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PROBLEM DEPARTMENT

ASHLEY AHLIN AND HAROLD REITER∗

This department welcomes problems believed to be new and at a level appropriate for the readers

of this journal. Old problems displaying novel and elegant methods of solution are also invited.

Proposals should be accompanied by solutions if available and by any information that will assist

the editor. An asterisk (*) preceding a problem number indicates that the proposer did not submit a

solution.

All correspondence should be addressed to Harold Reiter, Department of Mathematics, Univer-

sity of North Carolina Charlotte, 9201 University City Boulevard, Charlotte, NC 28223-0001 or sent

by email to hbreiter@email.uncc.edu. Electronic submissions using LATEX are encouraged. Other

electronic submissions are also encouraged. Please submit each proposal and solution preferably

typed or clearly written on a separate sheet (one side only) properly identified with name, affilia-

tion, and address. Solutions to problems in this issue should be mailed to arrive by March 1, 2008.

Solutions identified as by students are given preference.

Problems for Solution.

1184. Arthur L. Holshouser, Charlotte, NC and Benjamin G. Klein, Davidson
College, Davidson, NC

Suppose that (S,�1) is a group with identity e1. For s, arbitrary but fixed in S,
define a binary operator on S by a�2 b = a�1 s

−1�1 b where a and b are elements of
S and, for x in S, x−1 is the inverse of x in the group (S,�1). (a) Show that (S,�2)
is a group and that (S,�2) is isomorphic to the group (S,�1). (b) Express a�1 b in
terms of operations in the group (S,�2).

1185. Proposed by Matthew McMullen, Otterbein College.

Find uncountably many functions, fr(x), that are positive and continuous on
[1,∞) and that satisfy

1 = fr(1) =
∫ ∞

1

fr(x) dx.

(Note that g(x) := 1/x2 and h(x) := e−(x−1) are two such functions.)

1186. Proposed by H. A. ShahAli, Tehran, IRAN

Let a1, ..., an be n ≥ 3 positive reals. Prove that 1 <
n∑

i=1

ai

ai + bi
< n − 1 for all

permutations (b1, ..., bn) of (a1, ..., an), and that 1 and n− 1 are the best possible.

1187. Proposed by Brian Bradie, Christopher Newport University

Evaluate ∫ 1

0

ln(1 + x)
x

dx.

1188. Proposed by Javier Gomez-Calderon and David Wells, Penn State Univer-
sity at New Kensington

Find all real polynomials P having the property that P (x− 1)P (x) = P (x2) for
all x.

∗University of North Carolina Charlotte
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1189. Proposed by Peter A. Lindstrom, Batavia, NY

If Fn denotes the nth Fibonacci number, show that F4n+2 − (2n+ 1) is divisible
by 5.

1190. Proposed by Tom Moore, Bridgewater State College, Bridgewater, MA

Prove that every even perfect number is both a sum and a difference of two
distinct deficient numbers.

1191. Proposed by Fred Weber, Lyndhurst, OH

For integers m ≥ 2 and d ≥ 0, let φ(d,m) be the number of ordered pairs < a, b >
of residues modulo m for which b = a+ d and both a and b are relatively prime to m.
Find a formula for φ(d,m).

1192. Proposed by Scott D. Kominers, student, Harvard University, Cambridge,
MA

For which positive integers n is it true that for all partitions P of n into more than
bn

2 c parts, there is an undirected graph G with vertex set V (G) such that deg(V (G)) =
P?

1193. Proposed by Arthur L. Holshouser, Charlotte, NC

Suppose f is a reasonably well-behaved real function f (x) that satisfies for all
real numbers a, b the condition

f (a+ b) =
f (a) + f (b)

1− f (a) f (b)
.

Prove that f (x) = tan (mx) where m is any fixed real number.

1194. Proposed by Herman J. Servatius, Worcester Polytechnic Institute, Worces-
ter, MA

Given seven points {A, . . . G} in the plane such that A, B, C, and D are colinear,
AB = CD, AB ⊥ BE, CD ⊥ DF , AE ⊥ AG, and CF ⊥ CG.

