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Abstract. The problem of controlling quantum stochastic evolutions arises naturally in several
different fields such as quantum chemistry, quantum information theory, quantum engineering,
etc. In this paper, we apply the recently discovered closed form of the unitarity conditions for
stochastic evolutions driven by the square of white noise [9] to solve this problem in the case of
quadratic cost functionals (cf. (5.5) below). The optimal control is explicitly given in terms of the
solution of an operator Riccati equation. Under general conditions on the system Hamiltonian
part of the stochastic evolution and on the system observable to be controlled, this equation
admits solutions with the required properties and they can be explicitly described.

1. Introduction

The problem of optimal control of solutions of a quantum Langevin equation with
constant coefficients (see Definition 3 below) arises naturally in several different
fields such as quantum chemistry, quantum information, quantum engineering,
etc. The mathematical formulation of this problem was recently considered in
[8, 10] for quantum systems affected by first order white noise. It was preceded
by several studies on the quadratic control of the solution of a quantum evolution
(see Definition 1 below) driven by first order white noise [24, 25, 26, 27] and the
dual Kalman-Bucy filtering problem [1, 26]. A general treatment of the control
problem for quantum evolution driven by a general class of quantum noises can be
found in [10] with the use of the representation free calculus of [12]. The quadratic
form of the control criterion allows the quantum control problem to be solved
in analogy with the classical stochastic control problem with the use of quantum
stochastic calculus. The statement of the problem is the following: one starts from
the Langevin equation for a system observable X (cf. equations (4.3) and (5.4)
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below) and then looks for the coefficients (L, W for first order white noise and
D−, W for the square of white noise) of the martingale terms of this equation,
which minimize a given cost functional (cf. equations (4.4) and (5.5) below: in our
case the functional is quadratic). Once this problem is solved, using the stochastic
limit technique [15], one then looks for a bona fide Hamiltonian interaction which,
in the stochastic limit, gives rise to the optimal Langevin equation.

Thus, combining techniques of quantum stochastic control with the stochastic
limit of quantum theory, one can find a real physical interaction to concretely
realize the optimal quantum evolution. In the classical case the optimal control
is constructed via the solution of an operator Riccati differential equation. In the
quantum case the equation is replaced by a quantum stochastic Riccati equation
which in the problem considered in this paper is reduced to an operator algebraic
Riccati equation (cf. equations (4.22) and (5.17)).

In Sec. 2 and 3 we define quantum evolutions, Langevin equations, the first
order and the square of white noise stochastic differentials. In Sec. 4 and 5 we
review the results on the control of first order white noise evolutions and Langevin
equations (extended to include the conservation operator) and we solve the corre-
sponding square of white noise control problem. For both first and second order
quantum Langevin equations the theory of quadratic control should be extended
to the case of noisy partial observations.

For the white noise approach to stochastic calculus, as well as for the square
of white noise calculus we use primarily the results of [9] and also [3, 4, 5, 6, 7, 11]
and [13, 14, 16, 18, 19, 20, 21, 22, 23, 28]. For more details on the technical aspects
of first order quantum stochastic calculus we refer to [29].

2. Quantum Evolutions and Langevin Equations

DEFINITION 1 Let at, a
†
t be the standard Fock white noise of [15] and [16] defined

on the Fock space Γ over L2(R+,C) in the case of first order white noise, while
for the square of white noise it is over L2(R+, l2(N)). For each i = 1, 2, 3, . . . and
t ≥ 0 let

Ni(t) =

t∫

0

pi(as, a
†
s) ds

be a noise process on Γ, where pi(as, a
†
s) is a polynomial in as and a†s written in

normal order. Let also {C0(t) : t ≥ 0} and {Ci(t) : t ≥ 0} be adapted bounded
operator processes on the system Hilbert space H. If

hs = C0(s) +
∑

i

Ci(s) pi(as, a
†
s) , (2.1)

then

Ht =

t∫

0

hs ds =

t∫

0

(
C0(s) +

∑

i

Ci(s) pi(as, a
†
s)

