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Abstract. The weak coupling limit for a quantum system, with discrete spectrum, in interaction
with a quantum field reservoir is considered. Depending on the nature of the reservoir (i.e. bosonic
or fermionic} and the degree of nonlinearity of the interaction, we discover that either a bosoniza-
tion or fermionization of the collective multi-linear reservoir operators emerges. The stochastic
evolution is determined after the weak coupling limit and is shown Lo be unitary: also we show
that our calculations for the system-only dynamics coincide with these previously postulated by
physicists.

1. Introduction

There is a well known rule of thumb in quantum mechanics that a pair of fermions
may behave in a certain sense like bosonic entity. More generally, we may expect
that an even number of fermions should exhibit bosonic properties when considered
as a unit, as should any number of bosons; similarly an odd number of fermions
should have fermionic properties. In this paper we show how to make this rule
of thumb into a rigorous mathematical statement. In all cases, bosonization and
fermionization (in the sense that an odd number of fermions can be replaced by one
fermionic entity) can be no more than an approximation and specifically we employ
a van Hove limit in which the limiting observables are interpreted as quantum
stochastic processes: this particular limit we refer to as the guantum stochastic limit
[1]. The layout of this paper is as follows: in Section 1, we set up notations regarding
the quantum field, which we interpret as a reservoir to some quantum mechanical
system, and review both the general theory of the noise limit from the point of
view of physicists (essentially we discuss the approach of, for instance, Louiseil
[2]) and the weak coupling limit for finear interactions. In Section 2, we construct
mathematically the limit noise. In Section 3, we examine the limiting evolntion for
multi-linear interactions and deduce the quantum stochastic differential equation
that it satisfies. In Section 4, we make some remarks concerning the nature and
physical implications of our results.
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Our results can be thought of as a generalization of the work of Lu [3], where
the quadratic boson interaction was examined, and also of Accardi and Gough
[4], where the correct physical interpretation of the weak coupling limit (based on
the ideas of {1]) for a general linear interaction was given for the first time. We
would also like to mention that there exist other related approaches to stochastic
bosonization, especially by Accardi and Mastropietro [6] and also Accardi, Lu and
Volovich [{]. Also for other interpretations of bosonization from non-commutative
central limits, see Goderis, Verbeure and Vets [11].

1.1, OreN QUANTUM SYSTEMS

We consider the standard stochastic limit procedure in which a quantum mechan-
ical systenr, with separable Hilbert space #Hg, is coupled to a reservoir which we
take to be a quantum field, either bosonic or fermionic, with state space Hp.The
reservoir is assumed to be in a quasifree gauge-invariant state.

The total Hamiltonian for the combined system and reservoir can be formally
taken as the operator on Hg ® Hp given by

HM = 5O 4 af, (1.1)

where HO = He@ g+ 15@ HRp is the free Hamiltonian and H; is the interaction.
Ais a real coupling constant. We emphasize that, in our treatment, the reservoir
is to be taken as a physical quantum field; so in particular Hg can be taken as the
second quantization of a bounded-below operator on the one particle space of the
reservoir. That is, the frequency spectrum w = w{k) for the elementary excitations
is bounded below. We set Vt{o) = exp{%H (O}, while the full unitary evolution is
given by

A exp{%H()\)} - Vt(U)Ut(A)’ (1.2)
2

where Ui(’\] is the unitary family given by

i
A
v = TeXp{Efdsugﬂ)(HI)}. (1.3)
4]

where 7 denotes time ordering and
vO(x) = vOixvo) (1.4)

We shall refer to U:(A) as the wave operator at time ¢. It is responsible for
transforming to the interaction picture.

Our objective is to study the transition probabilities and observable expecta-
tions under the interaction picture evolution in the limit A — 0 where first we
rescale time as t/A? so as to obtain the long-term cumulative behaviour.
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The results of previous papers, in which the interaction is linear in the cre-
ation/annihilation operators of the reservoir, lead to the same form of approxima-
tions purposely made to extract a Markovian limit [2]. Moreover, if one considers
the situation of quadratic interactions then the stochastic evolution obtained [3]
again leads to the Markovian limit situation. The most general interaction consid-
ered in [2] is

Hy = 1) D;®F, (1.5)
i

where the [); are operators on the system space with harmonic free evolution of
frequency «; (cf. (1.22) below) and the F) are arbitrary operators on the reservoir
space: the question we pose in this article is whether the quantum stochastic limit
now leads to the same picture as predicted by |2]. Our answer is that, broadly
speaking, they do concur however, in the case when the order v of multi-linearity
exceeds 2, we derive this result modulo the proof of the uniform estimate which
at presenl does not seem attainable. Rather we shail show that a regularization
of the dynamics (namely retaining in the Dyson series of the wave operator those
terms which are technically non-vanishing in the limit and which correspond to the
generalization of the non-negligible terms admitted in previous papers concerning
the weak coupling limit) does have the correct limiting form consistent with the
Markovian appraovimation theory.