1. Prove that if the four colinear points occur in the order (A,B,C,D) then
4ABE ∼ 4CDF .

2. For what other orderings of the four points does that conclusion hold?

1195. Proposed by Mike Pinter, Belmont University, Nashville, TN

Consider the following alphametic: M C C A I N +O B AM A = D E C I D E
As we cast our vote, we want to maximize our decision. Find the maximum value

of DECIDE for the alphametic.

Solutions. We would like to make the following corrections with apologies. In
the Spring 2008 issue, we failed to give credit to

1171. Proposed by S.C. Locke, Florida Atlantic University, Boca Raton, FL.

For any integer q, q > 2, let k (q) denote the smallest positive integer m such that
there is a monic polynomial p (n) with integer coefficients and which is divisible by
q for every integer n. For example, 24 | n3

(
n2 − 1

)
for every integer n and, hence,

k (24) 6 5. Determine, with proof, the value of k (q) for each integer q, q > 2.
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Solution by Fred Richman, Florida Atlantic University, Boca Raton, FL; and
the Proposer.

We show that k (q) is the least integer m such that q | m!. Suppose that q | m! .

Then, let p (n) =
∏m−1

k=0 (n− k) = m!
(
n

m

)
= (−1)m

(
−n+m

m

)
. Note that for n > 0,

m!
(
n

m

)
is an integer, and for n < 0,

(
−n+m

m

)
is an integer. Hence, k (q) 6 m.

We need to prove that no monic polynomial of smaller degree will suffice. Consider
the difference operator ∆, which maps p (x) to p (x+ 1) − p (x), for any polynomial
p (x). Note that deg (∆p) < deg (p). Also, if q | p (n), for every integer n, then
q | ∆p (n) and, if p (n) =

∑m
t=0 atn

t, then ∆p (n) =
∑m

t=0 at∆nt = mamn
m−1 +∑m−2

t=0 btn
t, for suitable coefficients, bt.

Now, suppose that p (n) is a monic polynomial of degreem with integer coefficients
such that q | p (n) for every integer n. Then, ∆mp (n) = m! and q | m! .

Also solved by Paul S. Bruckman, Sointula, BC.

1172. Proposed by Ovidiu Furdui, University of Toledo, Toledo, OH.

Let a, b, c, d ≥ 1 be natural numbers and let S =
∞∑

m=1

1
(am+b)(cm+d) . Find the sum

S(a, b, c, d) =
∞∑

n=1

(−1)n

(
S −

n∑
m=1

1
(am+ b)(cm+ d)

)
.

Solution by Hongwei Chen, Christopher Newport University, Newport News,
VA

First note that
S = − 1

(2a+b)(2c+d)
− 1

(3a+b)(3c+d)
− 1

(4a+b)(4c+d)
− · · ·

+ 1
(3a+b)(3c+d)

+ 1
(4a+b)(4c+d)

+ 1
(5a+b)(5c+d)

+ · · ·
− 1

(4a+b)(4c+d)
− 1

(5a+b)(5c+d)
− 1

(6a+b)(6c+d
− · · ·

+ 1
(5a+b)(5c+d)

+ 1
(5a+b)(5c+d)

+ 1
(7a+b)(7c+d)

+ · · ·

Thus,

S(a, b, c, d) = −
∞∑

n=1

1
(2an+ b)(2cn+ d)

.

We distinct two cases. First, if ad − bc = 0, then there exists a nonzero rational
constant k such that c = ka, d = kb and so

S(a, b, ka, kb) = − 1
k

∞∑
n=1

1
(2an+ b)2

= − 1
k

(
1

4a2
ψ′(b/2a)− 1

b2

)
,

where ψ(x) is the Psi function, defined by

ψ(x) =
d

dx
ln Γ(x).

In particular, we have

S(1, 1, 1, 1) = 1− π2

8
, S(2, 1, 2, 1) = 1− π2

16
− 1

2
G,
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Where G is the Catalan constant.
Next, if ad− bc 6= 0, using partial fractions yields

S(a, b, c, d) = − 1
2(ad− bc)

∞∑
n=1

(
2a

2an+ b
− 2c

2cn+ d

)
.

Thus,

S(a, b, c, d) = − 1
2(ad− bc)

(ψ(c/2d)− ψ(b/2a)) +
1
bd
.

For some special values of a, b, c, d, we are able to find close form expressions in terms
of well-known constants. For example, since

ψ(x) = ψ(1− t)− π cot(πx),

we have

S(a, b, a, 2a− b) = − π

4a(a− b)
cot(πb/2a) +

1
b(2a− b)

.

