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A N E W  A L G E B R A  IN T H E  S T O C H A S T I C  A P P R O X I M A T I O N  F O R  

THE M O D E L  OF A PARTICLE I N T E R A C T I N G  W I T H  A Q U A N T U M  

FIELD 

L. A c c a r d i ,  l I. V .  V o l o v i c h ,  2 a n d  S. V.  K o z y r e v  3 

When the stochastic approximation is used to calculate correlation functions in the model of a parti- 
c•e interacting with a quantum field, a new algebra with temperature-dependent commutation relations 
appears. This algebra generalizes the free ( Boltzmann) algebra. 

1. Introduct ion 

We consider the model of a particle interacting with a quan tum field. Such models have been extensively 
studied in elementary particle physics, in solid-state physics, in quan tum optics, etc. [1-4]. We investigate 
correlation functions using the stochastic approximation method  of Van Hove and Friedrichs. Accardi, 
Frigerio, and Lu applied this method  to quantum optic models [5]. One of these models was analyzed [6] 
in the dipole approximation. The method consists in using a scaling limit, where the asymptot ic  behavior 
of the correlation function is considered at large times and small coupling constants.  Then,  the limiting 
dynamics are integrable, in a sense, for a series of problems, and explicit expressions can be obtained for 
the correlation functions [6]. The limit is called "stochastic" because free correlators become "&correlated" 
in time in this limit. (That  is, we have the white-noise random process.) 

Our main result is that  in the temperature  stochastic limit, a new mathemat ic  s t ructure  arises in the 
model of particle interacting with a quantum field. We call this s tructure the free temperature algebra. It 
is a Boltzmannian algebra. 

We consider correlation functions for special operators (the collective variables). In the stochastic limit, 
the theory is simplified and is described by the free temperature  algebra; the correlators correspond to some 
states of the free temperature  algebra. Further investigation of this Boltzmannian algebra, which governs 
the limiting dynamics, is interesting in itself. The stochastic limit of this model at zero tempera ture  was 
considered in [7-9]. 

The simplest Boltzmannian algebra is generated by the relations 

B(k)B*(k ')  = a(k - k'), k, k' �9 R ~. 

Such relations have been investigated in mathematics  [10-15]; they were obtained in the stochastic limit of 
the model of a particle interacting with a quan tum field [7] and in the large-N limit of quan tum chromo- 
dynamics with the gauge group S U ( N )  [16]. 

The free temperature algebra below can be schematically described as the Bol tzmannian algebra with 
the generators b(k), bt(k), and p, which satisfy the relations 

b(k)bt(k,) = 6(~(k)  + kP) 6( k _ k'), 
1 - e - ~ ' ( k )  

b(k)p = (p + k)b(k), 
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where co(k) is the one-particle energy of the quantum field and fl is the reciprocal temperature. This algebra 
is a deformation of the Bol tzmann algebra. 

In See. 2, we give the general description of the stochastic limit. In See. 3, we formulate Theorem 1 on 
the stochastic limit and present examples of calculating two-point and four-point correlation functions. In 
See. 4, we provide Theorem 2, which describes a free temperature algebra. The complete proof of Theorem 1 
is in See. 5. 

2. T h e  s t o c h a s t i c  l imi t  

The stochastic limit is a scaling limit in quantum theory. We consider a system with the Hamiltonian 

H = Ho +AHI.  

The evolution operator U (x) = eitH~ -i tH satisfies the Schr6dinger equation in the interaction representa- 
tion, 

O U(~) =iAHt(t)U(X) U0 (~) 1, (1) 
O-t t = , - -  

w h e r e  Hi(t) = call~ -itH~ We take A to be a small constant and consider the accumulated influence 
of small perturbations over a long time interval by studying the limiting transitions A -+ 0, t -~ ~ and 
making the replacement t -+ t/A 2 in the evolution equation, 

If the limits 

0U(X), i H  (~-~2)rr(~) 

lim U.(,x)2 = Ut, (2) 
~--,'.0 ~/'~ 

lim' ( ')  x-+oAHI ~-~ = Ht (3) 

exist, then the limiting operator  Ut satisfies the equation 

OtUt = - i H t U t ,  U0 = 1. (4) 