1.2. THE STATE OF THE RESERVOIR

We wish to deal with a quantum field reservoir for which the one-particle space
is a separable Hilberi space Hk. We take a parameter 7 to label the statistics of
the reservoir; that is to say wc act 7 = 1 for boson quanta and 7= 1 for Fermi
quanta. For n > 1 we let 75 = @"H}Y and for y = 41 define the operator F, by
linear extension, on HpE by

Pfi®.. . ®@fa =)D 9™, ®...8 fon (1.6)
oS,
where S, is the set of all permutations on the symbols {1,...,n} and paro is the

parity of o € S, defined to be 0 if o is even or 1 if ¢ is odd. P, is then a projection
operator on HY: the space of (antij-symmetrized n-particle states is then described
by

Hy = P, HE. (1.7)

Defining as usual #% = C; the Bose (n = 1) and Fermi (7 = —1) Fock spaces

are then given by [ (HL) = DX ,Hy" and this gives the state space of our
reservoir.
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We shall denote the Fock vacuuin vector by W. The canonical (anti)commutation
relations for the creation/annihilation operators are

[a(g)a(F)]y = 0 = [a(y),a'(N)],
and
[a(g):a™(FYn — {9, ), (1.8)

where [A, B], = AB — nBA.
let Q@ > 1 be a self-adjoint operator on H},. Denote by g the quasi-free
gauge-invariant state with covariance (),

wold(a)) = 0,

141
eolelg)al(f)) = (9. L5 5): (1.9
from the canonical relations it follows that
"o
polal(flalg)) = n<g,Q 1) (1.10)

Here Q' = @ and Q™! is the inverse of Q. Special cases are

(i) the Fock vacuum, Q =1,

Pvac(a(9)a () = (0. /), @wmelal(Nale)) = 0; (1.11)

.. —BHp .
(ii) thermal states, ) = %’1 in which case
R

1- se

1+77ze‘5H}1
K TIR 1.12
Q" — T (1.12)
1
iy = (g— L
#8:00)a () = (97— =z f)
—-BHL
1 o z€ R
¢p.:(a'(flalg)) = (m——-1 - nze-ﬁH;‘zf>’ (1.13)

where H}, is a bounded-below self-adjoint operator on H1},, namely the one-particle
Hamiltonian (cf. next subsection). If {H&. 79, ¥o} denotes the GNS triple asso-
ciated to the canonical {anti)-commutation relations algebra over Hp with state
@@, then we have the isomorphism [5]

M) = Hp®MHp, with Uy = V@U, (1.14)
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such that if we consider the creation/annihilation operator on Ha denoted by

aé(g), then

ag(9) = e(Q4g)® 146, ®47(JQ_g),
ah(9) = al(Qu9) ® 146, ®a(JQ_g), (1.15)

Qs = \/anjl, Q- = \/nQng_l, (1.16)

b, = @a_on™ is the parity operator and J is a complex structure on the one
particle Hilbert space ¥} {an anti-linear involution satisfying (J f, Jgy = (g, /Y).
Note that 67 = 1, while 8, = 1 identically in the boson case. In the following we
shall use the notation below for a block of creation or annihilation operators:

where

a,(g) = alg)...algr),  al(g) = a'(g1)...a(q.). (1.17)

In the Fock vacuum case we have

v

(Pva.l:(au(g)a’l(f)) - Z nPere H(gﬂ'kT fk)s (1']8)

oCS, k=1

where g = {g1,...,4,) and f = {(fi,..., f.). While in the general situation one
has

pola.(g)al(f) = 3 nP ] <gak,@2ilfk>, (1.19a)
oESL k=1

eolal(Na(@)) = 3 nP ] <gok,nm—2_ifk>. (1.19b)
€5y k=1

1.3. RESERVOIR AUTO-CORRELATIONS UNDER THE WEAK COUPLING LIMIT
Take H}, to be the operator on H}, corresponding to the one-particle Hamiltonian.

The free Hamiltonian Hp is then taken to be its second quantization. The cre-
ation/annihilation operators on #p, under Uhe free evolution, evalve as follows

(1@ d'(9) = s @ul(d(g)) = Is@a(Su), (1.20)

where we have the unitary transformation on the one-particle space

Sy = exp{ - ;%H}g} = exp{et}. (1.21)
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The operator 82 = H}L/R is to be determined from the spectrum w = w(k) of
frequencies of the elementary excitations. v{ is the evolute for reservoir observables
under the free reservoir evolution. Our basic dynamical assumption shall be that
S; commutes with @ for all #; that is [, ] = 0. The vacuum and thermal states
above clearly satisfly this condition.

We consider an interaction of the type

N{w)

H =iy S(DY@FT—he), (1.22)

wEF j=1

where the DY € B(#s) have harmonic free evolution with frequency v

v (D? @ 1g) = e ' DY ® 1g, (1.23)

fur each 7 — 1,..., ¥{w). So there is a discrete set F of fundamental frequencics
and each frequency w occurs a total of N (w) times in the interaction.

Qur starting point is to examine the Dyson series expansion for the wave oper-
ator at time t;

tn—1

v 1+Z .[dtlfdtz ] At (Hpy o0y, (124)

Now, from our assumptions, we have

N{w)

1 .
—hvio)(Hz) = 3 S (DY QuE(F)e —he). (1.25)
weF j=1

In a previous paper [4], we have studied the minimal coupling (linear) interac-
tions, where -
FY = al(g}), (1.26)
for certain test-functions g3 C Hi,.

Here, however, we shall generalize to v-excitation interactions, where v € N;

FY = alg},) .. -algf)) (1.27)

where for each w € F and j € {1,..., N{w)} we have v test-functions g%, € H}.
In the notation of {1.17) we have

F;'u = av(g;l) (1.28)

with g¢ = (g%,...,4%,) € X" ¥}
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In order to obtain an insight into the weak coupling limit we consider the
truncated Dyson series

£
o =142 Jawely) + 0
4]

Ni(w)
=143 Y DY@ It )) - he} +0(A?), (1.29)
weF j=1
where z
Fr62) = A [ duof(Fe)e. (1.30)

o

We shall examine the first order term in the limit A — 0 with ¢ rescaled as t/ A2,

i &
t s w w! twutiw'y
(e VR Ga ), = 3 [ du [[ao of W), et
4] (8]
A2t s—o[)?
= / da / dr (Fyol(Fy)), eflore)o /3 gior (1.31)
0 /a2

where we have undergone a change of variables ¢ = X4, 7 = v — % and used
the fact that the state (-}, of the reservoir is invariant under the free evolution
oR(.).