)
ds
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=

t∫

0

C0(s) ds +
∑

i

Ci(s) dNi(s) (2.2)

is called a normally ordered white noise Hamiltonian on H⊗Γ. A unitary evolution
is a family U = {Ut : t ≥ 0} of unitary operators on H⊗Γ satisfying the normally
ordered white noise Schrödinger equation

dUt
dt

= −i ht Ut , U0 = 1 , (2.3)

and its adjoint
dU∗

t

dt
= i U∗

t h
∗
t , U∗

0 = 1 , (2.4)

or, equivalently, the quantum stochastic differential equation

dUt = −i (dHt)Ut, U0 = 1 , (2.5)

and its adjoint
dU∗

t = i U∗
t (dH∗

t ) , U∗
0 = 1 . (2.6)

DEFINITION 2 Let H and U be as in Definition 1, let X be an observable on the
system Hilbert space H, and let 1l denote the identity operator on Γ. A quantum
flow is a family j(X) = {jt(X) = U∗

t (X ⊗ 1l)Ut : t ≥ 0} of operators on H ⊗ Γ
satisfying the quantum Langevin equation

djt(X) = dU ∗
t (X ⊗ 1l)Ut + U∗

t (X ⊗ 1l) dUt + dU∗
t (X ⊗ 1l) dUt

= iU∗
t h

∗
t (X ⊗ 1l)Ut dt− iU∗

t (X ⊗ 1l)ht Ut dt + U∗
t h

∗
t (X ⊗ 1l)ht Ut (dt)2

= i U∗
t (h∗t (X ⊗ 1l) − (X ⊗ 1l)ht)Ut dt + U∗

t h
∗
t (X ⊗ 1l)ht Ut (dt)2

= jt(i ρ(ht, X ⊗ 1l)) dt + jt(h
∗
t (X ⊗ 1l)ht) (dt)2, (2.7)

where ρ(x, y) := x∗y − yx agrees with the usual commutator [x, y] if x∗ = x.
Equivalently, (2.7) can be written as

djt(X) = jt(i ρ(dHt, X ⊗ 1l)) dt + jt(dH
∗
t (X ⊗ 1l) dHt) . (2.8)

The jt(h
∗
t (X ⊗ 1l)ht) (dt)2 term in (2.7) is computed with the use of the following

rules (see [17]):

(a) Commute coefficient processes with the white noise functionals appearing in
ht.

(b) Put the result in normal order (i.e a†tat) using the commutation rule [at, a
†
t ] =

δ(0).

(c) Treat dt as a scalar.

(d) Replace the expression δ(0) dt by 1.

(e) Replace the product of any normally ordered expression times dt2 by 0.
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In the case of the square of white noise, rules (a)–(e) lead to “renormalization”
choices such as the subtraction of an infinite constant or the product of two delta
functions. Both choices and their consequences have been extensively studied in
[4, 5, 6, 7, 9, 11, 14].

The computation of the jt(dH
∗
t (X ⊗ 1l) dHt) term in (2.8) by means of the

above rules gives the same result that one obtains when this term is computed
with the use of the Itô table for the stochastic differentials appearing in dHt. In
what follows we will use the formalism of (2.8).

3. Quantum Stochastic Differentials

Let K = C in the case of first order white noise and K = l2(N) for the square
of white noise. The Boson Fock space Γ = Γ(L2(R+,K)) can be defined as the
Hilbert space completion of the linear span of the exponential vectors ψ(f) under
the inner product

〈ψ(f), ψ(g)〉 = e〈f,g〉, (3.1)

where f, g ∈ L2(R+,K) ≡ L2(R+) ⊗ K. For f ∈ L2(R+,K) and an adjointable
linear operator F on L2(R+,K) the annihilation, creation and conservation oper-
ators A(f), A†(f) and Λ(F ), respectively, are defined on the exponential vectors
of Γ by

A(f)ψ(g) = 〈f, g〉ψ(g) , (3.2)

A†(f)ψ(g) =
∂

∂ε

∣∣∣
ε=0

ψ(g + εf) , (3.3)

Λ(F )ψ(g) =
∂

∂ε

∣∣∣
ε=0

ψ(eεF g) , (3.4)

where F must be such that the exponential eεF is defined.

The first order quantum stochastic differentials dAt, dA
†
t , and dΛt are defined

by:

dAt(f) = A(χ[t,t+dt] ⊗ f) , f ∈ L2(R+,K) , (3.5)

dA†
t (f) = A†(χ[t,t+dt] ⊗ f) , f ∈ L2(R+,K) , (3.6)

dΛt(F ) = Λ(χ[t,t+dt] ⊗ F ) , F ∈ D(K) , (3.7)

where D(K) is the space of adjointable operators on K.