In particular,

S(2, 1, 2, 3) =
1
3
− π

8
, S(3, 2, 3, 4) =

1
8
−
√

3π
36

.

Also solved by Brian Bradie, Christopher Newport University, Newport News, VA; Paul S.

Bruckman, Sointula, BC; and the Proposer.

1173. Proposed by Ayoub B. Ayoub, Pennsylvania State University, Abington
College, Abington PA

ABC is a triangle. A perpendicular BD to BA is constructed such that BD =
r · BA. Similarly, a perpendicular CE to CA is constructed such that CE = r · AC.
Find the locus of midpoints of DE for all values of the parameter r.

Solution by
Also solved by Mark Evans, Louisville, KY; Robert Gebhardt, Hopatcong, NJ; Sum Peo-

ple, Mountain Lakes High School, Mountain Lakes, NJ; Ricardo Barroso Campos, Universidad

de Sevilla, Spain; and the Proposer.

1174. Proposed by Tom Moore, Bridgewater State College, Bridgewater, MA

The integer 99 has the property that 9 · 9 + (9 + 9) = 99. Find all the positive
integers N (base 10) with the property that N equals the sum of the product of its
digits and the sum of its digits.

Solution by Frank Battles, Massachusetts Maritime Academy, Buzzards Bay,
MA.

With ai representing the ith digit of N, (an 6= 0), we have

10nan + 10n−1an−1 + · · · 10a1 + a0 = an · an−1 · · · a1 · a0 + an + an−1 + · · ·+ a1 + a0,

which we may write as

(10n − 1)an + (10n−1 − 1)an−1 + · · ·+ 9a1 = an · an−1 · · · a1 · a0.
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For n = 1, we have 9a1 = a1 · a0 with solution a0 = 9 and a1 arbitrary. For solutions
we have 19, 29, 39, 49, 59, 69, 79, 89, and 99.

For n > 1, we have

(10n − 1)an + (10n−1 − 1)an−1 + · · ·+ 9a1 ≤ an · 9n

or

(10n − 9n − 1)an + (10n−1 − 1)an−1 + · · ·+ 9a1 ≤ 0.

Since all terms after the first are non-negative, we must have

10n − 9n − 1 < 0

but this is not true for n > 1. Thus there are no more solutions.
Also solved by Paul S. Bruckman, Sointula, BC; Cal Poly Pomona Problem Solving

Group, Pomona, CA; Thomas Dence, Ashland University, Ashland, OH; Charles R. Dimin-

nie, Angelo State University, San Angelo, TX; Mark Evans, Louisville, KY; Robert Gebhardt,

Hopatcong, NJ; Arielle Leitner, student, California State University, Chico; James A. Sellers,

Pennsylvania State University, University Park, PA; and the Proposer.

1175. Proposed by Zokhrab Mustafaev, Victor Dontsov, Evgeni Maevski, Univer-
sity of Houston-Clear Lake, Houston, TX.

It is known that numbers 14529, 15197, 20541, 38911, 59619 are multiples of 167.
Without actually calculating, prove that the determinant of the 5×5 matrix A is also

a multiple of 167, where A =


1 4 5 2 9
1 5 1 9 7
2 0 5 4 1
3 8 9 1 1
5 9 6 1 9


Solution by Rebecca von Funk, student, Elizabethtown College, Elizabethtown,

PA.
Let

a1 =


1
1
2
3
5

 , a2 =


4
5
0
8
9

 , a3 =


5
1
5
9
6

 , a4 =


2
9
4
1
1

 , a5 =


9
7
1
1
9


be the column vectors ofA and letB =

[
a1 a2 a3 a4

(
104a1 + 103a2 + 102a3 + 10a4 + a5

)]
.

Clearly, detA = detB. Then

B =


1 4 5 2 14529
1 5 1 9 15197
2 0 5 4 20541
3 8 9 1 38911
5 9 6 1 59619

 = CD, where C =


1 4 5 2 87
1 5 1 9 91
2 0 5 4 123
3 8 9 1 233
5 9 6 1 357

 and D =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 167

 ,

and detA = (detC)(detD) = (detC)(167). Since detC is an integer, detA is an
integer multiple of 167.
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Solution by Paul M. Kominers and Scott D. Kominers, students, Mas-
sachusetts Institute of Technology and Harvard University, Cambridge MA.