This particular rescaling in time is the only one which allows a non-trivial limit
for such expectations as A — 0 for arbitrary choices of the F}. One finds that

one requires w + w’ = 0 otherwise the phase '(“+«)9/3 introduces oscillatory
behaviour, for an exact treatment of this see [9]. One finds

i (73 (1/X2, )7 (s/ A%, A))y =
§(w + o) min{t, s} / dr (FEoR (B ) o7 | (1.32a)

likewise

lim (F2(2/2% ) 75 1o/ 2%, M), =

§(w — o) min{t, s} / dr (FeoR(F ), e (1.32b)
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lim (7574 / 3 NFH (/A7 e =
5o~ minft, s} [ dr (FEORES e, (1.32)

and

. wi "t _
)1\1_%(}—3' (t/’\2s A)}-;: (S/’\Qa A))R -
§(w + ') min{t, s} [ dr (FTof (F 1)), e (1.32d)

Specifically in the case where the I are given by (1.27) we see that (1.32a) and
(1.32d) vanish. On the other hand (1.32b) and (1.32c) are nonzero in general: for
example in (1.32) taking a Bose reservoir in the vacuum state we have

dee "‘”’(a,,(g;")au(STg'J .[dh'e“""r 2 H gj,k, ng G'k . (1.33)

eSS, k=1

For the sake of comparison later on, we give the master equation with arbitrary
interaction F¥ deduced in [2]; taking s as the reduced system density matrix
then

N{w) o0 '
Z Z {(DWD AT ;«"’rtsD?’) _/(U"B(P;JT)E;OR R
weF j,j'= 2
(e )
— (DysD}! = sDy D) f (Fy o (Ffi))p €7 i (1.34)

o
+ (D7 s — ;r,sp;r’*) R(FE)Fi Y, e “mar

— (D¥isD% - sDY DY) / (FPol(F2")) e Tdr}

1.4. DISCUSSION ON THE LINEAR INTERACTION

The linear case has been dealt with fully in [4]; as indicated in (1.12) the interaction

takes the form
N{w)

1= ihYy, Y {DYealg!)! - hel}. (1.35)

weF j=1
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It was shown that the wave operator Uy atl fixed time ¢ arrived al afler a van Hove
scaling limit satisfles a quantum stochastic differential equation, in the sense of
Hudson and Parthasarathy [10] (boson) or Applebaum and Hudson [11] {fermion),
given by

Nw)
v, = {30 Y (py @ dBg (g0t - Dt @ AR (g, 1) ~Y®dt}U, (1.36)
weF j=1

where the By are quantum Brownian motions of bosonic or fermionic type depend-
ing on the choice of the reservoir and Y is an operator on the system space Hg
given by

N{w)
Y = 3 3 esle0)6 05 D + (a2 lag 15Dy o (1.37)
wEF fk=1
with the notations
1]
(f|h)°5; = /dT<f, %ST@ e‘“’", (1.37a)
wooO
(FI)S =7 / ar ( f,%srh) i (1.37h)

The self adjoint part of ¥ corresponds physically to the damping or dissipative
term while the anti-self adjoint part to the energy shift. It was emphlasized in
{4] that Y is exactly the complex shift of the systems Hamiltonian Hg due to
the presence of the reservoir as calculated using standard first order perturbation
theory.

Before leaving to study multi-linear interactions, we make the following interest-
ing observations about the linear case: suppose that D operators form an assembly

of either bosonic (¢ = 1) or fermionic ({ == —1) operators; that is to say
[DY, DY) = bl (1.38)
This means that the Hamiltonian of the system takes the form
N{w) [
L W
Z Z huDj Dy .
weF j=1

Let W5 denote Fock vacuum for the system, that is D¥¥s = 0 for all w and j.
Me)(Dety@i} g with eigenvalues

1=1
SR Tﬂ;" ) n(w, §)iw. n{w, 1) gives the number of particles in the 7*! state with
frequency w and takes the values 0,1 for fermions and 0, 1,2,3, ... for bosouns.

The typical eigenvectors for Hs are {[],cr [T
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Y may be put into normal ordered form yielding

N{w)
= 3" 3 {a¥le)g, + C(gz‘lg;-”)‘é_]DfTDf +cls. (1.39)
weF j,k=1
The constant termisc= 3" r EN(w) (9¢19¥)5_- Using the well known identity
[ dre=m = 1 @) -iPt (1.40)
i(z —i0%) 2’

with P denoting the principal part, see {2] for example, we see that Y is readily
split into its self and anti-self adjoint paris

N{w)
v = 5 3 267 Q7+ 1+ nC(Q7 - 118§ — wigi) D5 DY (1.41)
wEE j k=1
N{w) .
-3 Z}D > P(g7.10" +1 = n¢(Q" - Vig——st) DY Dy + clis.
wE k=1

Two cases arise:

- case (1)1 =1
E Z {W<g.? ,Q’?(s Q w gk> EP(Q} 3 gk>}DwTDk + C]Lg
weF k=1
(1.42a)
- case (2)a WC =1
Niw)
= 3 > {r{a. 60— w)at) - iP{s5,@" k) b0y D+ et
weF j,k=1
(1.42h)

In case (1) we have either a Bose system interacting with a Bose reservoir or
alternatively a2 Fermi system and a Fermi reservoir. Here Hg = —hlm Y is the
energy shift and the {J-dependence is only manifest as a global shift ~hIme¢ =
=Ry eF ZN(w) Plg?, hi—wn%g}*’); the individual energy levels have then a -
mdependent spacing. The spacing of the damping coeflicients is however ()-depen-
dent.

