
Discrete Applied Mathematics 137 (2004) 237–266
www.elsevier.com/locate/dam

On-line algorithms for the channel assignment
problem in cellular networks

Pilu Crescenzia ;1 , Giorgio Gambosib , Paolo Pennab
aDipartimento di Sistemi e Informatica, Universit�a di Firenze, via C. Lombroso 6/17,

I-50134 Firenze, Italy
bDipartimento di Matematica, Universit�a di Roma “Tor Vergata”, via della Ricerca Scienti-ca,

I-00133 Roma, Italy

Received 21 April 2001; received in revised form 18 July 2002; accepted 24 February 2003

Abstract

We consider the on-line channel assignment problem in the case of cellular networks and we
formalize this problem as an on-line load balancing problem for temporary tasks with restricted
assignment. For the latter problem, we provide a general solution (denoted as the cluster al-
gorithm) and we characterize its competitive ratio in terms of the combinatorial properties of
the graph representing the network. We then compare the cluster algorithm with the greedy one
when applied to the channel assignment problem: it turns out that the competitive ratio of the
cluster algorithm is strictly better than the competitive ratio of the greedy algorithm. The cluster
method is general enough to be applied to other on-line load balancing problems and, for some
topologies, it can be proved to be optimal.
? 2003 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the on-line channel assignment problem in the case of
cellular systems, which is de9ned as follows. A given set of mobile users has to be
assigned to a given set of available cells: The assignment of each user depends on the
topology of the network and on the position of the user. Each user can move itself from

E-mail addresses: piluc@dsi.uni9.it (P. Crescenzi), gambosi@mat.uniroma2.it (G. Gambosi),
penna@mat.uniroma2.it (P. Penna).

1 Research partially supported by Italian MURST project “Algoritmi per Grandi Insiemi di Dati: Scienza
ed Ingegneria”.

0166-218X/$ - see front matter ? 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0166-218X(03)00341-X

mailto:piluc@dsi.unifi.it
mailto:gambosi@mat.uniroma2.it
mailto:penna@mat.uniroma2.it

238 P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266

one position to another or it can “terminate” its request (thus disappearing from the
set of users). Additionally, users may require, for their requests, diCerent bandwidths
corresponding to diCerent types of services (such as video and/or audio applications
or 9le transfers). The number of users assigned to the same cell clearly aCects the
number of frequencies used by that cell in order to satisfy all the requests, since the
frequencies used by the cell must be at a minimum separation distance, usually greater
than two (see, for instance, [23,24]). For this reason, it is important to minimize the
maximum cell load (i.e., the maximum number of users assigned to the same cell)
among all the cells.
The oC-line version of this problem has been already considered in [19]: in that

paper, the topology of the cellular system has been exploited in order to provide a
characterization of the instances (i.e., set of users along with their positions) that admit
a solution, that is, an assignment to the cells that does not exceed the network capacity.
However, the proposed solution requires that several (potentially, all) users have to be
reassigned whenever a new one arrives. This is clearly infeasible from a practical
point of view. So, up to our knowledge, no eIcient on-line strategy to assign users to
the cells has been presented before. Moreover, only the “unweighted” restriction of the
problem is considered, i.e., the case in which each user can request only a globally 9xed
resource (bandwidth or frequency). The on-line frequency assignment problem 2 has
been the subject of several works (see for instance [9,12,16,20]). This problem consists
of assigning frequencies to users so that interference constraints are satis9ed (e.g., two
users within adjacent cells cannot use the same frequency). The goal is to minimize
the span, that is, the diCerence between the largest and the smallest frequencies used.
It is worth observing that the frequency assignment problem is only related in as far
as it is the problem to be solved after users have been assigned to cells.
In this paper, we 9rst observe (see Section 2) that the channel assignment problem

has a very natural formulation as an on-line load balancing problem in the case of
temporary tasks with restricted assignment and no preemption, that is:

• Tasks arrive one by one and their duration is unknown.
• Each task can be assigned to one processor among a subset depending on the type
of the task.

• Once a task has been assigned to a processor, it cannot be reassigned to another
one.

The problem asks to 9nd an assignment of the tasks to the processors which minimizes
the maximum processor load (that is, the maximum sum of the costs of all tasks
assigned to the same processor) among all processors. Observe that coping with mobile
“unpredictable” users is, indeed, one of the major motivations for studying on-line
load balancing. Moreover, the idea of balancing the load within a cellular network
in order to optimize the use of the available frequencies already appeared in [10].
Several variants of the above described on-line load balancing problem have already

2 This problem is sometimes referred to as the channel assignment problem in the literature. We instead
use the term “frequency assignment” to distinguish it from our problem.

P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266 239

Table 1
Competitiveness results for cellular networks

Greedy Our algorithm Lower bound

At least 5 4 3
(Theorem 4.3) (Theorem 4.2) (Theorem 4.4)

been studied in the literature [1,3–6,22,25] (see also [2] for a survey). For example,
an optimal algorithm for the more general case, in which the subset of processors a
task may be assigned to is the entire set of processors, has been proposed in [5]. This
algorithm is (2

√
n + 1)-competitive, where n is the number of processors, and it has

been proved that this performance is optimal up to a constant factor [3]: intuitively,
an on-line algorithm is r-competitive if, at any instant, its maximum processor load is
at most r times the optimal maximum processor load. Clearly, this algorithm can be
applied to our problem but we cannot hope to attain a better competitive ratio if we
do not exploit some information on the speci9c problem we are considering. After all,
a mobile user cannot be potentially assigned to any base station on the earth surface!
The main contribution of this paper (see Section 3) is to provide a general solution

to the on-line load-balancing problem which takes into account and exploits certain
properties of the constraints of the problem. In particular, we introduce a graph-based
model to formalize the problem and we describe an algorithm (denoted as the cluster
algorithm) whose competitiveness is characterized by some combinatorial properties
of the input graph. The main idea of our approach is to add further constraints to
the original problem and then apply a simple greedy technique to the resulting new
problem. A 9rst obvious advantage of our approach is that it maintains the simplicity
of the greedy algorithm. Moreover, the method results in a signi9cant reduction on
the communication among nodes of the network thus making the approach particularly
suitable in a distributed setting (such as the mobile one).
We apply the cluster method to the speci9c case of interest in the mobile context,

that is, the channel assignment problem in the case of cellular networks (see Section 4
and Table 1). In particular, we prove that our algorithm is 4-competitive both in the
case of arbitrary weighted requests and in the case of unitary weight requests, i.e., in
the case in which all the requests have bandwidth equal to 1. 3 We also show that the
simple greedy approach is at least 5-competitive (a performance strictly worse than
the cluster algorithm) and that no algorithm can be less than 3-competitive. Hence, the
cluster algorithm is not so far from being optimal. Both these latter results hold also
in the unitary weight case. The additional advantage of our algorithm, when applied
to cellular topologies, is that it reduces the communication among cells: indeed, we
will see that, once a user request arrives, it can be assigned to the “right” cell without
querying any cell about its current load.

3 The restriction to unitary weights is clearly representative of all the cases in which the weights have the
same value and this value is a constant independent of the instance.

240 P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266

We also apply the cluster algorithm to a simple one-dimensional topology and, once
again, we compare our approach with the greedy technique (see Section 5). This topol-
ogy is certainly a simpli9cation of what may happen in the reality (even though it has
been already considered in [18] for broadcasting problems): however, the problem is
still non-trivial. Moreover, it constitutes another example for which it can be proved
that the simple greedy algorithm is not optimal and that the cluster algorithm performs
better than the greedy one.
Finally, we mention that our approach may have several applications in satellite

cellular systems, where channel capacity among satellites becomes a crucial aspect,
since it takes into account the problem of handover due to satellites’ movement in low
Earth orbit constellations.