Notice that χ[t,t+dt] is a vector in A+(·), A(·) and a multiplication operator
in Λ(·). The multiplication rules for the stochastic differentials are given in the
following:

PROPOSITION 1 The first order white noise Itô table is (see [29])
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dA†
t (f1) dΛt(F1) dAt(f1) dt

dA†
t (f2) 0 0 0 0

dΛt(F2) dA†
t (F2f1) dΛt(F2F1) 0 0

dAt(f2) 〈f2, f1〉dt dAt(F
∗
1 f2) 0 0

dt 0 0 0 0

The square of white noise quantum stochastic differentials dMt, dB
+
t , and dB−

t

are defined by

dMt = dΛt(ρ
+(M)) + dt , (3.8)

dB+
t = dΛt(ρ

+(B+)) + dA†
t (e0) , (3.9)

dB−
t = dΛt(ρ

+(B−)) + dAt(e0) , (3.10)

where for n, k, l,m ∈ {0, 1, . . .}

dΛn,k,l(t) = dΛt(ρ
+(B+nMkB−l)) , (3.11)

dAm(t) = dAt(em) , (3.12)

dA†
m(t) = dA†

t (em) , (3.13)

where we have used the notation

dXt(y) = X(χ[t,t+dt] ⊗ y) (3.14)

and the operators ρ+(B+nMkB−k) are defined by

ρ+(B+nMkB−l) em = θn,k,l,m en+m−l , (3.15)

where em, m = 0, 1, 2, . . . is any orthonormal basis of l2(N),

θn,k,l,m := H(n+m−l)
√
m− l + n+ 1

m+ 1
2k(m−l+1)n(m+1)(l)(m−l+1)k, (3.16)

H(x) is the Heaviside function (H(x) = 0 for x < 0; H(x) = 1 for x ≥ 0),

00 = 1 , (B+)n = (B−)n = Nn = 0 , for n < 0 ,

and the “factorial powers” are defined by

x(n) = x(x− 1) · · · (x− n+ 1) ,

(x)n = x(x+ 1) · · · (x + n− 1) ,

(x)0 = x(0) = 1 .

The Itô multiplication table for dΛn,k,l(t), dAm(t), and dA†
m(t) is

dΛα,β,γ(t) dΛa,b,c(t) =
∑

cλ,ρ,σ,ω,εβ,γ,a,b dΛa+α−γ+λ,ω+σ+ε,λ+c(t) (3.17)

dΛα,β,γ(t) dA†
n(t) = θα,β,γ,n dA

†
α+n−γ(t) (3.18)

dAm(t) dΛa,b,c(t) = θc,b,a,m dAc+m−a(t) (3.19)

dAm(t) dA†
n(t) = δm,n dt , (3.20)
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where

cλ,ρ,σ,ω,εβ,γ,a,b = (3.21)
(
γ
λ

)(
γ − λ
ρ

)(
β
ω

)(
b
ε

)
2β+b−ω−εSγ−λ−ρ,σa

(γ−λ)(a+ λ− 1)(ρ)(a− γ + λ)β−ωλb−ε,

Sγ−λ−ρ,σ are the Stirling numbers of the first kind and
∑

in (3.17) denotes the
finite sum

γ∑

λ=0

γ−λ∑

ρ=0

γ−λ−ρ∑

σ=0

β∑

ω=0

b∑

ε=0

.

All other products of differentials are equal to zero.
To obtain a concise formulation of the square of white noise evolutions we pro-

ceed as follows. Let D(K) and B(H) denote, respectively, the spaces of adjointable
operators on K and bounded linear operators on H. The tensor product B(H)⊗K
is a pre–Hilbert module with B(H)-valued inner product defined on elementary
tensors by

(a⊗ ξ | b⊗ η) = a∗b〈ξ, η〉 . (3.22)

On B(H) ⊗K define linear operators A and A† by

A(a⊗ ξ) = a⊗A(ξ) , (3.23)

A†(a⊗ ξ) = a⊗A†(ξ) , (3.24)

while on B(H) ⊗D(K) define a linear operator L by

L(a⊗ T ) = a⊗ Λ(T ) . (3.25)

For α, β, γ, a, b, c ∈ {0, 1, 2, . . . }, if {Dα,β,γ} and {Ea,b,c} are families of operators
in B(H) and