In case (2), where the system and the reservoir must be of unequal type (i.e.
one is bosonic and the other fermionic), then it is the energy spacing which is Q-
dependent but the damping has only a (J-dependence due to the global shift term
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2Rec = WZWEFZN(m)(QJ ,6(9 — w)n<=Lgy) but the spacing of the damping
coefficients is Q-independent.

Finally, it should be pointed out again that U has a unitary evolution and
examining for instance X; = U;’(XO ® 1)Uy leads to a Langevin equation whose
adjoint is the same master equation (1.34) deduced by Louisell and other authors.
The limit from the Heisenberg evolution to the Langevin equation being established
rigorously.

2. Limiting Quantum Stochastic Process
2.1. THE QUANTUM NoOISE

In this section we outline the basic mathematical structure of the quantum noise
processes which shall emerge through our investigations.
For ICR, ¢=(g1,....0.) € X"H} and X > 0, let

BN 1) = A [ dtal(5P7q) = A [ d{el(Sign) . al (S}, )
I/32 I/a2

where, for any operator G on #};, we denote its extension on ®”HL by G®, that
is

G®y = (Gg1,...,Gy) . (2.2)
We wish to study the operator B() (g, I) in the limit A — 0. Our claim is that
it becomes a quantum Brownian motion. To see what this means we make some
rudimentary definitions below.

Let K be the subset of Hy", the v-particle space of symmetrized (n = 1) or
anti-symmaetrized (7= —1) states as defined in (1.7}, such that

0

£3 11U Seho )l < o0 (2.3

o0 UESU .7=1

whenever f = (f1,..., f.) and h = {hy,...,h,) are elements of K. We define a
sesquilinear form (-|-}: K x K — C as follows

(f1h) = f dte™t Y g H(fa,,sm (24)
€Sy
Note that we may write (flh) = [°° dt(f|SP"h)e~™*, where we introduce a

sesquilinear form {-|-) on X"#}; defined by

1By = > 2" I ho,)s (2.5)

a€S, =1
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moreover { f|h) is exactly equal to @yac{a,(f)al(h)} as indicated by (1.18). We now
turn K into a Hilbert space as follows: we first of all factor out by the (.|.}-null
space of K and then take the Hilbert space completion of the remainder again
using the {-|-)-norm. The resulting Hilbert space we again denote by K and now
(:]) is its inner product.

To construct a quantum Brownian motion over K we proceed as follows. First
consider L%(R*, K) the space of square-integrable K-valued functions on RT. We
shall make use of the natural isomorphism L%(RY,K) & L*(R*) @ K. Now let
I':(L3(R*, K)) be the bosonic/fermionic Fock space over L2(R*, K) with the con-
vention of Section 1.2 that £ = 1 means Bose statistics while £ = —1 means Fermi
statistics. Denote by @ the vacuum state and by A%( f) the creation/annihilation
operator, with test function f € L2(RY K), for Ie(L3(R*, K)). In particular, for
f € K we define

B(f> t) = A(X[O.t] 2 f) ) (26)
then B(f,t) is a quantum Brownian motion on T'¢(L*{(RT, K')} with state given by
the vacuum expectation. One notes that

[B(f,8), Bk, 8)1]e = (f]h) min{t,s}. (2.7)

2.2. CONVERGENCE TO THE NOISE IN THE VACUUM STATE

In the theorem below (taking w = 0, for clarity) we prove the following asser-
tion: for a reservoir R with statistics # and in the vacuum state, the operator
BRI(f,[0,]) converges weakly in the sense of matrix elements to B(f,t), where
the statistics of the quantum Brownian motion is £ = 5”.

The rule of thumb stated in the introduction is now evident; if y =1 then £ == 1
or in other words bosons stochastically bosonize, while if 7 = —1 then £ = (~-1)¥
that is to say an even number of fermions also stochastically bosonize, whereas an
odd number stochastically fermionize.

THEOREM 1. For N,N' € N, I;,Ji C R and ¢, f8) ¢ % for j=1,...,N
and k= 1,..., N, we have

lim (BWt(gMW 1y . BN pyw, B (s gy B (AN 1wy (2.8)
= (A'xs, ® W) .. Aty @ dMN 2, AT (ks @ F) L ATy, @ ) 0) (2.9)

Here A" are the creation/annihilation operators on T¢(L*(R*, K)), where we have
set £ = nv.

Proof. Both {2.8) and (2.9) vanish if N # N’, so we only need to consider the
case N == N'. Now, (2.8) for finite A can be written as

(BOMD, 1. B ™, 1y)w, BV, 11y BNV ) w) =
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,\2N/ dul.../ duN-f dvl.../ dun
L In /A2 J /A2 TN /a2

(0,a(Suyg™) - a(Suns™) . a(Su, o) - a(Suat) (2.10)
at(Sy S 0l (S ) et (Sup M) Lt (S SN
For notational convenience we introduce
9G.4) = Su‘-gj(-i), fop = Su.f(z (2.11)

The expectation above can then be written out as

(¥, algn,m) - - algan) e (o) - - el (fve))¥)
N v
= > 2P T 9w fua) (2.12)
pESKN,. =1 =1

where Sy, is the set of all permutations on the Nv symbols,

{(1w1)1(112))'"1(11"):"'1(N71)r"':(Ni”)}' (?'13)

In particular, we let S?V’y denote the set of permutations of the type p = o X ¢,
where ¢ € Sy and € € §,, that is

11, 7) = (o0 ¢5). (2.14)