2. From channel assignment to load balancing

In the cellular network channel assignment problem, we are given a set of two-
dimensional circular cells (also called base stations) which overlap as shown in Fig.
1(a); actually, the simpler graphical representation shown in Fig. 1(b) will be used
throughout the paper. Observe that any point of the two-dimensional space belongs to
at most three cells: in the simpli9ed representation, a point p belongs to three cells if it
coincides with their common vertex, p belongs to two cells if it lies on their common
edge, and p belongs to one cell if it lies in its interior. Observe also that this setting is
a special case of the one in which the overlap between cells can be arbitrary (see e.g.
[19]). This special case has been studied in the case of frequency assignment problems
(see e.g. [9,12,16,20,23,24]). A communication request r is speci9ed by the point pr
of the two-dimensional space where the request arises and the bandwidth br required
by the request. Whenever a communication request r arises, it must be served by one
of the base stations that include pr . Clearly, if pr belongs to one cell only, then there
is no choice. But if pr belongs to the intersection of two or three cells, then r can be
served by any of the intersecting cells. Communication requests can move themselves
from one point to another: we simulate this phenomenon by assuming that, whenever a
request crosses the border of a cell, then it “dies” and a new request arises in the new
point with the same bandwidth of the original one. The channel assignment problem
then consists of serving all the arising requests while minimizing, at any instant, the
maximum cell load (i.e., the maximum sum of the bandwidths of all the active requests
served by the same cell) among all cells.
If we view each cell as a processor and each communication request as a task, the

channel assignment problem can be formulated as an on-line load-balancing problem in
the case of temporary tasks with restricted assignment and no preemption. Let us 9rst
de9ne such a problem and subsequently show how the channel assignment problem
can be formulated in its terms.

2.1. The on-line load-balancing problem

Let P = {p1; : : : ; pn} be a set of processors and let T ⊆ 2P be a set of task
types. We represent the set of task types by means of an associated bipartite graph

P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266 241

Fig. 1. A set of base stations and its graphical representation.

GP;T(XT ∪ P; ET), where

XT = {x1; : : : ; x|T|}
and

ET = {(xi; pj) |pj belongs to the ith element of T}:
A task t is a pair (x; w), where x∈XT and w is the positive integer weight of t.
The set of processors to which t can be assigned is Pt = {p | (x; p)∈ET}, that is,
the set of nodes of GP;T(XT ∪ P; ET) that are adjacent to x; for the sake of brevity,
in the following we will always omit the subscripts ‘P;T’ and ‘T’ since the set of
processors and the set of task types will be clear from the context. We will distinguish
between the unitary weight case in which all tasks have weight 1 and the arbitrarily
weighted case in which the weights may vary from task to task.
An instance � of the on-line load balancing problem with processors P and

task types T is then de9ned as a sequence of new(·; ·) and del(·) commands. In
particular:

• new(x; w) means that a new task of weight w and type x∈T is created.
• del(i) means that the task created by the ith new(·; ·) command of the instance is

deleted.

Given an instance �, a con-guration is an assignment of the tasks of � to the processors
in P, such that each task is assigned to a processor in Pt . Given a con9guration C,
we denote with lC(i) the load of processor pi, that is, the sum of the weights of
all tasks assigned to it. In the sequel, we will usually omit the con9guration when
it will be clear from the context. The load of C is de9ned as the maximum of all
the processor loads and is denoted with l(C). Given an instance � = �1 · · · �n and
given an on-line algorithm A, let CAh be the con9guration reached by A after having
processed the 9rst h commands. Moreover, let CoC

h be the con9guration reached by the
optimal oC-line algorithm after having processed the 9rst h commands. Let also set
opt(�) = max16h6n l(CoC

h) and lA(�) = max16h6n l(C
A

h).
An on-line algorithm A is said to be at most r-competitive if there exists a constant

b such that, for any instance �, it holds that

lA(�)6 r · opt(�) + b:

242 P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266

An on-line algorithm A is said to be at least r-competitive if, for any r′¡r and for
any constant b, there exists an instance � such that lA(�)¿r′ · opt(�) + b. Finally,
an on-line algorithm is said to be r-competitive if it is both at most and at least
r-competitive. We will also say that A has competitive ratio (at least/at most) r if A
is (at least/at most) r-competitive.
A simple on-line algorithm for the above described load-balancing problem is the

greedy algorithm that assigns a new task to the least loaded processor among those
processors that can serve the task. That is, whenever a new(x; w) command is encoun-
tered and the current con9guration is C, the greedy algorithm looks for the processor
pi in Pt=(x;w) such that lC(i) is minimum and assigns the new task t = (x; w) to pi.
We will analyze the behavior of this algorithm in the following sections.

2.2. The channel assignment problem formulation

Given a cellular system, that is, a set of cells positioned according to Fig. 1, we can
derive the corresponding set of processors and the corresponding set of task types as
follows: there is one processor for each cell and there is one task type for each simple
closed curve; referring to the simpli9ed graphical representation, there is one task type
for each hexagon, one task type for each edge shared by two hexagons, and one task
type for each vertex shared by three hexagons. More formally, the associated bipartite
graph G(X ∪ P; E) is de9ned as follows: P denotes the set of base stations and X is
de9ned as

X = {xA |A is a base station}
∪ {xAB |A and B are two base stations that intersect each other}
∪ {xABC |A; B; and C are three base stations that intersect each other}:

The set E is given by

E = {(xA; A) | xA ∈X }
∪ {(xAB; y) | xAB ∈X and y∈ {A; B}}
∪ {(xABC; y) | xABC ∈X and y∈ {A; B; C}}:

For example, the associated bipartite graph corresponding to the cells A, B, C, and D
of Fig. 1 is shown in Fig. 2.
Each communication request r = (p; b) corresponds to a task whose type x(p)

depends on the position p of the request and whose weight is equal to the re-
quest’s bandwidth b. Hence, whenever a new communication request r = (p; b) arises,
a new(x(p); b) command is appended to the instance sequence. Moreover, if the com-
munication request r created by the ith new(·; ·) command crosses the border of a
cell, then the two commands del(i) and new(x(p′); b) are appended to the instance
sequence, where p′ denotes the new point occupied by r.

P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266 243

x A

x B

x C

x D

x AB

x AD

x BC

x BD

x CD

x ABD

x BCD

A

C

B

D

Fig. 2. The bipartite graph corresponding to cells A, B, C, and D of Fig. 1.

Clearly, the maximum cell load in a con9guration of the channel assignment problem
is equal to the maximum processor load in the corresponding con9guration of the
load-balancing problem. Hence, any result regarding the latter problem may be applied
to the former one.

3. The cluster algorithm

In this section, we propose an algorithm template, called the cluster algorithm, to
solve the load-balancing problem de9ned in the previous section. The basic idea of
this algorithm essentially consists of suitably limiting the number of processors to
which a task can be assigned. As we will see, such a limitation may result in an
on-line algorithm better than the greedy one, which instead takes into account all of
the available processors.
The algorithm will be introduced by referring to the bipartite graph G(X ∪ P; E),

associated with a set of processors P and a set of task types T.

De�nition 3.1 (Cluster). Let G(X ∪ P; E) be a bipartite graph and let X ′ ⊆ X and
P′ ⊆ P. Then, C = (X ′; P′) is a cluster for G if the graph G′ induced by X ′ ∪ P′ is a
complete bipartite graph. We denote the sets X ′ and P′ as X (C) and P(C), respectively.

De�nition 3.2 (Neighborhood of cluster). Let C be a cluster for a bipartite graph G.
The neighborhood of C, denoted by N (C), is de9ned as the set of nodes adjacent to
some node in X (C), that is,

N (C) = {p∈P | there exists x∈X (C) such that (x; p)∈E}:

244 P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266

De�nition 3.3 (Decomposition into clusters). A set S of clusters for a bipartite graph
G(X ∪ P; E) is a decomposition into clusters of G if every vertex in X belongs to
exactly one cluster in S and every vertex in P belongs to at most one cluster in S.

For example, a possible decomposition into clusters of the graph shown in Fig. 2
consists of four clusters: the 9rst cluster includes A, xA, and xAB; the second cluster
includes B and xB; the third cluster includes C, xC , and xBC ; the last cluster includes
D, xD, xAD, xBD, xCD, xABD, and xBCD.
Essentially, our algorithm consists of applying the greedy approach to a decomposi-

tion into cluster of the associated bipartite graph. More formally, given a decomposition
into clusters S of G(X ∪ P; E) and given a node x∈X , let Cx be the cluster of S
containing x. The cluster algorithm is an on-line algorithm that assigns tasks according
to S as follows: Given a task t = (x; w), the algorithm assigns t to the least loaded
processor of cluster Cx.
The competitive ratio of the cluster algorithm clearly depends on the partition S. In

particular, for any C ∈S, let us consider the ratio |N (C)|=|P(C)|. As it can be seen,
|P(C)| denotes the number of processors that the cluster algorithm takes into account
while assigning a task whose type belongs to C, while |N (C)| is an upper bound on
the number of processors that any algorithm can consider while assigning the same
task. Given a decomposition S, we de9ne

rSU = max
C∈S

{ |N (C)|
|P(C)|

}
and

rSW =max
C∈S

{ |N (C)| − 1
|P(C)|

}
(in the following, we will always omit the superscript ‘S’ since the decomposition
will be clear from the context).
As the following result states, the competitive ratio of the cluster algorithm in the

case of unitary weights and in the case of arbitrarily weighted tasks depends on rU
and rW, respectively.

