
n −

(
22m

j2
m

+ 1
)2m

and
set j to be the largest such positive integer for which Nj > 0. Clearly, Nj ≡
−1(mod 2m+1), hence it has a prime factor p which is not congruent to 1 modulo
2m+1 because otherwise (taking Nj > 0 into account) 1 ≡ Nj ≡ −1(mod p),
a contradiction. We claim that this p has the desired properties. By the
maximality of j, it follows by straightforward calculations that j = O(n

1
4m )

and p < Nj = O(n1− 1
4m ). It is clear that k2m ≡ n(mod p) has integer solutions

because
22m

n ≡
(
22m

j2
m

+ 1
)2m

(mod p)

and 2 is invertible mod p. So it remains to prove that k2m ≡ −n(mod p) does
not have integer solutions. Suppose by the way of contradiction that it does,
so there is some k ∈ Z such that

p | k2m
+ n⇒ p | (2k)2

m
+ 22m

n = (2k)2
m

+ (22m
j2

m
+ 1)2

m
+Nj ⇒

⇒ p | (2k)2
m

+ (22m
j2

m
+ 1)2

m
.

Due to the lemma, p | 2k and p | (2j)2
m

+ 1 since p 6= 1(mod 2m+1), but this
implies p | 2j and p | 1, which is false.
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