Then SR;’V ™~ Sy X S, We let SIIV,u = SN,V/SRT’V; such permutations give rise to
what we call the crossing terms.
For p = o x ¢ € 5%, the contribution to (2.10) is

¥ du [ duy - [ dwe [ downm o ] TS0 S0l ),
e e Nl S N HH( w9655 Sudi )

3

=1 5—=1
(2.15)
Now setting t; = A? and 7; = u,, — v; we obtain
dtl f dTl . / dtN/ dTN npar,u (ST.Q(G‘
le {(Iay —£1)/ 22 JIn {(Iop —tn}/ 22 ,Hlel
(2.16)

But we have the limit

I f dt ] Sreg’, 119
fimy f, oy —ti)/32 rkJHl( g, fE

= |l k] [ mH<s N U AT
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Now note that since y = o X € we have the relation

npal‘# — ,‘?V parg+Npare¢ . (218)

Or, in other words, 7P?7# = ¢paro . pNpPare where we set € = n*. Taking all the
S?V'U terms together in the limit we therefore obtain

¥

00 oo N : .
fdtl--- / dtn Z épara]:[ Z npareH |IjﬂJaj|(g;(cj)15£)‘ e(:]))

S F=1cCS, k=1

N
= > & [[(®,Alxn, ®¢Y) - AT(xy; ® FN)8),  (2.19)

€SN J=1

however this is equal to
(Axn @ g™M) .. AN, ® g0, Al (s, & 1Y) L Aty © e, (2.20)

where Al ia the ereation operator on I'¢(L2(R, HLY).

So (2.9) clearly comes about from considering all the limit contributions from
terms with u € SR,’U, that is the non-crossing terms. We must therefore show that
the crossing terme do not contribute to the limit (2.8). Essentially, we modify the
argument of Lu [3] to show this.

Take ¢4 € S ,, we wish to examine the term

N v
2N du[ du / dv‘../ dupynPars o Fria,
| i fy e [ o [ o Eg(gu( W J .3)>!
(2.21)

which is bounded above by

N v
A2Nf d f d f d f doy - o Fml, (2.22
npe 0 e Lyl on - TT T Hgu faip)l» (2:22)

In /a2 =1 j=1
Now, since pu € S, there exists an o € {1,..., N} such that
p#leya) — (m,l) and p(oyb) = (k,¢), where a #Fb and mAE. (2.23)

We can obtain as an upper bound for (2.22)

/\2Nf dul...f duN-f d‘vl...f dun - 1
I /a2 I /A2 Ji /A JIn /A2

bt l{g(m,l)s f(a,a))l T |<9'(k,c)& f(a,b))l ) H |<gu(h,1)a f(k,l))' ) (2.24)
hia
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where ¢; = max{1, lgi”|I, 17701
Suppose that u(h,1) = {u(h},i(k)). The above can be rewritten, using the
change of variables £/ = u;A?, as

dt’...f d! f dv.../ doy - e[ (Sy agt™, Suo 7 2.5
I ! In N Ji /A2 ! I /A2 N 1‘< /X291 vafa >| ( )
(=) . (M)
X l{str ,\zgc Svaf )‘ H |< Y /,\2gz(h) ,buh >| .
Now, supposing m < k, we make the following change of variahles

T{lzvh—i;{h)/)\z, for h#a, and 7, =1,—th/X. (2.26)

The above bound can be writlen as

dt’ / dt
I'I ! IN N H

fope ¥ (Tn=, )32 [{th ey A2
x [(of™, SN (o Sogs e fs™)| H‘(giﬁﬁa A7)

H/ dt! {)\2/ o dty ‘JE!'/(J,,%' o drh/;Ja~t'( e dr},
S TN [

where we have set # — (t; — £, ) /A2
However, for each & # ¢, we have

!
dr, - e

gt 5= [enlih sutthe oo

Since ffk dty, = |I,|, we use the dominated convergence to ohtain an upper hound
of the following form:

A2 [ odt) .. f dth_, / dt!! f dr!
i Ix1 {I—th,)/ 32 (Ja—t1,)/ 2

o o™, 5 25)] ol 8 7))

for suitable ez > 0. But now on interchanging the last pair of integrals and changing
the variables from t} to s = 7/, — t{, this last expression is the same as

e [ dd .. f drl,_, [ dr! f dsi (2.29)
I - amti )32 etmamtm) 2

(™, 52|55
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which behaves as A" - O(1) as A — 0.

2.3. (GENERAL QUASI-FREE STATES

Let Ky and K3 be two separable Hilbert spaces, identified with each other as
spaces, with inner products (-[-})1 and {:]-)2, respectively. Set H; = Le(L*(RY, K;))
and consider H = H; ®Hz. For § € L*(RY, K;) we define the following annihilator
on H

A = AP @ 1o+ 6 ® AJ(1® 17), (2.30)

where A;(§) is the annihilator on #; and then notations are equivalent to those
introduced in Section 1.2; for instance Js is an anti-unitary involution on Ky Note
that we have the canonical relations

D AR = (AR, = [ dr@lme);. (2.31)
It then follows that
[AC), AW = (7lF): — €(fiR)a- (232)

We denote by ®; the vacuum state of H; and set ® = &, @ ®,. Now for feK;
we define

B(f,t) = Alxpq@ f). (2.33)

Then B(f,) in the state ® on # is a (doubled up) quantum Brownian motion. Its
quantum lto table is

dB(f,t)dBY(h,t) = (flR)rdt  dB'(f,t)dB(h,t) = (h|f)dt

dB(f,t}dB(h,t) = 0 dB\(f,t) dBT(h,{) = 0 (2.34)

The Hilbert spaces Ky and K, come about as follows; consider the subset K' of
?-ii:én such that

[ @t S T, 8ma,) < oo (2.35)
e agS, g—1
whenever f = (fy,..., f.} and h = (hy,..., h,) are elements of X’. Note that for
1 = —1 we just have K’ = K. We define a pair of sesquilinear forms on K’ as
follows
1
UM—[WMZPWHmpf%M (2.36)
€S,

v

(f1h)2 / dte™t 3~ pparo TT ( fU],'qQHQ Sehs ) - (2.37)

oES, =1
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That is (flh); = [25, dt{fiSP"h)q; where {flh)q; is polav(f)al(h)) for j =1
and g (a}(h)a,(f)) for j = 2. The Hilbert spaces K; and K3 are then just the
completions of K’ with respect to the sesquilinear forms (-|-}; and (-{-)s, respec-
tively.