Theorem 3.4. For any set of processors P and any set of task types T and for any
decomposition into clusters S of the associated bipartite graph, the cluster algorithm
is rU- and (1 + rW)-competitive in the case of unitary weights and in the case of
arbitrarily weighted tasks, respectively.

Proof. Let pi be a processor that, during the execution of the cluster algorithm, reaches
the highest load l(i) and let Cj be the unique cluster containing pi. Let us consider an
iteration of the cluster algorithm in which a task t is assigned to pi so that pi reaches
a load equal to l(i). Also let w be the weight of task t. Since t is assigned to pi
whose load, before the arrival of t, is l(i) − w, we have that each processor in P(Cj)
has load at least l(i) − w. This implies that the overall weight of the tasks generated
within Cj, after the arrival of t, is at least |P(Cj)|(l(i) − w) + w. Notice that, from

P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266 245

De9nition 3.1, N (Ci) is the set of processors such tasks can be (oC-line) assigned to.
Hence, if l∗ denotes measure of an optimal oC-line solution, then it holds that

(l(i) − w) · |P(Cj)| + w6 |N (Cj)| · l∗;
thus implying

l(i)
l∗

=
l(i) − w
l∗

+
w
l∗
6

|N (Cj)|
|P(Cj)| +

w
l∗

(
1 − 1

|P(Cj)|
)
:

This proves the upper bound on the competitiveness of the cluster algorithm both in
the unitary weights and in the arbitrarily weighted case: notice that, in the former case,
we use the fact that all tasks have weight 1, while, in the latter case, we use the fact
that w6 l∗.
We now show that our analysis is tight. As for the unitary weight case, we observe

that, for any positive integer l∗, it is possible to generate |N (Cj)| · l∗ tasks in the
positions included in X (Cj) so that these tasks can be assigned by an optimal oC-line
solution to the set N (Cj) without overcoming the load l∗. By de9nition, the cluster
algorithm will assign these tasks to the processor set P(Cj), so that at least one among
these processors will reach a load greater than or equal to |N (Cj)|=|P(Cj)|l∗. As for
the case of arbitrarily weighted tasks, once again we observe that, for any positive
integer l∗, it is possible to generate (|N (Cj)| − 1)l∗ tasks of weight 1 in the positions
included in X (Cj) so that these tasks can be assigned by an optimal oC-line solution
to the set N (Cj) without overcoming the load l∗ and without assigning any task to
a speci9c processor p∗ ∈N (Cj). By de9nition, the cluster algorithm will assign these
tasks to the processor set P(Cj), so that every processor in P(Cj) will reach a load
greater than or equal to (|N (Cj)| − 1)l∗=|P(Cj)| − 1. Hence, if we now generate a task
of weight l∗ in a position which can be served by p∗, then at least one processor in
P(Cj) will reach a load greater than or equal to (|N (Cj)|−1)l∗=|P(Cj)|−1+ l∗, while
the optimal oC-line solution can assign all the tasks without overcoming the load l∗.
Hence the theorem follows.

Example 3.5. Consider the case of the on-line load balancing problem on identical
machines with no restrictions, i.e., each task can be assigned to any processor in
P={p1; : : : ; pn}. We can easily represent this problem as a bipartite graph G(X ∪P; E),
where X = {x} and (x; pi)∈E, for 16 i6 n. In this case, it is easy to see that the
best decomposition into clusters of G is the one formed by only one cluster, that is,
the graph itself. In this case, the cluster algorithm reduces to the greedy algorithm
proposed by Graham [14,15]. Indeed, Theorem 3.4 implies that such an algorithm is
(2 − 1=n)-competitive in the case of arbitrarily weighted tasks, which is optimal [4].
(Notice that, in the case of permanent tasks, there exists an algorithm with competitive
ratio strictly less than 2, see e.g. [1].)

As a consequence of the above result, it follows that, in order to obtain a good
competitive ratio for the cluster algorithm, we have to choose a decomposition into
clusters that maximizes the ratio between the number of processors of any cluster and
the size of its neighborhood.

246 P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266

4. Application to hexagonal grid topology

We now apply the cluster algorithm to the channel assignment problem: to achieve
this goal, in this section we will always implicitly refer to the bipartite graph associated
with the cellular network (or to a 9nite portion of it). In order to prove our main
theorem, in the next lemma we explicitly give a decomposition of this graph into
clusters.

Lemma 4.1. There exists a decomposition S into clusters such that, for any cluster
C ∈S, |P(C)| = 1 and |N (C)| = 4.

Proof. Let us consider a cell D and let E, F , G, C, B, and A be its neighbor cells in
clockwise order (see Fig. 1). The cluster containing D is de9ned as

({xD; xAD; xBD; xCD; xABD; xBCD}; {D}):

Hence, the neighborhood of the cluster is {A; B; C; D} (see also Fig. 2). By considering
a cluster for each cell, we can easily obtain a decomposition into clusters: Hence, the
lemma follows.

As a consequence of the above lemma and of Theorem 3.4, we have the following
result.

Theorem 4.2. The cluster algorithm is 4-competitive both in the case of unitary
weights and in the case of arbitrarily weighted tasks.

It is worth observing that the cluster decomposition described above yields a “9xed”
allocation scheme in which every region of the plane is assigned to one cell. Therefore,
no communication is needed to decide which cell of a cluster is currently the least
loaded.
We now prove that the competitive ratio of the greedy algorithm is strictly worse

than the competitive ratio of the cluster algorithm. In the following, we will denote by
new(x; w)l the sequence new(x; w) · · · new(x; w) of length l.

Theorem 4.3. The greedy algorithm is at least 5-competitive, even in the case of
unitary weights.

Proof. We show a unitary weight instance � that has optimal cost 1, while the greedy
algorithm computes an assignment of cost 5. Observe that, by cloning the commands,
this is suIcient to prove that the greedy algorithm is at least 5-competitive, even in
the case of unitary weights. The instance refers to the topology shown in Fig. 3 and
assumes that the greedy algorithm solves ties by selecting the alphabetically greatest
cell. Clearly, the instance can be adapted to any diCerent criterion.

P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266 247

Fig. 3. The cellular network of the proof of Theorem 4.3.

The instance consists of two parts. The 9rst part is formed by the following
commands:

• new(xAE; 1)2new(xFG; 1)2del(1)del(3)new(xAF ; 1)2.
• new(xBK ; 1)2new(xLM ; 1)2del(7)del(9)new(xBL; 1)2.
• new(xCH ; 1)2new(xIJ ; 1)2del(13)del(15)new(xCI ; 1)2.
• new(xDN ; 1)2new(xOP; 1)2del(19)del(21)new(xDO; 1)2.
• del(5)del(11)del(17)del(23).

It is easy to see that after processing this 9rst sequence of commands, the greedy
algorithm reaches a con9guration in which each of the four cells A, B, C, and D has
load 2, while in the optimal oC-line solution the four cells have load 0.
The second part of the instance is formed by the following commands:

• new(xAB; 1)2del(26)new(xBD; 1)new(xCD; 1).
• del(27)new(xBC; 1)2del(29)new(xB; 1).

It is easy to see that after processing this second part, the greedy algorithm reaches a
con9guration in which cell B has load 5, while in the optimal oC-line solution all cells
have load 1. Hence, the theorem is proved.

Finally, the following lower bound holds for any on-line algorithm applied to the
channel assignment problem in cellular networks.

Theorem 4.4. Any on-line algorithm for the channel assignment problem in cellular
networks is at least 3-competitive, even in the case of unitary weights.

Proof. Consider the cellular network in Fig. 3. In particular, we will use only the
9ve cells A, B, C, D, and E. In order to prove the lower bound, we now show an
input sequence � such that: (a) any on-line algorithm with input � reaches a critical
con9guration, that is, a con9guration in which a cell X exists whose load is equal to
2, and (b) there exists an optimal oC-line solution for � of measure 1 that reaches a
con9guration in which X is empty.
The sequence � starts with new(xAE; 1): Without loss of generality, we may assume

that the on-line algorithm assigns this task to cell A. Let us now consider the following
extension of �:

• new(xAB; 1)new(xBD; 1)new(xCD; 1).