D =
∑

α,β,γ

Dα,β,γ ⊗ ρ+(B+αMβB−γ) , E =
∑

a,b,c

Ea,b,c ⊗ ρ+(B+aM bB−c) ,

define the ◦-product D ◦ E of D and E by

D ◦ E =
∑

α,β,γ

∑

a,b,c

∑
cλ,ρ,σ,ω,εβ,γ,a,b Dα,β,γEa,b,c ⊗ ρ+(B+a+α−γ+λMω+σ+εB−λ+c

) ,(3.26)

where
∑

and cλ,ρ,σ,ω,εβ,γ,a,b are as in (3.17) and (3.21). Define also linear operators r

and l on B(H) ⊗D(K) with values in the space of linear operators on B(H) ⊗ K
by

r(D)T =
∑

n,α,β,γ

Dα,β,γθα,β,γ,n−α+γTn−α+γ ⊗ en , (3.27)

l(D)T =
∑

n,α,β,γ

Tn+α−γθγ,β,α,n+α−γDα,β,γ ⊗ en , (3.28)
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where T =
∑

n Tn ⊗ en ∈ B(H) ⊗K, n ∈ {0, 1, . . . } and θ is as in (3.16). If

D+ =
∑

n

D+,n ⊗ en , (3.29)

D− =
∑

m

D−,m ⊗ em , (3.30)

D1 =
∑

α,β,γ

D1,α,β,γ ⊗ ρ+(B+αMβB−γ) , (3.31)

E1 =
∑

a,b,c

E1,a,b,c ⊗ ρ+(B+aM bB−c) , (3.32)

where n,m,α, β, γ, a, b, c ∈ {0, 1, 2, . . . } and D+,n, D−,m, D1,α,β,γ , E1,a,b,c ∈ B(H),
then

(D∗
−|D+) =

∑

m,n

D−,mD+,n〈em, en〉 =
∑

n

D−,nD+,n (3.33)

and the square of white noise Itô table takes the following form:

PROPOSITION 2 The square of white noise Itô table is (see [9]):

dAt(D−) dA†
t (D+) = (D∗

−|D+) dt , (3.34)

dLt(D1) dLt(E1) = dLt(D1 ◦ E1) , (3.35)

dLt(D1) dA†
t (D+) = dA†

t (r(D1)D+) , (3.36)

dAt(D−) dLt(E1) = dAt(l(E1)D−) . (3.37)

All other products of stochastic differentials (including dt) are equal to zero.

The differential form of the square of white noise Hamiltonian operator is

dHt = D0(t) dt + dLt(D1) + dA†
t(D+) + dAt(D−) . (3.38)

4. Control of First Order White Noise Langevin Flows

In the notation of Section 2 and 3, we consider a quantum flow {jt(X)/ t ∈ [0, T ]}
of bounded linear operators on H ⊗ Γ defined by jt(X) = U∗

t X Ut, where H
is a separable Hilbert space, Γ is the Boson Fock space over L2(R+,C), X is a
self-adjoint operator on H identified with its ampliation X ⊗ 1l to H ⊗ Γ, and
U = {Ut : t ≥ 0} is a unitary evolution satisfying on H⊗Γ a quantum stochastic
differential equation of the form

dUt = −
((
iH+

1

2
L∗L

)
dt+L∗W dAt−LdA†

t+(1−W ) dΛt

)
Ut , t ∈ [0, T ] , (4.1)

with adjoint

dU∗
t = −U∗

t

((
− iH +

1

2
L∗L

)
dt− L∗dAt +W ∗ LdA†

t + (1 −W ∗)dΛt

)
, t ∈ [0, T ]

(4.2)
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and initial conditions
U0 = U∗

0 = 1 ,

where H, L, W are bounded operators on H with H self-adjoint and W unitary.
These conditions guarantee the existence uniqueness and unitarity of the solution
of (4.1), (4.2).

Using the Itô table for first order white noise we can show that the flow {jt(X) :
t ∈ [0, T ]} satisfies the quantum stochastic differential equation

djt(X) = jt

(
i[H,X] − 1

2
(L∗LX +XL∗L− 2L∗XL)

)
dt (4.3)

+ jt([L
∗, X]W ) dAt + jt(W

∗ [X,L]) dA†
t + +jt(W

∗XW −X) dΛt

with initial condition
j0(X) = X , t ∈ [0, T ] .