If all the corresponding correlators are regular in this limit, then the limit exists. In the limit A --+ 0, 
many problems become exactly solvable. The replacement t --+ t /A 2 with the subsequent limiting transition 

--+ 0 corresponds to the simultaneous limiting transitions A --+ 0 and t --+ oc while keeping A2t = const. 
Here, A2t is a "slow" t ime scale. This limit describes the leading contribution to the dynamics in the weak- 
coupling regime at large times, i.e., the effect of accumulated weak perturbations.  The physical idea is that  
the quantum field behaves as a chaotic ob jec t - - the  quantum white noise--at  the "slow" time scale. This 
quantum white noise is the &correlated quan tum random process b(t, k), which is also called the "master 
field," and we seek the commuta t ion  relations for this object. 

We consider a quantum-mechanical  system to be the triple of an observation algebra .4, a space of 
states, and an evolution operator.  Furthermore,  we assume that  the state space is the Hilbert space of the 
Gelfand-Neimark-Segal  (GNS) representation generated by a state (.) of the observation algebra. Either 
the vacuum or the mean tempera ture  can be chosen as such a functional. The evolution operator is the 

operator U{ ~) (an evolution operator in the interaction representation). 
The stochastic limit of the observation algebra is as follows. The free evolution A(t) = e itH~ -itH~ 

corresponds to a given element A of the observation algebra. We find elements A~ for which expressions of 
the t.ype 

lira " ( 1 4 t 1 . 
)~--~0 \ ~ "  1 ( V )  1 4  

1051 



have nontrivial limits. If we find an algebra B (whose elements are denoted by Bi) and a state (<->) from 
/3 such that  the equality 

l i m l ~ A t ( t t )  l ( t k ) )  ~--,o V ""-~Ak "~ = ( (Bl ( t l ) . . .Bk( tk ) ) )  

holds, then the algebra B is called the stochastic limit of the observation algebra .4. The GNS representat ion 
of this algebra is generated by the state ((.}). For investigating the evolution determined by Eq. (1), it 
is sufficient to calculate the stochastic limit of the observation algebra elements tha t  enter the interaction 
Hamiltonian HI. 

Analyzing the per turbat ion series (see below), we conclude that  by virtue of the Wick theorem, a nor- 
mally ordered per turbat ion series can be represented as a diagram series. For some models, only semiplanar 
diagrams contribute in the stochastic limit. An algebra of free creat ion-annihi lat ion operators corresponds 
to semiplanar diagrams. In the considered model, the deformation of the Bol tzmann algebra we call the 
free tempera ture  algebra arises in the stochastic limit. 

3. The  m o d e l  of a part ic le  in terac t ing  w i th  a q u a n t u m  field 

We study the model of a particle interacting with the quan tum field at a nonzero temperature .  The 
coordinate q = (q t , - . - ,qd)  and m o m e n t u m  p = (Pt , - . .  ,Pa) operators of a quan tum particle satisfy the 
commuta t ion  relations 

[qm,Pn] -  Jam,. 

The quantum field is described by bosonic operators (operator-valued distributions) 

a(k) = (a , (k) , . . .  ,ad(k)), at(k) = (al (k) , . . .  ,at(k)),  k e a a, 

with the commuta t ion  relations 
[aj(k),ath(k')] = 5jha(k -- k'). 

The Hamiltonian of the considered system is 

1 2 H = Ho + AHI = w(k)at(k)a(k) dk + -~p + AH[, 

where w is a positive function on R a, e.g., w(k) = [k[, and HI determines the interaction between a free 
particle and the quantum field. The particle-field interaction is expressed via the potential  A(x) of the 
quantum field acting on a particle with the coordinate x E R d. The interaction potential  is 

HI = pA(q) + .A(q)p, (5) 

where 

A(q) = f dk {g(k)e'kqat(k) + -~(k)e-ikqa(k)}. 