248 P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266

Observe that any on-line algorithm that does not assign one of these new three tasks
according to the greedy criterion reaches a critical con9guration in which the role of
X is played by A, B, and D, respectively. Hence, at the end of the above sequence of
operations, A, B, C, and D have been assigned tasks 1, 2, 4, and 3, respectively. At
this point, we 9rst delete task 3 and then create the following new task:

• new(xBC; 1).

If this task is assigned to B, then the on-line algorithm has reached a critical con9g-
uration, in which the role of X is played by B. Otherwise, the task is assigned to C,
and the on-line algorithm has reached a critical con9guration, in which the role of X
is played by C.
Once the on-line algorithm has reached a critical con9guration, we create a new task

within cell X . It is then easy to see that: (a) the con9guration reached by the on-line
algorithm has load greater than or equal to 3, while (b) there exists an optimal oC-line
solution that reaches a con9guration whose load is 1. This immediately implies the
theorem in the case of arbitrarily weighted tasks: indeed, it suIces to send tasks of
weight l suIciently large, instead of tasks with weight 1. Moreover, it is possible to
modify the above instance in order to extend the result to the case of unitary weights.
To achieve this goal, it suIces to clone each new(·; ·) command of the sequence (except
the last one) into 2l commands. Notice that, for each original command, any algorithm
must assign (at least) l clones to one of the two available cells (let us say X). By
inserting an appropriate sequence of at most l del(·) operations between two sequences
of new(·; ·) commands, we can remove the tasks not assigned to X . Moreover, every
del(·) operation of the original instance is also cloned into an appropriate sequence
of l commands. Finally, the last new(·; ·) command of the original instance is cloned
into l commands. This sequence of unitary tasks essentially mimics the one with tasks
of weight l. Hence, the theorem follows.

5. Application to linear topologies

An interesting case of on-line load balancing with restricted assignment is the case
in which processors are positioned on a line at unitary distance, the set of positions
in which the tasks can arise coincide with the set of positions of the processors, and
each task can be assigned to processors at distance at most k from the processor the
task arose in, i.e., processor pi can serve tasks arising in the interval {i− k; : : : ; i+ k}.
This situation is another special case of the general load-balancing problem which has
been already studied: indeed, it models, for example, the case of radio networks where
all stations have the same transmission range [18,21], and that of an array of proces-
sors where the communication cost between two processors depends on their distance
[13] (see also [7,17] for other one-dimensional variations of the on-line load-balancing
problem). In Table 2, we summarize the results in the case of arbitrarily weighted
tasks. Particular attention should be given to the case k = 1 which is strictly re-
lated to our original motivating problem. Indeed, in [8] one-dimensional frequency

P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266 249

Table 2
Competitiveness results for linear topologies and weighted tasks

Greedy Our algorithm Lower bound

k = 1 At least 3 5
2

5
2

(Theorem 5.4) (Corollary 5.3) (Theorem 5.8)

k ¿ 1 At least 8k+1
2k+1

4k+1
k+1

3k+1
k+1

(Theorem 5.5) (Corollary 5.3) (Theorem 5.9)

assignment problems have been investigated. This restriction of the problem is moti-
vated by vehicular technology applications, where the users are located on highways
(represented by a line). Notice that, when cellular systems with bigger overlapping re-
gions occur, such as in the model proposed in [19], the corresponding network topology
is our one-dimensional model with k = 1. For this case, we can show that, when ar-
bitrarily weighted tasks occur, (a) the greedy algorithm is 3-competitive: observe that
this performance ratio is guaranteed by any trivial algorithm which “blindly” assigns
tasks to a 9xed processor among the three available; and (b) the cluster algorithm is
2.5-competitive, which matches the lower bound (see Table 2).
The associated bipartite graph is de9ned as G(X ∪ P; E), where X = {x0; : : : ; xn},

P = {p0; : : : ; pn}, and there exists an edge (xi; pj) if and only if |i − j|6 k. In this
section, we will always implicitly refer to this graph.
Let Atriv be the trivial algorithm which assigns each task to the processor the task

has been created in. The following fact easily follows from the observation that the
set of tasks assigned by Atriv to a processor could be shared in the optimal oC-line
solution among at most 2k + 1 processors.

Fact 1. For all k, Atriv is at most 2k + 1-competitive.

5.1. Upper bounds

Let us describe how the bipartite graph can be partitioned into clusters so that the
cluster algorithm performs better than the greedy one. Basically, the set of positions
will be decomposed into consecutive disjoint intervals of size k + 1: however, if n is
not a multiple of k + 1, then the 9rst and the last intervals have to be appropriately
de9ned in order to deal with the “border” processors.
Formally, let nc = n div(k + 1) and let r = nmod (k + 1). Notice that, without loss

of generality, we may assume that r ¿ 0. If r¿ (k + 1)=2, then we set the cardinality
c0 of the 9rst cluster equal to k + 1, otherwise we set c0 = �(r + k + 1)=2�. Now, for
any position i in {0; c0; c0 + (k +1); c0 + 2(k +1); : : : ; c0 + (nc − 1)(k +1)}, we de9ne
the cluster Ci as follows:

X (Ci) =

{ {x0; x1; : : : ; xc0−1} if i = 0;

{xi; xi+1; : : : ; xmin(i+k;n)} otherwise

250 P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266

and

P(Ci) =

{ {p0; p1; : : : ; pc0−1} if i = 0;

{pi; pi+1; : : : ; pmin(i+k;n)} otherwise:

It is easy to see that the sets Ci satisfy De9nitions 3.1 and 3.3. The next theorem states
an upper bound on the ratio between the number of processors that any algorithm can
consider while assigning a new task and the number of processors that the cluster
algorithm takes into account.

Theorem 5.1. For any cluster C,

|N (C)|
|P(C)| 6

3k + 1
k + 1

:

Proof. Observe that, for any cluster C, either |P(C)| = k + 1 and |N (C)|6 3k + 1
or |N (C)|6 |P(C)| + k. In order to prove the theorem, it then suIces to show that
|P(C)|¿ (k+1)=2, for any cluster C. To achieve this goal, recall that r=nmod (k+1)
and that if r¿ (k + 1)=2, then |P(C)|¿ (k + 1)=2, for any cluster C. Otherwise (that
is, r ¡ (k + 1)=2), for any cluster C,

|P(C)|¿
⌊
r + k + 1

2

⌋
¿

⌊
k + 2
2

⌋
=

⌊
k
2

⌋
+ 1¿

k − 1
2

+ 1 =
k + 1
2

;

where the second inequality is due to the fact that we assumed r¿ 1. Hence, the
theorem follows.

From the above theorem and from Theorem 3.4, we obtain the following two results.

Corollary 5.2. The cluster algorithm is (3k + 1)=(k + 1)-competitive in the case of
unitary weights.

Corollary 5.3. The cluster algorithm is (4k + 1)=(k + 1)-competitive in the case of
arbitrarily weighted tasks.

It is worth observing that in the above cluster decomposition, each cluster contains
k +1 processors. Therefore, in order to decide where to assign a new task, the cluster
algorithm needs to query only k+1 processors, while the greedy one queries all 2k+1
available processors.
In the rest of this section we will prove that the cluster algorithm has a competitive

ratio smaller than the greedy one, while in Section 5.2 we will show that its competitive
ratio is optimum for k = 1.