DEFINITION 3 On a finite time interval [0, T ], the cost functional for the solution
of the quantum Langevin equation (4.3) is given by:

Jξ,T (L,W ) =

T∫

0

[
‖jt(X) ξ‖2 +

1

4
‖jt(L∗L) ξ‖2

]
dt+

1

2
‖jT (L) ξ‖2, (4.4)

where ξ is an arbitrary vector in the exponential domain of H⊗ Γ.

Thinking of L and W as controls we interpret the first term of the right hand side
of (4.4) as a measure of the size of the flow over [0, T ], the second as a measure of
the control effort over [0, T ] and the third as a “penalty” for allowing the evolution
to go on for a long time. We consider the problem of controlling the size of such
a flow by minimizing the cost functional Jξ,T (L,W ) of (4.4).

THEOREM A Let U = {Ut : t ≥ 0} be a process satisfying the quantum stochas-
tic differential equation

dUt = (F Ut + ut) dt + ΨUt dAt + ΦUt dA
†
t + Z Ut dΛt , U0 = 1l , t ∈ [0, T ] ,

(4.5)
with adjoint

dU∗
t = (U∗

t F
∗+u∗t ) dt+U

∗
t Ψ∗ dA†

t+U
∗
t Φ∗dAt+U

∗
t Z

∗ dΛt , U∗
0 = 1l , t ∈ [0, T ] ,

(4.6)
where T > 0 is a fixed finite horizon, the coefficients F, Ψ, Φ, Z are bounded
operators on the system space H and ut is of the form −ΠUt for some positive
bounded system operator Π.

Then the functional

Qξ,T (u) =

T∫

0

[
〈Ut ξ,X2 Ut ξ〉 + 〈ut ξ, ut ξ〉

]
dt− 〈uT ξ, UT ξ〉 , (4.7)
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where X is a system space observable, identified with its ampliation X⊗I to H⊗Γ,
is minimized over the set of feedback control processes of the form ut = −ΠUt, by
choosing Π to be a bounded, positive, self-adjoint system operator satisfying

ΠF + F ∗Π + Φ∗ΠΦ − Π2 +X2 = 0 , (4.8)

Π Ψ + Φ∗ Π + Φ∗ ΠZ = 0 , (4.9)

ΠZ + Z∗ Π + Z∗ ΠZ = 0 . (4.10)

The minimum value is 〈ξ,Πξ〉. We recognize (4.8) as the algebraic Riccati equa-
tion.

Proof. Let

θt = 〈ξ, U∗
t ΠUt ξ〉 . (4.11)

Using the identity d(xy) = x dy + dx y + dx dy we obtain

dθt = 〈ξ, d(U ∗
t ΠUt) ξ〉 = 〈ξ, (dU ∗

t ΠUt + U∗
t Π dUt + dU∗

t Π dUt) ξ〉 , (4.12)

which, after replacing dUt and dU∗
t by (4.5) and (4.6) respectively and using the

Itô table of Proposition 1, becomes

dθt = 〈ξ, U∗
t ((F ∗ Π + ΠF + Φ∗ Π Φ) dt+ (Φ∗ Π + Π Ψ + Φ∗ ΠZ) dAt

+ (Ψ Π∗ + Π Φ + Z∗ Π Φ) dA†
t + (Z∗ Π + ΠZ + Z∗ ΠZ) dΛt)Ut ξ〉

+ 〈ξ, (u∗t ΠUt + U∗
t Πut) dt ξ〉 , (4.13)

and by (4.8)–(4.10)

dθt = 〈ξ, U∗
t (Π2 −X2)Ut dt ξ〉 + 〈ξ, (u∗t ΠUt + U∗

t Πut) dt ξ〉 . (4.14)

By (4.11)

θT − θ0 = 〈ξ, U∗
T ΠUT ξ〉 − 〈ξ,Π ξ〉 , (4.15)

while by (4.14)

θT − θ0 =

T∫

0

(
〈ξ, U∗

t (Π2 −X2)Ut ξ〉 + 〈ξ, (u∗t ΠUt + U∗
t Πut) ξ〉

)
dt . (4.16)

By (4.15) and (4.16)

〈ξ, U∗
T ΠUT ξ〉 − 〈ξ,Π ξ〉 = (4.17)

T∫

0

(
〈ξ, U∗

t (Π2 −X2)Ut ξ〉 + 〈ξ, (u∗t ΠUt + U∗
t Πut) ξ〉

)
dt .