We prove the following generalization of the problem:
Proposition: 1. Let {ai}n2

i=1 and {bi}n
i=1 be nonnegative integers such that

p |
n∑

i=1

ai+kn · bi

for some fixed positive integer p and for each 0 ≤ k < n. Then,

p | bn · det

 a1 · · · an

...
...

a1+n2−n · · · an2

 .

Proof. It is well-known that detM is invariant under the operation of adding a
multiple of a column of a matrix M to another column of M . Likewise, it is well-
known that if M ′ is obtained from M by multiplying a column of M by a scalar m
then detM ′ = m · detM . Therefore, we have

bn det

 a1 · · · an

...
...

a1+n2−n · · · an2

 = det

 a1 · · ·
∑n

i=1 ai · bi
...

...
a1+n2−n · · ·

∑n
i=1 ai+n2−n · bi

 .

Now, from Laplace’s formula for the determinant, we see that

det

 a1 · · ·
∑n

i=1 ai · bi
...

...
a1+n2−n · · ·

∑n
i=1 ai+n2−n · bi

 =
n−1∑
k=0

(
n∑

i=1

ai+kn · bi

)
· Ck+1,n,

where Ck+1,n is the (k + 1, n) cofactor of the matrix a1 · · ·
∑n

i=1 ai · bi
...

...
a1+n2−n · · ·

∑n
i=1 ai+n2−n · bi

 .

It then immediately follows that

p | det

 a1 · · ·
∑n

i=1 ai · bi
...

...
a1+n2−n · · ·

∑n
i=1 ai+n2−n · bi

 ,

from which the Proposition follows.
The problem follows from the Proposition upon taking bi = 10n−i and

{ai}n2

i=1 = {1, 4, 5, 2, 9, 1, 5, 1, 9, 7, 2, 0, 5, 4, 1, 3, 8, 9, 1, 1, 5, 9, 6, 1, 9}

with n = 5 and p = 167.
Also solved by Paul S. Bruckman, Sointula, BC; Jos Hernndez Santiago, student, UTM,

Oaxaca, Mxico; and the Proposer.
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1176. Proposed by Jim Jamison, the University of Memphis, Memphis, TN.

Let {a1, a2, a3, . . . } be any sequence of real (or complex) numbers. Define

ρn :=
a1 + · · ·+ an

an+1 + · · ·+ a2n
.

Observe that if we consider the sequence of odd integers {1, 3, 5, . . . } then ρ1 = ρ2 =
ρ3 = · · · = 1

3 . Define ρ to be the constant ratio, i.e. if ρ1 = ρ2 = ρ3 = · · · = constant,
then ρ1 = ρ2 = · · · = ρ. Hence we ask for each nonzero ρ, does there exist a sequence
with the property

ρ1 = ρ2 = ρ3 = · · · = ρ? (1)

Solution by Scott D. Kominers and Paul M. Kominers, students Harvard
University and Massachusetts Institute of Technology, Cambridge MA.

We show that for any nonzero, real ρ there is a sequence of real numbers {ak}∞k=1

satisfying the condition

ρ =
a1 + · · ·+ an

an+1 + · · ·+ a2n
(2)

for any n > 0.
Fix R 3 ρ 6= 0 and let

a1 = ρ,

a2 = 1.

We will now construct the sequence {ak}∞k=1 inductively. Suppose that we have a
sequence {ak}2k̂

k=1 satisfying (2) for any 0 < n ≤ k̂. Now, take

a2k̂+1 = 0,

a2k̂+2 =
(a1 + · · ·+ ak̂+1)− ρ(ak̂+2 + · · ·+ a2k̂+1)

ρ
.

Since R 3 ρ 6= 0 and R is a field (and is therefore closed under addition, multiplication,
subtraction, and division by nonzero elements), we see that a2k̂+2 ∈ R. Furthermore,
by construction, we have

a1 + · · ·+ ak̂+1

ak̂+2 + · · ·+ a2k̂+2

=
a1 + · · ·+ ak̂+1

ak̂+2 + · · ·+ a2k̂+1 +
(a1+···+ak̂+1)−ρ(ak̂+2+···+a2k̂+1)

ρ

= ρ.