5.1.1. The greedy algorithm
In the sequel of the paper, we will refer to a con9guration C as a sequence c1 · · · cm

of 4-tuples such that the hth tuple ch= 〈th; ih; jh; sh〉 speci9es that the task with index th

P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266 251

Table 3
The greedy worst-case instance

Instance Greedy configuration Off-line configuration

new(1, 1)3

2 50 3 41
1 2 3

2 50 3 41
3 1 2

new(2, 1)3

50 3 4
4 3 5
6

21
3 45 6

50 3 421

new (−2, 1)3

-1 2-3 0 1-2
7 8 9 4

6
64

-1-3 0 1-2
9 8

3
7

2

new(−1, 1)

2-3 0 1
8 9 4

6
10

-1-2
64

-1-3 0 1
9

32
8

-2
10

new (0, 1)3

10
-3 0 1

9 4
6

-2 -1 2

13
11 12

6410

-3 1
9

3-2
12 1311
0-1 2

has been created in processor pih , has weight jh, and is currently assigned to proces-
sor pih+sh where sh ∈ {−k; : : : ; 0; : : : ; k}. Moreover, we will identify two con9gurations
which are equivalent modulo a re-indexing of their tasks and of the processors. For
the sake of clarity, we will usually represent a con9guration in a graphical way: for
instance, the con9guration

〈1; i; 1; 0〉〈2; i; 1; 1〉〈3; i + 3; 1;−1〉
is graphically represented as shown in the middle column of the 9rst row of Table 10;
notice that we have speci9ed the tasks’ indices “1”, “2” and “3” only for the sake of
clarity. Observe that such a graphical representation speci9es neither the origin nor the
weight of a task, since this information will be anyway speci9ed by the accompanying
text. Finally, given a con9guration C and a sequence of del(·) commands, we will
graphically represent the application of this sequence to C by coloring the rectangles
associated with the deleted tasks with the gray color (see, for example, the middle
column of the 9rst row of Table 3 where

C = 〈1; 1; 1;−1〉; 〈2; 1; 1; 0; 〉; 〈3; 1; 1; 1〉
and the sequence of delete commands is del(1)del(2)).
The next result states that the greedy algorithm does not perform better than the

trivial algorithm Atriv (see Fact 1), when applied to the case k=1. Observe that, since
we are dealing with arbitrarily weighted tasks, it suIces to show an instance with
optimal oC-line equal to 1 and such that the greedy algorithm reaches a con9guration
with measure 3.

Theorem 5.4. For k = 1, the greedy algorithm is at least 3-competitive.

252 P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266

Proof. Let us consider the following instance:

new(1; 1)3del(1)del(2)new(2; 1)3del(3)del(5)

new(−2; 1)3del(7)new(−1; 1)del(8)new(0; 1)3:

Assume that ties are solved in a left-to-right order. The proof does not really depend
on this assumption, and can be easily generalized to variants of the greedy algorithm
that solve ties by assigning a task to any one of the less loaded available processors.
The behavior of the greedy algorithm with input the above instance is the one shown
in the middle column of Table 3: the right column, instead, shows an optimal oC-line
solution.
As shown in the table, the greedy algorithm will assign to processor p−1 three tasks

while the oC-line optimum solution will be able to assign the new three tasks to the
empty processors p−1, p0, and p1. In other words, the load of the 9nal con9guration
provided by the greedy algorithm is 3 while the optimal oC-line solution has load 1.
Hence, the theorem follows.

Let us now prove a lower bound on the competitive ratio of the greedy algorithm
in the case of arbitrarily weighted tasks and k¿ 2.

Theorem 5.5. For any k ¿ 1, the greedy algorithm in the case of arbitrarily weighted
tasks is at least (8k + 1)=(2k + 1)-competitive.

Proof. For the sake of clarity, we 9rst prove the theorem for the case k=2. The proof
for any k ¿ 2 will be then given as a generalization of the previous case.

5.1.1.1. The case k=2. Similarly to the proof of Theorem 5.4, we describe an instance
� such that the greedy algorithm on input � is 17/5-competitive. 4 For the sake of
clarity, we split � into three parts, that is �=�l�r R�. In Table 4 we describe �l and the
behavior of the greedy algorithm; for the sake of brevity, we do not explicitly show the
delete commands which are, instead, graphically indicated. The aim of the subsequence
�l�r is to “force” the greedy algorithm to reach the con9guration RC shown in the 9rst
row of Table 6. In particular, the “left” part of con9guration RC (i.e., tasks assigned
by the greedy algorithm to processors p7, p8 and p9) is due to �l (see the last row
of Table 4). Similarly, we can obtain the “right” part of con9guration RC (i.e., tasks
assigned by the greedy algorithm to processors p10, p11 and p12) from the sequence
�rk (see Table 5).
In Table 6 we show the behavior of the greedy algorithm starting from RC on input

R�. It is easy to see that the measure of the greedy algorithm is 17, while an optimum
oC-line assignment of value 5 exists.

5.1.1.2. The general case. The proof for any k ¿ 2 is a generalization of the proof
given for k = 2: we generalize the instance � and the con9guration RC used above to

4 Again, we assume ties are broken left-to-right. It is possible to see that diCerent tie break rules can be
managed by slightly modifying the instance in order to obtain the same result.

P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266 253

Table 4
The proof of Theorem 5.5 for k = 2 (the sequence �l)

Instance Greedy configuration Off-line configuration

new(2, 5)5

0 1 2 3 4 5

1 2 3 4 5

6

35 14 2

0 1 2 3 4 5 6

new(5, 1)6, new(6, 1)2,

new(7, 1), new(7, 5),
new(6, 1)3, new(6,5) 5 6 7

19

2 3 4 8

3

1 9

4 5

6 87

9 10 11

12

13

14

16 17 18
15

765
16

17

18

0 1 2 3 4 8

5 4 3
7

6

9

11
19 15 12

13

14

10

8

new(5, 5)
65 71 2 3 4 8

3

19

9

4 5

6 87

9 10 11

12

13

14

16 17
15

20

16

17

18

0 1 2 3 4 5 6 7 8

5 4 3
7

6

9

11
19 15 12

13

14

10

8

20

�k=�lk�
r
k�k and Ck , respectively. In particular, Tables 7 and 8 show the con9guration

Ck and the execution of the greedy algorithm, starting from such con9guration, on input
�k . Notice that, tasks assigned to processors in [2k; 3k] (respectively, [3k + 1; 4k + 1])
arose in the interval [k; 2k] (respectively, [4k+1; 5k+1]). Additionally, such tasks can
be (oC-line) assigned to the processors in the intervals [0; 2k − 1] and [4k +1; 6k +1],
respectively (see the con9guration RCoC

k in Table 9). Also notice that, by setting h=2k−2
and l∗ = 2k + 1, the greedy algorithm yields a solution of cost 3l∗ + h= 8k + 1 (see
Table 8), while the optimum oC-line is l∗ = 2k + 1 (see Table 9). So, in order to
prove the theorem it remains to describe the sequence �lk�

r
k which forces the greedy

algorithm to reach the con9guration Ck , while an assignment to those tasks exists so
to obtain the con9guration Ck

oC
.

To achieve this goal, we will denote by lasti the index of the last task assigned (by
the greedy algorithm) to processor in position i. We 9rst consider the instance �l in
Table 4 and we generalize it as follows:

• new(k; l∗)2k+1 del(last0) · · · del(lastk−1)︸ ︷︷ ︸
k

• new(2k + 1; 1)(k+1)hnew(2k + 2; 1)hnew(2k + 3; 1)h · · · new(3k; 1)h︸ ︷︷ ︸
k−1

254 P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266

Table 5
The proof of Theorem 5.5 for k = 2 (the sequence �r)

Instance Greedy configuration Off-line configuration

new(17, 5)5

11 12 13 14 15 16 18 19

4 5321

17

32154

11 12 13 14 15 16 18 1917

new(14, 1)6, new(13, 1)2,

new(12, 1)2,
11 12 13 14 15 18 19

321

6 7 8

10 1716

15
14

13
12

10 119
32113

14
15

6
7
8

9

10
11

11 12 13 14 15 16 18 1917

12

new(14, 5), new(13, 1)3,

11 12 13 14 15 18 19

321

6 7 8

10 1716

17
15
14

13
12

18
10

19
11

16
321

13
14
15

126
7
8

10
11

11 12 13 14 15 16 18 1917

16

17
18
19

new(13, 5), new(12, 5)

11 12 13 14 15 16 1718 19

321

6 7 8

10

15
14

13
12

18 19
1110

21 20
16

13
14
15

12

2021 1 2 3

18

19

6
7
8

10
11

11 12 13 14 15 16 18 1917

16

• new(3k + 1; 1)h=2new(3k + 1; l∗)
• new(3k; 1)2kdel(last4k)
• step 1: new(3k; l∗)del(last4k−1)

step 2: new(3k − 1; l∗)del(last4k−2)
...
step k: new(2k + 1; l∗)del(last3k)

• delete all the tasks assigned to processors in [k; 3k].