THEOREM 2. For g € #, I CR andw € R we define

B(’\)(g,I) = X dte"i”‘iau(S,?”g). (2.38)
/a2

Then, for NN € N, I;,J;, C R and g, 1B ¢ Hy for j=1,...,N and k =
., N', we have

}\irr}] o BV (W In) .. . BM (g ) BV gy BT IN)) (2.39)
—

= {AT(xp, ® 9W) ... A (xry © g8, ANy, © 7). AN (g, © SR
(2.40)

where A' are the creation/annihilation operators on H as defined now by (2.30)
with the patr of Hilbert spaces determined from (2.35) - (2.37).

Proof. Going to the GNS representation {'H”Q,arQ,lllq} we may write (2.39)
as

AN+N'f dul...f duN-/ dvl..,/ dup (2.41)
L /a2 Iny/a2 Ji /a2 Jpr /A2

(ag(sulg?’) 0} (Su M) . ah (Suygl™) - ah (SunglM)wg,

0} (Su 1) . ab (Su SI) - ay (Sup A7) - ah (Sup SN OY G
However, using the decomposition (1.14) - (1.16) and noting that

ab(h1)...ah(ha)¥q = at(Qih1) ... aH(Quhm)V R W, (2.42)

we see that (2.41) is equal to

)\N+N’] dus .. / dun / du .. f dune (2.43)
L/3 In/3? Ji/a2 Ixil N2

(a'(Q48ug") - a(Q1 S0 00) a1 Qs Suygl™) - Q4 Suy sl ¥,
Qe Su f) 0" QS0 fV) - (Q1Su SI77) . (Q Sy SN NE)

So now we just repeat the proof of Theorem 1 with (2.10) replaced by (2.43)
above.
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2.4. THE LIMIT NOISE

A natural question to ask is whether or not there exists an inner product
<€ -, - and an operator € > 1 on the space of test functions (vompletion of
K"} such that

Qf -1
n>>, (flh): = €< §, h>. (2.44)

(flh)l —<<f)

That is to say, can we recombine the pair of quantum Brownian motions to form a
sigle one by reversing the usual decomposition method? This would be desirable
as we could then consider the noise as being essentially Q-quantum Brownian
motion on T¢(L*(R*, K3)}, where K3 would be the < -, - >-completion of K'.
However, we have that

Kb = (fla)h —&(flB)2, < LiQ%h>= (flRh+E(flR)2.  (245)

The expressions (2.46), (2.47) below show that this recombination is not always
admissible.

LEMMA 1.
ag=cdd »
(FIR)r ~ E(flR)z — 21 f dee ™t 3 pPare SN (£, Q% Sehgy), (246)
eES, ae{0,1}¥ j=1

where g = i =1,...,0v: a; =0} and [Q7]* =1 (a; = 0) or = Q" {a; = 1).
Notice that < -, - > is (J-dependent whenever v > 1. Furthermore, one has

ag=even v

Jln+E(Jit)z = 2 j dgre=t S e S TL(5 QM Sihs,) . (247)

o€S, ac{o,1}r j=1

Proof. Let 27 = (fo;, S¢h;) and 2} = (fo;, Q"Sth;) then

v
(Aa)y = 27 [J(@} 429 = 27 ¥ =00 20
=t ae{0,1}¥
Similarly, we have that

»

E(flh)2 = 2_"H(m —zd) =27 Z (-1)*af" .. zlv.

i=i a€{0,1}¥

So for example,
og even  u

IRy +E(fRYe = 2 3 [ =,

a€{0,1}¥ j=1
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which correspands to the first identity (2.46} above. Identity (2.47) follows simi-
larly.

3. The Normally Ordered Form

We shall restrict our attention first of all to the Fock vacuum state ¢ = 1. The
generalization to @ > 1 being effected using the decomposition (1.14)-(1.16).
Writing the interaction Hy as

N(w}
H = ih Y S 3 D Fe, (3.1)
c=0,1 wEF j=1
where we set

wl _ pyw w,0 wt w,l __ ot w0 w
Dyt =Dy, Dit=-DF, KU =FT,ORT=F, 0 (32)

with IV — a, (g7) as in (1.13). From the Dyson series (1.10) we have

Niw:)  N(wn)

TARED SPED SHEED DI DU Db V- Neris

n=0 {01} wi,... 0 nEF 51=1 m=t1
tn—1
0 1.€1 1 oCaz
/dtlfdtg fdt o (Fay . o0 (Fpre) (33)

e{‘[(_l)[l wity .+ (—1)mwninl} .