Thus, we have obtained a sequence {ak}2(k̂+1)
k=1 with the desired properties; this com-

pletes our induction.
Remark. Our construction uses nothing special about R other than the fact that

R is a field. Thus, the result holds for any field K: for any nonzero ρ ∈ K there is a
sequence {ak}∞k=1 (ak ∈ K∀k) satisfying the condition (2) for any n > 0.

Also solved by Paul S. Bruckman, Sointula, BC; S.C. Locke, Florida Atlantic University,

Boca Raton, FL; and the Proposer.
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1177. Proposed by Arthur Holshouser, Charlotte, NC.

Suppose n ≥ 4 lines in the plane intersect each other in
(
n
2

)
= n(n−1)

2 distinct
points. A quadrilateral set is a set S having the following properties.

1. S has 4 points as members, and
2. These 4 points can be labeled {A,B,C,D} in such a way that A,B are

colinear, B,C are colinear, C,D are colinear, D,A are colinear, A,C are not
colinear and B,D are not colinear.

How many quadrilateral sets are there?
Solution by Mark Evans, Louisville, KY.
Since the lines intersect in

(
n
2

)
distinct points, only two lines intersect at any point

and no two lines are parallel. Consider for the moment the case n = 4 as shown below.
We have six points of intersection, four of which form the quadrilateral and two that
are ‘excluded’. By property 2 above, no three points on the quadrilateral set can be on
the same line. To achieve this, the two excluded points are not colinear. This means
that picking one point to be excluded determines the second point to be excluded.
Since there are three possible pairs of excluded points, the number of quadrilaterals
in the case n = 4 is three. To generalize, since exactly four lines determines three
quadrilaterals, we can select

(
n
4

)
unique sets of four lines, so the total number of

quadrilaterals is 3
(
n
4

)
.
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Also solved by the Proposer.

1178. Proposed by Paolo Perfetti, Dipartimento di matematica, Università degli
Studi di Roma “Tor Vergata”, Rome, Italy

Let [a] the integer part of a and {a} = a− [a]. Evaluate

∫ 1

0

∫ 1

0

{
x
y

}
[

x
y

]
+ 1

dxdy −
∫ 1

x=0

∫ x

y=0

ln
[
x

y

]
dydx.

Solution by Brian Bradie, Christopher Newport University, Newport News, VA.
We start with the second integral. Let n be a whole number. If x

n+1 < y ≤ x
n ,
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then [x/y] = n and∫ 1

x=0

∫ x

y=0

ln
[
x

y

]
dy dx =

∞∑
n=1

∫ 1

x=0

∫ x/n

y=x/(n+1)

ln
[
x

y

]
dy dx

=
∞∑

n=1

lnn
∫ 1

0

∫ x/n

y=x/(n+1)

dy dx

=
1
2

∞∑
n=1

(
1
n
− 1
n+ 1

)
lnn. (1)

For the first integral, we write

∫ 1

0

∫ 1

0

{
x
y

}
[

x
y

]
+ 1

dx dy =
∫ 1

0

∫ y=1

y=x

{
x
y

}
[

x
y

]
+ 1

dy dx+
∫ 1

0

∫ y=x

y=0

{
x
y

}
[

x
y

]
+ 1

dy dx.

When y > x, {x/y} = x/y, [x/y] = 0 and

∫ 1

0

∫ y=1

y=x

{
x
y

}
[

x
y

]
+ 1

dy dx =
∫ 1

0

∫ 1

x

x

y
dy dx

= −
∫ 1

0

x lnx dx

=
1
4
. (2)

When y < x, we have

∫ 1

0

∫ y=x

y=0

{
x
y

}
[

x
y

]
+ 1

dy dx =
∞∑

n=1

∫ 1

0

∫ x/n

y=x/(n+1)

x
y − n

n+ 1
dy dx

=
∞∑

n=1

1
n+ 1

∫ 1

0

∫ x/n

y=x/(n+1)

x

y
dy dx−

∞∑
n=1

n

n+ 1

(
1
n
− 1
n+ 1

)
1
2

=
∞∑

n=1

1
n+ 1

ln
n+ 1
n

∫ 1

0

x dx− 1
2

∞∑
n=1

1
(n+ 1)2

=
1
2

∞∑
n=1

1
n+ 1

ln
n+ 1
n

− 1
2

(
π2

6
− 1
)