It is worth observing that an (oC-line) assignment to the above sequence exists such
that: (a) all the tasks of weight 1 can be assigned to processors of index 2k + 2 or
greater (in particular, the k · h + h=2 surviving ones can be assigned to [2k + 2; 3k]);
(b) each task of weight l∗ can be assigned to a processor in the interval [0; 2k + 1]:

P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266 255

Table 6
The proof of Theorem 5.5 for k = 2 (the con9guration RC and the sequence R�)

Inst./Conf. Greedy configuration Off-line configuration

C 7 8 9 10 11 12 13

x 7 8 9 10 11 12 13654 14 153 16

x

new(11, 1)3,

new(11, 3) ,

new(11, 1)2
7 8 9 10 11 12 13

x 1
2
3

4

5 6

7 8 9 10 11 12 13654 14 153 16

x

3
5

1
4 6

2

new(10, 5)2

7 8 9 10 11 12 13

5
7

8

7 8 9 10 11 12 13654 14 153 16

2

7 8

new(9, 5)5

7 8 9 10 11 12 13

5

8119

13

10 12

7 8 9 10 11 12 13654 14 153 16

2

89 10 11 12 13

the k + 1 tasks arising in positions [2k + 1; 3k + 1], can be assigned to the interval
[k+1; 2k+1]; (c) at each step the load of every processor is at most l∗. On the other
hand, the greedy algorithm, after processing the above sequence, yields a solution in
which all the remaining tasks are assigned to the interval [3k + 1; 4k + 1]. Moreover,
the load of processors in [3k + 1; 4k] will be h + l∗, while the load of the processor
in 4k + 1 will be equal to h=2 + l∗. Thus, by shifting on the left (i.e., re-indexing the
tasks’ origin) the above sequence by a factor k + 1, we obtain the sequence �lk which

256 P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266

Table 7
The proof of Theorem 5.5 for any k ¿ 2 (the con9guration RCk and the sequence
R�k , part 1)

Instance Greedy configuration

C k

...ls

k+1k+1

...

special tasksunitary
taskstasks

unitary
h

h/2

k 2k 2k+1 4k-1 4k 5k

k+1k+1

taks’ origin

2k-1

new(3k + 1 , 1)h/ 2+1

new(3k + 1 , l*)

new(3k + 1 , 1)h h

ls

k+1 k+1

h/2

k 4k4k-12k+1

2k-1

5k2k

unitary
tasks

...

unitary
tasks

...

.

..

.

..
.
..

yields the “left” part of the con9guration Ck (i.e., the tasks assigned by the greedy
algorithm to processors in [2k; 3k] in Table 9).
The sequence �rk can be obtained by using a symmetric argument. Indeed, let us

consider the following sequence:

• new(0; l∗)2k+1del(lastk+2)del(lastk+3) : : : del(last2k+1)︸ ︷︷ ︸
k

new(−k − 1; 1)h(k+1)

• step 1: new(−k − 2; 1)l
∗

step 2: new(−k − 3; 1)l
∗

...
step k: new(−2k − 1; 1)l

∗

• new(−2k − 1; 1)2k+1

• del(last−3k−1)del(last−3k) : : : del(last−2k−1)︸ ︷︷ ︸
k+1

P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266 257

Table 8
The proof of Theorem 5.5 for any k ¿ 2 (the con9guration RCk and the
sequence R�k , part 2)

Instance Greedy configuration

new(3k + 1 , l*)2 h

ls

k+1 k+1

h/2

k 4k4k-12k+1

2k-1

5k2k

unitary
tasks

...

unitary
tasks

...

.

..

new(3k, l*)2k +1

h

ls

k+1 k+1

h/2

k 4k4k-12k+1

2k-1

5k2k

unitary
tasks

...

unitary
tasks

...

.

..

• del(last−2k−1)h=2

• step 1: new(−k − 1; l∗)del(lastk−1)h+1

step 2: new(−k − 2; l∗)del(lastk−2)h+1

...
step k: new(−2k; l∗)del(last−2k)h+1

step k + 1: new(−2k − 1; l∗)
• delete all the tasks in [− k; 0].

Notice that, it is possible to assign (oC-line) the tasks of the above sequence in such
a way that: (a) the h out of the h(k + 1) unitary tasks arising in position −k − 1 that
survive at the end of the sequence are all assigned to p−2k−1; (b) at the generic step
i, because of the del(·) commands, processor p−i has no task and it can be used to

258 P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266

Table 9
The proof of Theorem 5.5 for any k ¿ 2 (the optimal oC-line solution)

Instance Off-line configuration

C
off

k

taks’ origin

k+1

...

k-1

special tasks
...

k-1 k+1

tasks
unitary

tasks
unitaryls

2k+1

0 k

k+1

2k+1

k+1

4k 5k

2k-1

2k 6k

new(3k + 1 , 1)h/ 2+1

new(3k + 1 , l *)

new(3k + 1 , 1)h

k+1

...

k-1

...

k-1 k+1

tasks
unitary

tasks
unitaryls

2k+1

0 k

k+1

2k+1

k+1

4k 5k

2k-1

2k 6k

...

...

new(3k + 1 , l*)2

k+1

...

k-1

...

k-1 k+1

tasks
unitary

tasks
unitaryls

2k+1

0 k

k+1

2k+1

k+1

4k 5k

2k-1

2k 6k

...

new(3k, l *)2k +1

k+1

...

k-1

...

k-1 k+1

tasks
unitary

tasks
unitaryls

2k+1

0 k

k+1

2k+1

k+1

4k 5k

2k-1

2k 6k

...

...

assign the new task of weight l∗ (in particular, up to step 1 no task is assigned to
p−1); (c) after the last del(·) command all the surviving tasks are assigned to the
interval [− 2k − 1;−1] without overcoming the load l∗ (in particular, p−2k−1 and
p−2k have h and l∗ − h unitary tasks, respectively; in [− 2k + 1;−k] each processor
has l∗ unitary tasks; in [− k + 2;−1] each processor has a task of weight l∗). This
can be veri9ed by considering the execution of the greedy algorithm on the above
sequence, which yields the set of surviving tasks at each time step. On the other hand,
the greedy algorithm applied to this sequence reaches the following con9guration: In
[− 3k − 1;−2k − 2] each processor has load h + l∗ and p−2k−1 has load h=2 + l∗.

P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266 259

Table 10
“Bad” con9gurations

Configuration Graphical representation Name

 1, i , 1, 0 2, i , 1, 1 1 2 3
i+4 i+5i+3i+2i+1i

C0

 3, i + 3 , 1, 1

 1, i , 1, 0 2, i , 1, 1 1 2 3 4...

i+1 d i+d+3i

Cd

 3, i + d + 3 , 1, 1 4, i + d + 3 , 1, 0

Hence, by shifting the whole sequence to the right by a factor 6k + 2 we obtain the
sequence �rk (see also the con9gurations Ck and Ck

oC
in Tables 7 and 9).

5.2. Lower bounds

In this section we prove some lower bounds on the competitiveness of any on-line
algorithm (see the last column of Table 2). In particular, for k = 1, we prove that
the upper bound given by the cluster algorithm cannot be improved, while, for k ¿ 1,
we show that the cluster algorithm is not too far from being optimal. Notice that, the
result in [4] implies a lower bound equal to 2 − 1=(2k + 1): indeed, the case of n
identical machines (see Example 3.5) can be easily simulated on the linear topology
in which 2k + 1 = n. In the sequel we will improve this lower bound in the case of
linear topologies.
In order to prove that, for k = 1, any on-line strategy cannot be less than 5/2-

competitive (when arbitrarily weighted tasks are considered), we make use of the
“bad” con9gurations shown in Table 10.

Lemma 5.6. For any on-line algorithm A, a sequence �1A exists such that either

lA(�1A)¿ 5 · opt(�1A)=2

or

A(�1A) passes through Cd for some d¿ 0:

Proof. We will 9rst show that either A is at least 5/2-competitive, or it eventually
reaches a con9guration in which three tasks arising in position i are assigned to pi−1,
pi and pi+1. Let Ci denote such con9guration. Table 11 shows the 9rst part of the
sequence �1A. Notice that, either A reaches the con9guration shown in the lowest row
(or a symmetric one with two tasks assigned to p0 and one task assigned to p2), or
it reaches the above desired con9guration Ci.
We can therefore assume that the con9guration in the second row of Table 11 has

been reached. Starting from such con9guration, in Table 12 we complete the sequence
�1A. Notice that, at any step a diCerent choice would yield either a 5/2-competitive
solution or the con9guration Ci. Indeed, the con9guration C5 can be obtained from the