The time dependence of Hi(t) is determined by the operator 

(6) 

I - -  . ( ~ ( k ' 1 4 - k  p )  t . .  a~(t, k) = ei~rH~ -i-~n~ = ~e x, e-Z'Cqa(k), (7) 

where cS(k) = w(k) + k2/2. 
We investigate the limit of temperature  correlation functions, 

hm (ax  ( tN,kg)a x ( tN-t ,kN-1) . . .a~x'( t l ,k t)) .  
),-+0 
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The means 

- k') 
(a(k)at(k '))  - 1 - e-~"(k) ' 

( a t ( k ' ) a ( k ) ) -  e~,~(k)_ 

are tempera ture  bosonic correlators (other correlators can be calculated from the Wick theorem), and 
e - { e g , . . . , q }  e {1,0} N, e E {1,0} (e = 0 for a and c = 1 for at).  The temperature  mean (.} is 
the Gibbs mean w.r.t, the field degrees of freedom that  does not include the quantum particle degrees of 
freedom: 

(X) = t r ( X e  - z  f ~(k)at (k)a(k) dk) 
t r ( e -~  f ~(k)at (k)~(k) dk ) 

The mean (.) w.r.t, the quan tum particle degrees of freedom is the conventional expectation, i.e., (pX) = 
p(X). 

For N = 2n and for equal numbers  of creation and annihilation operators,  we consider the parti t ion 
a(r of the sequence r into pairs from zero and unity, which corresponds to the Wick expansion 

(a~N(tg,  ~N-, �9 q ( t l , k l ) )  kN)ax ( t N - l , k N - 1 ) .  .a x 

into the creat ion-annihi la t ion operator  pairs. Any such part i t ion corresponds to  a Wick diagram. We are 
interested in part i t ions tha t  correspond to semiplanar nonintersecting diagrams. We call such partitions 
nontrivial. 

A Wick d iagram can be constructed from a part i t ion as follows. We place the indices 0 and 1 of 
the sequence ~ on an interval in the increasing-number order. We then connect  indices for which the 
corresponding pair exists in the part i t ion a(e) with arcs. If all arcs of the resulting diagram can be placed 
without  intersections on one half-plane w.r.t, the interval (line), then  we call such a diagram a semiplanar 
nonintersecting diagram and the corresponding part i t ion a(~) a nontrivial part i t ion.  

T h e o r e m  1. The l imit  o f  the temperature  correlation functions always exists. Moreover, 
1. i f  the number  o f  creation operators differs from the number  o f  annihilation operators, then the 

correlator is zero (even before the l imit ing transition); 
2. i f  the numbers  o f  creation and o f  annihilation operators are equal, then the l imit  o f  the correlator 

lim(a~,~"/t k ~a ~ " - ~ l "  ~" ~ . .  :~-m" " t 2., 2nJ ~ t~2,~-l ,~2n-U- a~'(tl ,  k l ) )  (8) 

is the sum over nontrivial  part i t ions 

n 

a(e) h = l  

x 5 (~(k .~h  ) + kmhp + E ( - 1 ) ~ X ( m ~ , m ; ) ( m h ) k ~ o k . ~ h  
OL 

k 2 ) (9) 
- -  E h  m h  ' 

where {(m~, mj);  j = 1 , . . . , n }  are parti t ions o f  the set { 1 , . . . ,  2n} that  correspond to the parti t ions a(e). 
' and rnh correspond to the annihilation and creation operators respectively, The quanti t ies m h 

1 ! 

c , ~ , % ( k )  - 1 - e-0~(k) '  mh > mh, 

1 
Cm,m, h (k) = efl~(k) _ 1' mh < mh,  
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! 
( -1 )  ~" = 1 for rn' h > mh and ( - 1 )  ~h = - 1  for m h < mh. The [anction X(~, . ,%) is the indicator (the 

771, ! / characteristic function) of  the interval (ma ,  ~), i.e., the sum over a goes over pairs ( m a , m a )  such that 
! 

mh is placed between rno and m~. 

We prove T h e o r e m  1 in Sec. 5. Here, we i l lustrate Theo rem 1 by calculat ing two-poin t  and  four-point  
correlators. 