(3)

Combining (1), (2) and (3), we find

∫ 1

0

∫ 1

0

{
x
y

}
[

x
y

]
+ 1

dx dy −
∫ 1

x=0

∫ x

y=0

ln
[
x

y

]
dy dx

=
3
4
− π2

12
+

1
2

∞∑
n=1

1
n+ 1

ln
n+ 1
n

− 1
2

∞∑
n=1

(
1
n
− 1
n+ 1

)
lnn

=
3
4
− π2

12
+

1
2

∞∑
n=1

(
1

n+ 1
ln(n+ 1)− 1

n
lnn

)
.
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The remaining summation is a telescoping series whose sum is easily found to be zero.
Thus

∫ 1

0

∫ 1

0

{
x
y

}
[

x
y

]
+ 1

dx dy −
∫ 1

x=0

∫ x

y=0

ln
[
x

y

]
dy dx =

3
4
− π2

12
.

Also solved by Paul S. Bruckman, Sointula, BC; and the Proposer.

1179. Proposed by Cecil Rousseau, University of Memphis

In a Monthly problem posed by Freeman J. Dyson1 , the reader was asked to
prove that

N∑
m=1

am

2m+ 1
= 1− 1

(2N + 1)2
,

given N numbers am satisfying the N equations

N∑
m=1

am

m+ n
=

4
2n+ 1

, n = 1, 2, . . . , N.

Now the reader is asked to determine a1, a2, . . . , aN given the same system.
Solution by Hongwei Chen, Christopher Newport University, Newport News,

VA.
Taking N = 1, 2, 3 in

N∑
m=1

am

2m+ 1
= 1− 1

(2N + 1)2

respectively yields

a1

3
= 1− 1

32

a1

3
+
a2

5
= 1− 1

52

a1

3
+
a2

5
+
a3

7
= 1− 1

72
.

Solving this system gives

a1 = 3
(

1− 1
32

)
, a2 = 5

(
1
32
− 1

52

)
, a3 = 7

(
1
52
− 1

72

)
.

Based on those facts, in general, we guess that

an = (2n+ 1)
(

1
(2n− 1)2

− 1
(2n+ 1)2

)
, n = 1, 2, . . . , N. (1)

1F. J. Dyson, Problem 4389, Amer. Math. Monthly 57 (1950), pp. 188–189. Solutions by E.
Trost and G. Szegö, Amer. Math. Monthly 58 (1951), pp. 640–641.
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Now we confirm (1) by using the mathematical induction. We see that (1) is valid
for N = 1 already. Assume that (1) is valid for all 1 ≤ n ≤ N . Since

N+1∑
m=1

am

2m+ 1
= 1− 1

(2N + 3)2
,

using the induction hypothesis and telescoping sums, we have

aN+1

2N + 1
= 1− 1

(2N + 3)2
−

N∑
m=1

am

2m+ 1

= 1− 1
(2N + 3)2

−
N∑

m=1

(
1

(2m− 1)2
− 1

(2m+ 1)2

)
= 1− 1

(2N + 3)2
−
(

1− 1
(2N + 1)2

)
=
(

1
(2N + 1)2

− 1
(2N + 3)2

)
.

This proves (1) for n = N + 1. Thus, by the principle of the mathematical induction,
we have found that for 1 ≤ n ≤ N , an is given by (1).

Also solved by and the Proposer.

1180. Proposed by José Luis Dı́az-Barrero, Universidad Politécnica de Cataluña,
Barcelona, Spain

Let x be a positive real number. Prove that

[x]
3x+ {x}

+
{x}

3x+ [x]
>

4
15
,

where [x] and {x} represents the integer and fractional parts of x respectively.
Solution by Victoria Gan, student, Perry Hall High School, Baltimore, MD.
Let x be a positive real number and write x = [x] + {x}. Then the inequality

is equivalent to the inequality

(1)
[x]

3x+ (x− [x])
+

x− [x]
3x+ [x]

>
4
15
,

or

(2)
4x2 − 2x[x] + 2[x]2

12x2 + x[x]− [x]2
>

4
15
.