260 P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266

Table 11
The proof of Lemma 5.6: 9rst part

Instance On-line solution Remark Off-line solution

new(1, 1)3 2

0 2 5
1

43

3

1
Otherwise 2 3 1

0 2 5431

jump to 2nd part

new(3, 1)3
2

0 2 5

3
4

1 4

5

3
6 Use p

3
and p

4
2 3

0 2 5431
546

Table 12
The proof of Lemma 5.6: second part

Instance On-line solution Remark Off-line solution

new(6, 1)3
46

3 54 76 98
7
8

9 Otherwise C3
54 76 98

96

4

2

7
8

3

new(4, 2)3

3
6 4

5 6 7
7 9

4

11

12
10

Must use p5
54 76 98

96

4

2

7

3

11 12 10

new(5, 2)3

3
6 4

5 6 7
7 9

4

11

15
13 14

No other way
54 76 98

96

4

2

7

3

11 13 1514

last row of Table 12 by terminating all the tasks but 13, 14 and 15. Notice that, even
though the surviving tasks will have weight equal to 2, this is not a problem since it
suIces to rescale the subsequent tasks by a factor 2.
Finally, we observe that a “bad” con9guration Cd, for some d¿ 0, can be obtained

by combining any two con9gurations Ci and Ci+d+3 and then by killing the two tasks
assigned to processors pi−1 and pi+d+4. However, we need these two con9gurations to
be reached by using tasks of the same weight (namely, of weight 1 or of weight 2).
This, in turn, can be obtained by suitably “cloning” the sequence of tasks described
above into three sequences. Indeed, if after the 9rst 9 commands of each clone (cor-
responding to the 9rst row of Table 12) two out of three of such clones reached the
con9gurations Ci and Ci+d+3, respectively, then we simply delete all the tasks of the
other clone. Otherwise, there are two out of three copies that reached the con9gura-
tion of the 9rst row of Table 12. Hence, such copies will reach two con9gurations
equivalent to Ci and Ci+d+3 in which all tasks have weight 2.

P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266 261

Table 13
The proof that C0 is a dead-end con9guration

Inst./Conf. On-line solution Remark Off-line solution

C0 1 2 3
i+4 i+5i+3i+2i+1i

1
2

3
i+4 i+5i+3i+2i+1ii-1

new(i + 2 , 2)3
1 2 3

6

5
4

i+4 i+5i+3i+2i+1i

Must use p1+1 or pi+2 1 3
i+4 i+5i+3i+2i+1ii-1

2
5 46

new(i + 1 , 2)3
1 2 3

4 8

9

7

i+4 i+5i+3i+2i+1i

At least 5 1 3
i+4 i+5i+3i+2i+1ii-1

2
8 497

Lemma 5.7. For any on-line algorithm A, a sequence �2A exists such that

lA(�1A�
2
A)¿ 5 · opt(�1A�

2
A)=2

where �1A is the sequence of Lemma 5.6.

Proof. From Lemma 5.6, we can restrict ourselves to the algorithms that with input
�1A pass through a con9guration Cd, for some d¿ 0. We distinguish the following two
cases:

(1) d6 2. Let us consider the case d=0. Suppose three tasks 4, 5 and 6 of weight 2
are created in position i+2 (see the second row of Table 13). Then, one of these
tasks (say 4) is assigned either to pi+1 or to pi+2 (otherwise the competitive ratio
of A is 3). Suppose that tasks 5 and 6 terminate. When three new tasks of weight
2 arrive in position i + 1 (see the third row) A yields a solution of measure 5.
Notice that the optimum oC-line solution is instead 2 (see the rightmost column
of Table 13).
For C1, we 9rst consider the sequence new(i+1; 2)3. Notice that, A must assign

one of these tasks to pi+2 (otherwise the competitive ratio of A is 3). Let such a
task be the surviving one, that is, we terminate the other two tasks of the above
sequence. Then, we send sequence new(i + 2; 2)3 and, by a similar reasoning,
another surviving task of weight 2 is assigned by A to pi+2. Observe that, all
the tasks can be assigned (oC-line) in such a way that (1) pi−1 and pi+5 receive
the unitary tasks of C1, and (2) pi and pi+1 receive the surviving tasks arising in
i + 1 and i + 2, respectively. Hence, the optimum oC-line is 2. Finally, we send
the sequence new(i+ 3; 2)3, which forces the algorithm to reach a load at least 5.
For C2, we essentially generalize the proof for C1. In particular, we 9rst send

two sequences: new(i+1; 2)3 and new(i+4; 2)3. Using the same argument, A must
assign a surviving task to pi+2 and pi+3. Then, the sequence new(i + 2; 2)3 will
yield another surviving task either in pi+2 or in pi+3. We complete the sequence

262 P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266

Table 14
Moving from Cd to Cd−3

Instance On-line solution Remark

new(i + 3 , 1)3

i+1i i+2 i+3 i+4 i+d+3

1 2 II

III

I
d-3

3 4 Otherwise we have C3

with new(i + 3; 2)3: Since pi + 2 and pi+3 globally already received 3 tasks of
weight 2 each, the best strategy in assigning the new tasks is to send two of
them to pi+4. This processors already had one task of weight 1, which yields a
load equal to 5. Finally, it is easy to verify that the above sequence has optimum
oC-line equal to 2.

(2) d¿ 2. In this case, we prove that A must pass through con9gurations Cd−3 or
con9guration C0. Let us consider con9guration Cd with d¿ 2 and let us suppose
that three tasks arrive in position i + 3 (see Table 14). If any of these tasks is
assigned to processor pi+2, then we easily obtain con9guration C0. Otherwise, both
the two remaining processors pi+3 and pi+4 must be used. In this way we obtain
the con9guration Cd−3. By iterating this reasoning, we have that A passes through
either C0, C1 or C2.

The lemma thus follows.

Theorem 5.8. In the case of arbitrarily weighted tasks, any on-line algorithm has
ratio at least 2.5 when k = 1.

Proof. It follows from Lemma 5.7.

Let us observe that the 5/2 lower bound for the case k = 1, given in Theorem 5.8,
also hold for arbitrary k, since the same considerations apply in this case.
For k ¿ 3 the latter result can be improved so to show that the cluster algorithm

is not too far from being optimal. The proof of this fact follows an approach similar
to that used in the proof given in [4] for the case of temporary tasks on identical
machines: indeed, we exploit a similar idea of creating several unitary tasks, followed
by suitably weighted tasks.

Theorem 5.9. For any k¿ 1, any on-line strategy is at least (3k + 1)=(k + 1)-
competitive.

Proof. Let us consider an interval of 4k + 1 processors and let us suppose that the
instance starts by creating one task of weight l = 3k + 1 in each processor in
the interval. It is then clear that either at least 2k + 1 of these tasks are assigned
to the 2k + 1 central processors or at least k + 1 tasks are assigned to one of the two
external groups of k processors. Let us assume that the former case holds (the proof

P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266 263

Fig. 4. The lower bound for k¿ 1.

in the latter case is very similar) and let us continue the instance by deleting the task
that has been created in processor p0 and all the tasks that have been assigned out of
the central interval.
Without loss of generality, we assume that there exists n2¿ 0 such that the n2

leftmost processors have been assigned 2 tasks, 2k − 2n2 central processors have been
assigned 1 task, and the n2 + 1 rightmost processors have been assigned no task.
Observe that all these tasks can be assigned by an oC-line solution to processors out
of the central interval.
We now continue the instance by creating 2k(l+1)+1 new unitary tasks in processor

p0. It is then easy to prove that one of the following three situations must occur: (a)
one of the leftmost processors has a load at least equal to 3l, (b) two central processors
have a load at least equal to 2l, (c) two right processors have a load at least equal to
l, or (d) one central processor has a load at least equal to 2l and one right processor
has a load at least equal to l. Indeed, let us assume (see Fig. 4) that no leftmost
processor has a load at least equal to 3l, at most one central processor has a load at
least equal to 2l, and no right processor has a load at least equal to l (the other case
can be proved similarly). Then the total number of assigned tasks is at most

n2(l− 1) + l+ (2k − 2n2 − 1)(l− 1) + (n2 + 1)(l− 1) = 2kl+ l− 2k

while the total number of new tasks is

2kl+ 2k + 1¿ 2kl+ l− 2k

since l= 3k + 16 4k. Thus, we have a contradiction.
Finally, it remains to show that any of the four situations (a)–(d) can be constructed

so that the on-line solution is at least (3k + 1)=(k + 1)-competitive. Indeed, consider
situation (d): in this case, we continue the instance by 9rst deleting all the unitary tasks
but those assigned to the two involved processors and by then creating 2k+1 tasks of
weight l in processor p0. By a simple counting argument, it follows that at least one
processor must have a load at least equal to 3l. On the other hand, the oC-line solution
could distribute both the unitary tasks and the tasks of weight l to all the 2k + 1
central processors thus obtaining a load not greater than l + 2. Observe that, since

264 P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266

we are dealing with arbitrarily weighted tasks, the above argument implies that the
competitive ratio of any on-line algorithm is at least 3l=(l+2)= (3k +1)=(k +1).