Our objective is to study matrix elements of the type
(0, USLT,) (3.4)

in the limit A — 0, with special choices for the vectors ¥ and ¥.
In particular, we define vectors of the following type

‘IJ/\(g(l)a .. '1g(N);Ila .. JIN)
1 ) t {N)
af (3 .[Ilm du1Su, g )...a,,(xfwv dunSun g™\ ¥ (3.5)

for ¢, ..., gV} € XYHY and Iy,...,In C R. They are called collective num-
ber vectors. The limit of the operator Ut(;‘; shall be interpreted as a quantum
stochastic process and the convergence is weak in the sense of matrix elements in
such collective coherent states. Physically they are multiples of w-particle states
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extended over long time scales so as to pick up the desired algebraic behaviour of
the interaction under the weak coupling limit.
‘T'ypically, we shall examine matrix terms of the following type

(3D, Bty ), TR, f )
N(w1) N(wn)

= i{ Z Z z Z }Dwzsfi ‘D;f’nmfne‘i{(—i)"W1t1+---+(*1)‘"wntn}

=0 ec{0,1}" Wi nwnEFj1=1  jp=1
1/A2 1
®/\N+n+N'./' dulf d’U.N / dtl/dtz /dt
I /A2 In/A2 J
d f done (T, 0y (Su BVY . gy (Sy k) 3.6
Lot [, don(BanlSuh) . a(Suh®™)  (36)

x ag! (Sn65)) ... (Se050) al(Su A1) .ol (Se, SN WY

Again, for clarity, we shall investigate just one frequency w € F and for simplicity
put w = 0 and set gi¥; = g§z).

We now consider the problem of rearranging the expression a% (v1) ...a% (7,),
where v = (yq.1),- Y6, ,,)) with ;5 = St'g}’), into a normally ordered
form. We shall rewrlte the string of v - n operators @ {y(y 1)) .. a4 (y(n,)) @s
a1 (v()y | ghne ('y(““)) Here we have the relabelling gty py1,. .., iy = € and
Vs = .},(m u—l—g)

-F

Suppose J = {71,...,jk} is the set of the indices ¢,,. .., ¢, which equal 1. We
shall assume that j; < ... < jx. This means that in our string af (1) ... a5 (n)
there are a total of & - v creation operators. We take 4, < . < 4, to be the
indices in {p1,..., ftn,} which equal 1 and set I = {i;,..., ity }. The formula for
the normally ordered form of the string was derived explicitly by Accardi, Frigerio
and Lu [10] and we quote it here below (with the minor modification that there
are now v times as many operators in our present string):

vieA(n—k)u
atL (7(1)) L abny (,Y(?W)) — Z Z
m=0 1<r <. <rm<rk
ar
Z (Y(hl (ir1)>n[i1—1]~i—[ig—2]+...+[i,-1_1-(?"1—1)]

h] tl,...,irl -1
gIuih,}

S ()

hz:l,...,irz—l
X glire 1 =Cr )T iny 42— 42)= 1l 11 —(r2=1) =1 Natte)

pllih<i<in Y1)
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glu{hh“"hmfl} .
(7(}1,,,)’ 7(1»,“)) {3.7)

A=l yipgy, —1
% T]{“rm_1+l_(’"m—i+1)_(m_1)]+iirm_1+2*("m—z‘*’z)”(m_l)]‘i'-“‘f[irmfl‘“("m_l)_(m—l)]

% nNm(hm}q[irm+1 —(rm+)=ml4[irg 42— {rm+2)—ml+.. .+ i g —vk—m]

x I «e") 11 a((y™),
o€ f{ir) e } Se{l,.. nv}/({u{hy, .. hm})
where
Ni(h) = |{j:hl<j<im}/(IU{hlw'--ahl—l})l- (3'8)

The goal of the weak coupling lunit program is to sort oui from the above
expression those terms which shall have a bearing on the limiting time evolution
and the other terms which become negligible as A — 0. In all cases considered so
far, it is found that the important terms in (3.7) above are those for which the
scalar products appearing involve test functions whose times occur consecutively
in the sequence t; >t > ... > t,. In our case we also have to differentiate between
crossing and non-crossing terms.

Suppose that we have a block of v annihilation operators followed by a block of
v creation operators, say a,(7v;_1) - a}(y;) and so occurring consecutively in time.
Now we have the following expansion into normal order

an(yi1)-all{y;) = &€al(v;)- a.(v;_1) + Partial terms

v

+ 3 07 [T mien Y500 - (3.9}

gES, I=1

where the partial terms consist of normal ordered expressions involving m creation
operators followed by m annihilation operators withm =1,...,v~1. Asusual, £ =
n”. i we replace a,(v;_1) - al(7;) by (3.9) wherever it occurs in af (v1) ... a5 (v5)
and then insert into (3.6) we see that the partial terms always lead to crossings
amongst the scalar products in the final expression when the vacuum expectation
is taken.

The significant terms in (3.7) are those which come into normal ordered form by
reorganizing time consecutive blocks of operators and ignoring the partial terms;
we shall denote by I°(n) the contribution to (3.7) of exactly these terms: the
remainder we shall denote by I75(n). Therefore

e (7). a7 (ye) = I°(n) + 11(n) (3.10)
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with

ka(n—k) {ir, e n({0JUN) =6 v
Ie(n) = Z Z: H { Z pPare H('T(rh—l,ag}s'T(rh,f))}
m=0 1<r <. <rm<k h=1 €S, =1
o ] eliwtt w20 ALty bbbt 21~ Cnga 1)
h=1

I al(sa) I1 algg).  (3.11)

a€J{{iry Thzs Bl /TUldr, —115L,)

We are now considering the interaction H; = (D ® al(g) — h.c.). We shall
write Dy := D, Dy == —DT. Qur objective is to study the limit of the regularized
wave operator which we define to be

in--1

Z/du/dtg f n Y. De...D,®In), (3.12)

n=0 4 ec{0,1}n

that is, we exclude the negligible terms. From our long experience [1,3,4,8,10]
we can now readily compute the limit of arbitrary matrix elements for collective
number operators of U/ / /\2 We then have the following theorem.