Thus

Qξ,T (u) = (〈ξ, U ∗
T ΠUT ξ〉−〈ξ,Π ξ〉)+Qξ,T (u)−(〈ξ, U ∗

T ΠUT ξ〉−〈ξ,Π ξ〉) . (4.18)
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Replacing the first parenthesis on the right hand side of (4.18) by (4.17), and
Qξ,T (u) by (4.7) we obtain after cancellations

Qξ,T (u) =

T∫

0

〈ξ, (U∗
t Π2 Ut + u∗t ΠUt + U∗

t Πut + u∗t ut) ξ〉 dt + 〈ξ,Π ξ〉

=

T∫

0

||(ut + ΠUt) ξ||2 dt+ 〈ξ,Π ξ〉 , (4.19)

which is clearly minimized by ut = −ΠUt and the minimum is 〈ξ,Π ξ〉. �

DEFINITION 4 The pair (iH, X) is called stabilizable if there exists a bounded
system operator K such that iH+KX is the generator of an asymptotically stable
semigroup Ft i.e there exist constants M > 0 and ω < 0 such that ||Ft|| ≤M eω t

(see [30]).

THEOREM B Let X be a bounded self-adjoint system operator such that the pair
(iH, X) is stabilizable. The quadratic performance functional (4.4) associated with
the quantum stochastic flow {jt(X) = U∗

t X Ut : t ≥ 0}, where U = {Ut : t ≥ 0}
is the solution of (4.1), is minimized by

L =
√

2 Π1/2W1 (polar decomposition of L) (4.20)

and

W = W2 , (4.21)

where Π is a positive self-adjoint solution of the “algebraic Riccati equation”

i [H,Π] + Π2 +X2 = 0 , (4.22)

and W1, W2 are bounded unitary system operators commuting with Π. Moreover

min
L,W

Jξ,T (L,W ) = 〈ξ,Π ξ〉 (4.23)

independently of T .

Remark 1 Eq. (4.22) is a special case of the algebraic Riccati equation (ARE). It is
known (see [30]) that if the pair (iH, X) is stabilizable, then (4.22) has a positive
self-adjoint solution Π.

Proof. Looking at (4.1) as (4.5) with ut = −1
2 L

∗ LUt, F = −iH, Ψ = −L∗W ,
Φ = L, and Z = W−1, (4.7) is identical to (4.4). Moreover, equations (4.8)–(4.10)
become

i [H,Π] + L∗ ΠL− Π2 +X2 = 0 , (4.24)

L∗ Π − ΠL∗W + L∗ Π (W − 1) = 0 , (4.25)

(W ∗ − 1) Π + Π (W − 1) + (W ∗ − 1) Π (W − 1) = 0 . (4.26)
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By the self-adjointness of Π, (4.25) implies that

[L,Π] = [L∗,Π] = 0 , (4.27)

while (4.26) implies that

[W,Π] = [W ∗,Π] = 0 , (4.28)

i.e (4.21). By (4.27) and the fact that in this case

Π =
1

2
L∗ L i.e L∗ L = 2 Π , (4.29)

eq. (4.24) implies (4.22). Eqs (4.27) and (4.29) also imply that

[L,L∗] = 0 (i.e L is normal) (4.30)

which implies (4.20). �

5. Control of Square of White Noise Langevin Flows

As shown in [9], eqs. (4.1) and (4.2) are replaced, respectively, by

dUt =
((

− 1

2
(D∗

−|D∗
−) + iH

)
dt + dAt(D−) + dA†

t (−r(W )D∗
−) + dLt(W − I)

)
Ut

(5.1)
and

dU∗
t = U∗

t

((
− 1

2
(D∗

−|D∗
−)− iH

)
dt+dA†

t (D
∗
−) +dAt(−l(W ∗)D−) +dLt(W ∗− I)

)

(5.2)
with initial conditions

U0 = U∗
0 = 1l , (5.3)

where H is any bounded self-adjoint system operator, W is a ◦-product unitary
operator such that r(W )r(W ∗) = r(W ∗)r(W ) = 1l, I is the ◦-product identity, D−
is an arbitrary operator as in (3.30), and 1l is the identity operator on H⊗Γ. These
conditions guarantee the existence, uniqueness and unitarity of the solutions.