6. Discussion and open problems

A connection with low earth orbit satellites. Further bene9ts of our approach and
some consequences of our results deal with satellite low Earth orbit (LEO) constel-
lations. In LEO constellations satellites are grouped into orbits so that they form a
global coverage of the Earth’s surface similar to that of cellular systems. However, due
to the satellites movements, the footprints (and hence the cells) move with constant
speed.
For that reason, handover occurs frequently because of the high speed of the satel-

lites. An optimal strategy from this point of view is therefore that of assigning a user,
which is located in the intersection of two or three cells, to the cell that guarantees
the maximum time connection without handover (see, for example [26,27]). It is pos-
sible to see that, in the case of hexagonal grid model [11], the optimal strategy for
handover is exactly the cluster algorithm. This observation combined with our results
has the following unexpected consequence:

Handover constraints forces us to perform a channel assignment strategy better
than the greedy one.

Such a result is somehow counterintuitive, since one might think that spreading the
load among all the available cells (regardless of handover constraints) allows to reduce
the load in each cell. We 9nally remark that our approach does not require additional
communication among satellites in order to decide to which satellite a new user has
to be assigned.
Open problems. The 9rst and more important open problem consists of closing the

gap between the upper and the lower bound in the case of cellular networks. We
conjecture that our algorithm is optimal. Notice that this would imply a combinatorial
characterization of a class of instances that can be on-line solved without overcoming
the cell capacity: in particular, this class includes all instances that admit an o=-line
assignment of maximum load equal to 1/4 of the capacity of a single cell. Each of
these instances can be, in turn, characterized by using the results of [19]. Notice also
that, for the one-dimensional case, we are already able to give such a characterization.
Another interesting research direction consists of studying the “permanent mobile

tasks”: in some cases, we have to deal with rapidly moving users so that, before one
user ends its communication, it has changed position many times. In this case, we
can ideally assume permanent tasks, i.e., once a task arrives it never terminates. This
problem is actually something in between the on-line load balancing of permanent
(non-mobile) tasks and our problem: It is a special case of temporary tasks with re-
stricted assignment. In fact, the movement of a permanent task from one position to
another can be simulated by terminating the task and creating a copy of it in the new
position.

P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266 265

We think that our method also gives rise to a number of interesting questions con-
cerning the solution of on-line problems, such as: (i) under which hypothesis is the
cluster algorithm provably better than the greedy one? (ii) Can we give a (combinato-
rial) characterization of a set of on-line load balancing problems for which the cluster
algorithm matches the lower bound? (iii) Can we use a decomposition into clusters to
improve the competitive ratio of existing on-line algorithms other than the greedy one?
Finally, observe that the cluster algorithm applies to any bipartite graph correspond-

ing to an instance of online load balancing. Since its performance depends on the
cluster decomposition, an interesting open problem is that of eIciently constructing a
good decomposition into clusters for a given bipartite graph.

References

[1] S. Albers, Better bounds for on-line scheduling, Proceedings of the 29th ACM Symposium on Theory
of Computing (STOC), 1997, pp. 130–139.

[2] Y. Azar, On-line load balancing, in: A. Fiat, G. Woeginger (Eds.), On-line Algorithms—The State of
the Art, Springer, Berlin, 1998.

[3] Y. Azar, A. Broder, A. Karlin, Online load balancing, Theoret. Comput. Sci. 130 (1994) 73–84.
[4] Y. Azar, L. Epstein, On-line load balancing of temporary tasks on identical machines, Proceedings of

the Fifth Israeli Symposium on Theory of Computing and Systems (ISTCS), 1997, pp. 119–125.
[5] Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs, O. Waarts, Online load balancing of temporary

tasks, J. Algorithms 22 (1997) 93–110.
[6] Y. Azar, J. Naor, R. Rom, The competitiveness of online assignments, J. Algorithms 18 (1995)

221–237.
[7] A. Bar-Noy, A. Freund, J. Naor, On-line load balancing in a hierarchical server topology, SIAM J.

Comput. 31 (2) (2001) 527–549.
[8] M.A. Bassiouni, C. Fang, Dynamic channel allocation for linear macrocellular topology, Proceedings of

the ACM Symposium on Applied Computing (SAC), 1999, pp. 382–388.
[9] I. Caragiannis, C. Kaklamanis, E. Papaioannou, EIcient on-line communication in cellular networks,

Proceedings of the 12th ACM Annual Symposium on Parallel Algorithms and Architectures (SPAA),
2000, pp. 46–53.

[10] S.K. Das, S.K. Sen, R. Jayaram, A dynamic load balancing strategy for channel assignment using
selective borrowing in cellular mobile environment, ACM/Baltzer J. Wireless Networks 3 (5) (1997)
333–347.

[11] A. Ferreira, J. Galtier, P. Penna, Topological design, routing, and handover in satellite networks, in: I.
StojmenoviWc (Ed.), Handbook of Wireless Networks and Mobile Computing, Wiley, New York, 2002,
pp. 473–493.

[12] S. Fitzpatrick, J. Janssen, R. Nowakowski, Distributed online channel assignment for hexagonal cellular
networks with constraints, Proceedings of the First International Workshop on Approximation and
Randomization in Communication Networks (ARACNE), Proceedings in Informatics, Carleton Scienti9c
Press, University of Waterloo, Waterloo, ON, Canada, 2000, pp. 147–154.

[13] P. Fizzano, D. Karger, C. Stein, J. Wein, Distributed job scheduling in rings, J. Parallel Distributed
Comput. 45 (2) (1997) 122–133.

[14] R. Graham, Bounds for certain multiprocessor anomalies, Bell System Tech. J. 45 (1966) 1563–1581.
[15] R. Graham, Bounds on multiprocessor timing anomalies, SIAM J. Appl. Math. 17 (1969) 263–269.
[16] J. Janssen, D. Krizanc, L. Narayanan, S. Shende, Distributed online frequency assignment in cellular

networks, J. Algorithms 36 (2000) 119–151.
[17] A.J. Kleywegt, V.S. Nori, M.W.P. Savelsbergh, C.A. Tovey, Online resource minimization, Proceedings

of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1999, pp. 576–585.
[18] E. Kranakis, D. Krizanc, A. Pelc, Fault-tolerant broadcasting in radio networks, J. Algorithms 39 (2001)

47–67.

266 P. Crescenzi et al. / Discrete Applied Mathematics 137 (2004) 237–266

[19] D. Matula, M. Iridon, C. Yang, A graph theoretic approach for channel assignment in cellular networks,
Wireless Networks 7 (6) (2001) 567–574.

[20] L. Narayanan, Y. Tang, Worst-case analysis of a dynamic channel assignment strategy, Proceedings of
the ACM International Workshop on Discrete Algorithms and Methods for Mobile Computing (DIALM),
2000, pp. 8–17.

[21] K. Pahlavan, A. Levesque, Wireless Information Networks, Wiley-Interscience, New York, 1995.
[22] S. Phillips, J. Westbrook, Online load balancing and network Xow, Algorithmica 21 (3) (1998)

245–261.
[23] A. Sen, T. Roxborough, S. Medidi, Upper and lower bounds of a class of channel assignment problems

in cellular networks, Proceedings of IEEE INFOCOM’98, 1998.
[24] A. Sen, T. Roxborough, B.P. Sinha, On an optimal algorithm for channel assignment in cellular

networks, Proceedings of the IEEE International Conference on Communications (ICC), 1999,
pp. 1147–1151.

[25] E. TardYos, J.K. Lenstra, D.B. Shmoys, Approximation algorithms for scheduling unrelated parallel
machines, Math. Programming 46 (1990) 259–271.

[26] H. UzunalioZglu, Probabilistic routing protocol for low earth orbit satellite networks, Proceedings of the
IEEE International Conference on Communications (ICC), 1998.

[27] H. UzunalioZglu, I.F. Akyildiz, Y. Yesha, W. Yen, Footprint handover rerouting protocol for low earth
orbit satellite networks, Wireless Networks 5 (1999) 327–337.

	On-line algorithms for the channel assignment problem in cellular networks
	Introduction
	From channel assignment to load balancing
	The on-line load-balancing problem
	The channel assignment problem formulation

	The cluster algorithm
	Application to hexagonal grid topology
	Application to linear topologies
	Upper bounds
	The greedy algorithm

	Lower bounds

	Discussion and open problems
	References