THEOREM 3. For NNN' e N, g, fi,.. o fwo Sl fan € K, L, Je CR forj =
S Nandk=1,..., Nt >0, v,v e Hs, D e B(Hs), the limit

;i_%@@w,\(fl, D, I, T U e Jl,...,JN,)> (3.13)

exrists and equals

kA(n—k) {Jrﬁ};;n+1n({0} {J11 1Jr]’+®
=0 15]1 5k S0 1€ < lrm sk
[t ! !
H éz,s::qﬂ(-?ﬁ"ﬁ'a) Z Z
@0 1R SNV 1KUY e Un—k—ra SV

dtl...df‘ .dt;

fry v g -

[ a,
12275 >tj-rl> Sl S>>0

n—k—m

{lglg)™}™ HE””N) (Fel@dxn, (t) T €%Y0if) )x0,, (ts,)

r=1 g=1

(4, Dy - - Dy 0)(2(2), @(y)) - (3.14)
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Here we have the convention that a hat un a variable indicates that it is to be
omitted and the primes on the summation indicate that the indices summed over
must be distinct and furthermore we adopt the notations

(g19)” f dte™" 3 pPere H<ga,,stgj>, (3.15)

v 8y
(@ N) = {1 b adict] 1 (3.16)
and
P(z) = II Allx1, ® fa)®, (3.17a)
a€{L,... N}/ {zp} 5T
¥(y) = II Alxs, & 150, (3.17b)

ﬁe{la‘--!N'}/{yQ}g;; -

the order of multiplication in (3.17a}, (3.17b} being the natural one. The limiting
expression {3.14}) is then identified with

Nl’
<u® H Atlxn, ® f2)%, Utv@}I At (xu, ®fﬁ)@> (3.18)
=1 1

where U, is a unitary operator process on the T'e(Z2(R*, K)) which satisfies the
quantum stochastic differential equation

aU, = {D@dBY(g,ty DledB(g,t) - (glg) DD @ 43U, . (3.19)

With the supplementary condition Uy = 1, the solution to (3.19) is uniquely deter-
mined. The proof of this theorem follows so closely arguments of [10} that we omit
it.

4. Conclusions

The generalization to several frequencies, including degeneracies, is now easy. The
essential ground work was done in [4] and now, even though the interaction is
multi-linear, everything follows as before because we have the correct description
of the noise space at our disposal. Taking the interaction (1.22) for H;, we have
that the necessary noise space  is given by

= @ { & re®*, 1)}, (4.1)

weF  j=1,2
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where KY¥, for fixed w and j = 1,2, are the pair of Hilbert spaces introduced
in Subsection 2.3. Now we make the w-dependence explicit however. The inner
products {-{-); defined by (2.36) —(2.37) will be now denoted as follows

(f|h)‘5+ = /‘dteuwtz paraH<foj’Q +1St > (4.2)
aES,

Slhys_ = f dremiet 37 preco H n<f£,], @ Lo, ). (4.3)
€S,

We also introduce the following notations

(Sl = [ dre Paf“f[(fa,,@’—;ismj), (4.4
UES., j=1
(Flh)g = ] diet Y npwﬂn@,, Shi). (@)

ocES,

The quantum stochastic differential equation on the noise space Hgs @ H satisfied
by the regularization of the wave operator in the weak coupling limit is then
N(w) T
e = {3 S0y edBygr 0 - DY @dBy (g 0] - Y @ dt} Ui, (4.6)
weF =1
where Y is the operator on the system space Hg given by

N(w)
= 3 3 [(e¥lewys; 0y oY + (alenya- D5 DY) - (4.7)

weF k=1
Que readily notes the similarity of these equations to those of (1.36) and {1.37).
The difference now is that the noise terms By (g, t) are those corresponding to the

definitions (2.30) —(2.33. To be precise, we shall give below the quantum [to table
for the various integrators arising: (for w,w’ € F)

dBE(f,)dBG (1) = buwr(fil)g b dBEH(S,0)dBY (k1) = b, (WL f)5 _dt
dBg(f,t)dB% (h,t) = 0 dBSN(f,t)dBg (h,t) = 0.
(4.8)
Now the wave operator is not a semigroup but rather is a unitary cocycle with
respect to the free evolution. Setting X; = Ut XUy, where X is a bounded observ-
able of the system only; we are interested in computing dX,/dt at t = 0:

dX; = (AU XU, + U X (dU,) + (dU) T X (dUy) (4.9)
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Now substituting in for dU; with the quantum stochastic differential equation (4.6)
and using the Ito table (4.8) we see that dX, equals

uf| - xy —vtx + (4.10)
N{w)
23 3 {DYX Dy Re(gt1g?)s + DX DfRe(g2195)5. Y] ® dt U,
wEF j k=1

N(w)
+¥ S ul[(xDy - DyX) © dBY (g7, 1) + (DY'X - X DY) & dBg gy, 0)|U,
wel j=1

As we are only interested in the derivative at time ¢t = 0, we conclude

dX

Lo(X) = Tif!ho = -XY -vix (4.11)
+23 Z { Dy X DY Re(g¢108)4- + D X DiRe (g7199)5
wEF 1,k=1

this is the Langevin equation in the interaction picture. To obtain the master
equation for the reduced system density matrix s; we use the adjoint relation

tr@X‘ sdﬁ* _, = wsLo(X) = wLy(s)X, (4.12)
however, by inspection, the relation
dSt «
EI\&:O = Lols) (4.13)

corresponds exactly with master equation (1.34) of Louisell [2].
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