The  two-point  correlator  is 

= lim 1 e_it/)~(;(k,)+k,~)e_iq(k~_a~)ei_~(;(k~)+k~p)(a(k~)at(k2)). l im{a~(t 'kt)ai(~- 'k2))  ~,-~0 -~ 
X--+O (10) 

Using the formulas for bosonic two-point  correlators,  we obta in  

lim 1 ~-" (;(k~)+k,p) 6(ki - k2) 
x-~0 ~ e-~ ~-vz- 1 - e-~o(k~) " 

Using the formula 

x--,olim ~-~1 e~" (~(k)+kp) = 27r6(~(k) + kp)6(t), 

we obtain the following expression for the two-point  correlat ion function limit:  

( 1 1 )  

~(kl - k2) 
limta:~(t, k l )a t ( r ,  k2)} = 27r~( t -  T)6(~)(kt) + kip) I e-fl~(k~)" 
X--~O 

(12) 

We now consider the two-point  correlat ion funct ion 

l im{a[(r,  k2)ax(t, kt)) : l im 1 { " i "  ) X-~O ),-~o ~ af(k2)e~k2qe ~ (~(k2)+k2P)e-i-~'z (~(kl)+k~P)e--ik'qa(kl) " (13) 

Using the Weyl opera tor  c o m m u t a t i o n  relat ions 

e i a P  e i f lq  ~ e i f l q e i a p  e ia l3 ,  

where [p, q] = - i ,  we obtain 
1 ~(k2 - kl)  

l im 
,x~o X 2 e~,O(k~) _ 1 e - / ~  (a(k,)+k,p-k~) 

for correlation funct ion (13). Using formula (11), we obta in  

~-~olim {a t (r, k2)a:~(t, kl)} = 27r~(t - T)~ (c~(kl) + kip - k 2) e-F~(k[) : i (14) 

We calculate the limit of the four-point  correlat ion function 

lim(ax(tl,kl)a:~(t2, k2)a[(t~, 'k2)ax(tl, t , k l ) )  . ,  
X-+0" (15) 

The Wick t empera tu re  theorem implies 

< ~ L ( k ~ ) , 4 k 2 ) , d  ( G ) a  t (k'~)> = 1 1 
x 

1 - (~-~(k,)  1 - e -~ (k2 )  
• ( ,~(k2 - k ; ) ~ ( k l  - k i )  + ~ ( k l  - G)~(k ,_ ,  - ~ : i ) ) -  (16) 
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Formula (16) for the bosonic correlation function (a(kl)a(k2)at(k'2)at(k~)) contains two terms, which are 
proportional to &functions and correspond to the Wick diagrams. The result for the first term 121 propor- 
tional to 5(kl - k~)6(k2 - k~) is 

1 1 
/21 = lim ( - k~)5(k2 - )~--~o 1 - e - ~ ( k ' )  1 - e-~w( a2) 6"kl 

k~)x 

. t l  _ i t  - -  I t 2  _ i t  

x -~e--'"~--~(~(k~)+k'P)e-i~(~(k2)+k2P)e-i'~--~ :z k, k2 (17) 

From formula (11), we obtain 

121 = (2r)  2 1 1 
1 - 1 - 5(k  - kl) (k: - k;)5(t  - tl) (t: - t ; ) •  

X (~(~(]r -}- klP)(~(~(k2) q- k2pq- klk2). (18) 

The second term/2~ of the correlation function is proportional to 5(kl -k~)6(k2 -k ' l ) ,  and formula (11) 
implies 

1 1 
122 = lim ( - k12)6(k2 - ~-~o 1 - e-fl~(k,) 1 -- e-~"~(k~) 5"kl 

k~)x 
. t l - - t  s ~ . t 2 - - t  ! t i 

e-~ ~ (,~(k, )+k,V) e - ,  ~ (Z~(k~)+k~V) e- i  ~ k, k~ =0.  

Therefore, formula (18) is the four-point correlation function. 

4.  T h e  f r e e  t e m p e r a t u r e  a l g e b r a  

We want to construct  the algebra B and the states ( ( ' / / o f  this algebra. Then,  the correlation functions 
of the algebra B w.r.t, the s tate  ((.)) must  reproduce the stochastic limits of the tempera ture  correlation 
functions of the observation algebra ,4, i.e., the identities 

lim ( a ~ N ( t N , k N ) a ~ N - ' ( t N _ l , k N _ l ) . . . a ~ ( t ~ , k t ) ) =  ( (b 'N ( tN , kN)b~-~ ( tN_~ , kN_ l ) . . . b~ ( t~ , k l ) ) )  
),---~0 

must be valid. 
The correlation function from Theorem 1 tha t  corresponds to the index sequence ~ is equal to the sum 

over semiplanar diagrams corresponding to parti t ions a(r The contr ibution of each semiplanar diagram is 
the product  of arc terms. An arc te rm consists of the m o m e n t u m  &function with the tempera ture  weight 
(this comes from the bosonic correlation function), the 2~r6-function w.r.t, the corresponding times, and the 
phase &function. The phase is the sum of the arc factor and the factors of all arcs that  lie inside the given 
arc. This simple s t ruc ture  permits  the correlation function to be expressed as the state of the algebra B 
whose s t ructure  is given by the following theorem. 