PROPOSITION 3 In the case of the square of white noise, the quantum Langevin
equation (4.3) is replaced by

djt(X) = jt

(
i [X,H] − 1

2
((D∗

−|D∗
−)X +X (D∗

−|D∗
−)) + (r(W )D∗

−|X r(W )D∗
−)

)
dt

+ jt

(
dA†

t (D
∗
−X − r(W ∗X)r(W )D∗

−)
)

+ jt

(
dAt(X D− − l(XW )l(W ∗)D−)

)

+ jt

(
dLt(W ∗X ◦W −X)

)
, (5.4)

with j0(X) = X, t ∈ [0, T ].
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Proof.

djt(X) = (dU ∗
t )X Ut + U∗

t X (dUt) + (dU∗
t )X (dUt)

= U∗
t

{(
− 1

2
(D∗

−|D∗
−) − iH

)
X dt+ dA†

t (D
∗
−X) − dAt(l(W

∗)D−X)

+ dLt((W ∗ − I)X)) +X
(
− 1

2
(D∗

−|D∗
−) + iH

)
dt− dA†

t (X r(W )D∗
−)

+ dAt(X D−) + dLt(X (W − I)) + (r(W )D∗
−|X r(W )D∗

−) dt

− dAt(X l((W − I)) l(W ∗)D−) − dA†
t (r((W

∗ − I)X) r(W )D∗
−)

+ dLt((W ∗ − I)X ◦ (W − I))
}
Ut

= U∗
t

{(
− 1

2
((D∗

−|D∗
−)X +X (D∗

−|D∗
−)) + i [X,H]

+ (r(W )D∗
−|X r(W )D∗

−)
)
dt + dA†

t(D
∗
−X −X r(W )D∗

−

− r((W ∗ − I)X) r(W )D∗
−) − dAt(l(W

∗)D−X −X D−
+ l(X (W − I)) l(W ∗)D−) + dLt((W ∗ − I)X +X (W − I)

+ (W ∗ − I)X ◦ (W − I))
}
Ut

= U∗
t

{
− 1

2
((D∗

−|D∗
−)X +X (D∗

−|D∗
−)) + i [X,H]

+ (r(W )D∗
−|X r(W )D∗

−)
}
Ut dt

+ U∗
t {dA†

t(D
∗
−X −X r(W )D∗

− − r((W ∗ − I)X) r(W )D∗
−)}Ut

+ U∗
t {dAt(−l(W ∗)D−X +X D− − l(X (W − I)) l(W ∗)D−)}Ut

+ U∗
t {dLt(W ∗X ◦W −X)}Ut

= jt

(
i [X,H] − 1

2
((D∗

−|D∗
−)X +X (D∗

−|D∗
−)) + (r(W )D∗

−|X r(W )D∗
−)

)
dt

+ jt

(
dA†

t(D
∗
−X −X r(W )D∗

− − r((W ∗ − I)X) r(W )D∗
−)

)

+ jt

(
dAt(X D− − l(W ∗)D−X − l(X (W − I)) l(W ∗)D−)

)

+ jt(dLt(W ∗X ◦W −X))

= jt

(
i [X,H] − 1

2
((D∗

−|D∗
−)X +X (D∗

−|D∗
−))

+ (r(W )D∗
−|X r(W )D∗

−)
)
dt

+ jt(dA†
t (D

∗
−X − r(W ∗X)r(W )D−))

+ jt(dAt(X D− − l(XW )l(W ∗)D−))

+ jt(dLt(W ∗X ◦W −X)) .

�

DEFINITION 5 On a finite time interval [0, T ], the cost functional for the solution
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of the quantum Langevin equation (5.4) is given by:

Jξ,T (D−,W ) =

T∫

0

[
‖jt(X) ξ‖2 +

1

4
‖jt((D∗

−|D∗
−)) ξ‖2

]
dt+

1

2
〈ξ, jT ((D∗

−|D∗
−)) ξ〉 ,

(5.5)
where ξ is an arbitrary vector in the exponential domain of H⊗ Γ.

The square of white noise analogues of Theorems 1 and 2 are as follows.