Since 12x2 + x[x] − [x]2 ≥ 11x2 + x[x] > 0 for all positive real numbers x, (2) is
equivalent to

6x2 − 17x[x] + 17[x]2 > 0.

By completing the square, it is clear that

6x2 − 17x[x] + 17[x]2 = 6{(x− 17
12 [x])2 + 17

6 (1− 17
24 )[x]2} = 6(x− 17

12 [x])2 + 119
24 [x]2 > 0

for all positive x. Thus, the inequality is true if x > 0.
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Also solved by Brian Bradie, Christopher Newport University, Newport News, VA; Paul S.

Bruckman, Sointula, BC; Cal Poly Pomona Problem Solving Group, Pomona, CA; Ricardo

Barroso Campos, Universidad de Sevilla, Spain; Kenneth B Davenport, Dallas, PA; Thomas

Dence, Ashland University, Ashland, OH; Mark Evans, Louisville, KY; FAU Problem Solving

Group Florida Atlantic University, Boca Raton, FL; Miguel Lerma, Northwestern University

Problem Solving Group, Evanston, IL; Yoshinobu Murayoshi, Naha City, Okinawa, Japan; Paolo

Perfetti, Dipartimento di Matematica, Università degli Studi di Roma “Tor Vergata”, Rome, Italy;

James A. Sellers, Pennsylvania State University, University Park, PA; Sum People, Mountain

Lakes High School, Mountain Lakes, NJ; and the Proposer.

1181. Proposed by Brian Bradie, Christopher Newport University, Newport News,
VA.

In The Problem Department of the Fall 2007 issue of this journal, readers were
challenged to find a closed form expression for the trigonometric sum

cos2n 1◦ + cos2n 2◦ + · · ·+ cos2n 89◦,

where n is a positive integer. Here, the challenge is to find a closed form expression
for the trigonometric sum

cos2n+1 1◦ + cos2n+1 2◦ + · · ·+ cos2n+1 89◦,

for n ≥ 0.
Solution by Paolo Perfetti, Dipartimento di Matematica, Università degli Studi

di Roma “Tor Vergata”, Rome, Italy

Answer:
1

22n+1

n∑
k=0

(
2n+ 1
k

)(
(−1)n−k cot

2n+ 1− 2k
2

− 1
)

Proof We have (the angles in the trigonometric functions are expressed by degrees)

89∑
p=1

cos2n+1 p =
89∑

p=1

(eip + e−ip)2n+1

22n+1
=

89∑
p=1

1
22n+1

2n+1∑
k=0

(
2n+ 1
k

)
eip(2n+1−2k)

89∑
p=1

eip(2n+1−2k) =
1− ei90(2n+1−2k)

1− ei(2n+1−2k)
− 1 =

ei(2n+1−2k) − i(−1)n−k

1− ei(2n+1−2k)

Thus
89∑

p=1

cos2n+1 p

=
1

22n+1

n∑
k=0

(
2n+ 1
k

)(ei(2n+1−2k) − i(−1)n−k

1− ei(2n+1−2k)
− e−i(2n+1−2k) + i(−1)n−k

1− e−i(2n+1−2k)

)
=

1
22n+1

n∑
k=0

(
2n+ 1
k

)
2 cos(2n+ 1− 2k)− 2 + 2(−1)n−k sin(2n+ 1− 2k)

4 sin2 2n+1−2k
2

=
1

22n+1

n∑
k=0

(
2n+ 1
k

)(
(−1)n−k cot

2n+ 1− 2k
2

− 1
)

Also solved by Paul S. Bruckman, Sointula, BC; and the Proposer.
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1182. Proposed by Marcin Kuczma, University of Warsaw, Warsaw, Poland

Let a, b, c, d, e be decimal digits satisfying abc · a = bda and bda · a = cdde. What
is cdde · a? Editor’s note: this puzzle was sent to friends of the poser in December of
a certain year as a gift. This is the eighth of several such problems we plan for this
column.

Solution by Robert Gebhardt, Hopatcong, NJ.
“I have the solution. It is 2008.”
“Really, Holmes, you must have guessed it. It has been but ten minutes since you

were presented the problem.”
“Eight minutes, Watson, and surely you remember that I almost never guess.