THEOREM C Let U = {Ut : t ≥ 0} be a process satisfying the quantum stochastic
differential equation

dUt = (F Ut+ut) dt+dAt(Ψ)Ut+dA†
t(Φ)Ut+dLt(Z)Ut , U0 = 1l , t ∈ [0, T ], (5.6)

with adjoint

dU∗
t = (U∗

t F
∗+u∗t ) dt+U

∗
t dA†

t(Ψ
∗)+U∗

t dAt(Φ
∗)+U∗

t dLt(Z∗) , U∗
0 = 1l, t ∈ [0, T ] ,

(5.7)
where T > 0 is a fixed finite horizon, F is a bounded operator on the system space
H, Ψ, Φ, and Z are of the same form as D−, D+, and D1 respectively, and ut is
of the form −ΠUt for some positive bounded system operator Π.

The functional

Qξ,T (u) =

T∫

0

[〈Ut ξ,X2 Ut ξ〉 + 〈ut ξ, ut ξ〉] dt− 〈uT ξ, UT ξ〉 , (5.8)

where X is a system space observable, identified with its ampliation X⊗I to H⊗Γ,
is minimized over the set of feedback control processes of the form ut = −ΠUt by
choosing Π to be a bounded, positive, self-adjoint system operator satisfying

ΠF + F ∗Π + (Φ|Π Φ) − Π2 +X2 = 0 , (5.9)

Π Ψ + Φ∗ Π + l(ΠZ)Φ∗ = 0 , (5.10)

ΠZ + Z∗ Π + (Z∗ Π) ◦ Z = 0 . (5.11)

The minimum value is 〈ξ,Πξ〉.

Proof. The proof follows in a way similar to that of Theorem 1 with the use of
the square of white noise Itô table of Proposition 2. �

THEOREM D Let X be a bounded self-adjoint system operator such that the pair
(iH, X) is stabilizable. The quadratic performance functional (5.5) associated with
the quantum stochastic flow {jt(X) = U∗

t X Ut : t ≥ 0}, where U = {Ut : t ≥ 0}
is the solution of (5.1), is minimized by choosing

D− =
∑

n

D−,n ⊗ en (5.12)
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and

W =
∑

α,β,γ

Wα,β,γ ⊗ ρ+(B+αMβB−γ) (5.13)

such that

1

2
(D∗

−|D∗
−) =

(1

2

∑

n

D−,nD
∗
−,n

)
⊗ 1l = Π , (5.14)

and

[D−,n, D−,m] = [D−,n, D
∗
−,m] = 0 , (5.15)

[D−,n,Wα,β,γ ] = [D−,n,W
∗
α,β,γ ] = 0 , (5.16)

for all n,m,α, β, γ, which also implies that [D∗
−,n,Wα,β,γ ] = [D∗

−,n,W
∗
α,β,γ ] = 0,

where Π is a positive self-adjoint solution of the algebraic Riccati equation

i [H,Π] + Π2 +X2 = 0 . (5.17)

Moreover

min
D−,W

Jξ,T (D−,W ) = 〈ξ,Π ξ〉 (5.18)

independently of T .

Proof. Looking at (5.1) as (5.6) with ut = −1
2 (D∗

−|D∗
−)Ut i.e

Π =
1

2
(D∗

−|D∗
−) =

(1

2

∑

n

D−,nD
∗
−,n

)
⊗ 1l ,

F = iH, Ψ = D−, Φ = −r(W )D∗
−, and Z = W − I, (5.8) is identical to (5.5) and

equations (5.9)–(5.11) become

i [Π,H] + (r(W )D∗
−|Π r(W )D∗

−) − Π2 +X2 = 0 , (5.19)

ΠD− − l(W ∗)D− Π − l(Π (W − I)) l(W ∗)D− = 0 , (5.20)

Π (W − I) + (W ∗ − I) Π + ((W ∗ − I) Π) ◦ (W − I) = 0 . (5.21)

Equation (5.21) implies W ∗ Π◦W = Π ⇒ W ∗ Π◦W ◦W ∗ = Π◦W ∗ ⇒ W ∗ Π◦I =
Π ◦W ∗ ⇒ W ∗ Π = ΠW ∗ ⇒ [Π,W ] = [Π,W ∗] = 0 and (5.16) follows from (5.14).
Similarly, (5.20) implies that [Π, D−] = 0 from which (5.15) follows. Finally, using
the fact that (r(W )D∗

− | r(W )D∗
−) = (D∗

− | r(W ∗)r(W )D∗
−) = (D∗

− |D∗
−), (5.19)

implies (5.17). �
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