Sometimes I do make suppositions which I am certain will prove to be correct.”
“But here there is so little information to go on. There are five letters whose

values are to be found, but only three equations relating them.”
“Two equations, Watson, and a formula for calculating the answer. But three

suppositions proved helpful here.”
“I would very much like to know what they are.”
“First, I assumed that the values of the five letters would be all different. In

little problems like this one, the likelihood of that being true is very high. Second,
I assumed that there would be only one answer to the problem, which is correct in
many such problems.”

“And the third, Holmes?”
“It is know that it was used as a numerical greeting in a December, so that it is

probably the number of the year that was about to begin. Because the problem is
likely to have been created rather recently, I expected the answer to be between 1990
and 2008, inclusive.”

“But then how did you solve it?”
“It is quite apparent that c would have to be either 1 or 2. If c is 2, then a

would necessarily be 1 and d would have to be 0. Then the first equation becomes
1b2 ·1 = b01 , or 100+10b+2 = 100b+1, which cannot be solved with a single integer
for b. Thus c cannot be 2, so it must be 1.

“You make it appear to be so simple.”
“ It is simple. If c is 1, then a must be 2. Again d must be 0. Then the first

equation is 2b1 · 2 = b02 or 400 + 20b + 2 = 100b + 2, so b is 5. Then the second
equation is 502 ·2 = 100e, or 1004 = 1000+e, so e is 4. Now the question is answered:
1004 · 2 = 2008.′′

“It is impressive, Holmes. All that in only eight minutes.”
“Five, actually. The other three minutes I spent confirming that there could be

no other answer.”
“If I may say so, Holmes, you have lost none of your skills even now, after so

many years.”
“I thank you for the compliment, Watson. An occasional problem like this helps

me keep my mind active, now that I am so very, very old.”
Also solved by Frank Battles, Massachusetts Maritime Academy, Buzzards Bay, MA; Brian

Bradie, Christopher Newport University, Newport News, VA; Paul S. Bruckman, Sointula, BC;

Cal Poly Pomona Problem Solving Group, Pomona, CA; Mark Evans, Louisville, KY; and

the Proposer.

1183. Proposed by Mohammad K. Azarian, University of Evansville
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Evaluate the indefinite integral∫ √
1− x2 − x

x3 − x2 − x+ 1−
√

1− x2 + x
√

1− x2
dx.

Solution by Dionne T. Bailey, Elsie M. Campbell, and Charles Diminnie,
Angelo State University, San Angelo, TX.

By observation, the numerator can be rewritten as follows√
1− x2 − x = (

√
1− x2 − 1) + (1− x),

and the denominator can be rewritten as

x3 − x2 − x+ 1−
√

1− x2 + x
√

1− x2 = x2(x− 1)− (x− 1) + (x− 1)
√

1− x2

= (x− 1)
√

1− x2(1−
√

1− x2).

Thus, using a trigonometric substitution,∫ √
1− x2 − x

x3 − x2 − x+ 1−
√

1− x2 + x
√

1− x2
dx

=
∫

(
√

1− x2 − 1) + (1− x)
(x− 1)

√
1− x2(1−

√
1− x2)

dx

= −
∫

1
(x− 1)

√
1− x2

dx−
∫

1√
1− x2(1−

√
1− x2)

dx

= −
∫

1
(x− 1)

√
1− x2

dx−
∫

1 +
√

1− x2

x2
√

1− x2
dx

= −
∫

1
(x− 1)

√
1− x2

dx−
∫

1
x2
√

1− x2
dx−

∫
1
x2
dx

=
√

1− x2

1− x
+
√

1− x2

x
+

1
x

+ C

=
√

1− x2 − x+ 1
x(1− x)

+ C.

Also solved by Frank Battles, Massachusetts Maritime Academy, Buzzards Bay, MA; Brian

Bradie, Christopher Newport University, Newport News, VA; Paul S. Bruckman, Sointula, BC;

Kenny Davenport, Dallas, PA; FAU Problem Solving Group Florida Atlantic University,

Boca Raton, FL; Robert Gebhardt, Hopatcong, NJ; Scott D. Kominers, student Harvard

University, Cambridge MA; Yoshinobu Murayoshi, Naha City, Okinawa, Japan; Paolo Perfetti,

Dipartimento di Matematica, Università degli Studi di Roma “Tor Vergata”, Rome, Italy; James

A. Sellers, Pennsylvania State University, University Park, PA; and the Proposer.