T h e o r e m  2. Correlation functions of  Theorem 1 are reproduced if the quanti ty b(t, k) is the sum of 
two independent random quantities 

b(t, k) = bl (t, k) + b~(t, k), (19) 

which satisfy the free temperature algebra relations, and if the functional ((.)) is equal to the mean vacuum 
for the fields bi( t, k ). The generators { p, bi( t, k ), b~ ( t, k ), i = 1,2}, of the free temperature algebra satisfy 
the relations 

5(k l  - k2) (20) bl(t, kl)b[(r, k2) = 2nS(t - T)5(~(kl)  + kip) 1 _ e - ~ ( k ~ ) '  

kl)b~(T, k a ) = 2 ~ 6 ( t  - T)6(~(kl) + kl(p - ~lgge--TL-(~(k~y - 1' 

k ) p =  (p + k)bl( t ,k) ,  

k ) p = ( p -  k)b2(t,k). 

b2(t, 

bl(t, 

bl(t, 

b2(t, 

(21) 

( 2 2 )  

(23) 

(24) 
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P r o o f .  The proof is by direct calculation. We expand the correlation function 

((b ~N (tN, kN)beN-'(tN-1, kN-1).., b e. (tl, kl))) 

in the sum of correlation functions of monomials in the generators b~(t, k). We use relations (20)-(22) for 
canceling in the monomial  correlation functions. We push the obtained &functions between the be(t , k) 
using relations (23) and (24). We continue this procedure until the monomial  is normally ordered. Because 
the functional ((-)) is the mean vacuum, the correlation function contains only the &function contribution.  

By virtue of relations (20) and (21), the pairings bl(tm,h, km,h)b[(tma , kmh) and b2(tmh, kmh)b~(tm,h, kin,h) 
are 

(~(krn' h -- kma)Cmarn'h (kmh)2~r6(tm'h -- tmh)5(W(kmh) + kmhp  - ~h~2mh ) .  (25) 

Relations (23) and (24) contribute 

~( - -1 ) "X(mo,m: l (m~)  
O~ 

in the phase shift (the argument  of the last &function in (25)), which arises when pushing the &functions 
through the b~(t, k). This completes the proof of Theorem 2. 

The fields bi of the free tempera ture  algebra appear in the stochastic limit of the Araki-Woods con- 
struction, which permits the temperature  boson state in its bosonic variant to be represented through the 
vacuum state of the bosonic pair. 

We introduce two independent bosonic fields cl(k) and c2(k) with the commuta t ion  relation 

[c,(k),  c~(k')] = 5 , A ( k  - k'). 

Each of the fields ci(k) acts in the Fock representation. Performing the Bogoliubov t ransformation 

a(k) = v/-m(k)Cl(k) + v/m(k) - lct2(k), 

at(k) = ~ c I ( k  ) + v / m ( k ) -  lc2(k), 

(26) 

(27) 

we obtain 

For the mean vacuums, the relation 

[a(k),  d ( k ' ) ]  = 5(k - k'). 

(a(k)at(k')) =m(k)6(k  - k') 

holds. If we take 
1 

re(k) = 1 - e - ~ i '  

then the temperature  state arises. 

In the stochastic limit, the operator a~(t, k) becomes the sum of two white noises, bl(t, k) + b~(t, k). 
Formula (26) then becomes 

b(t, k) = lim 1 e_i_ ~ (a(k)+kV)e_ikqa(k) 
~--,o )~ 

= lira 1 e _ i ~ ( Z 4 k ) + k p ) e _ i k q ~ c l ( k ) +  lim 1 - i '  
A--~O ; ~ o  ~e  ~ - ( ~ ( ~ ) + ~ ) e - ' ~ J . ~ ( k ) -  14(k) = 

--- bi(t. k) + b~(t. ~:). 
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5. The n-point  correlation function 

Here, we calculate stochastic limits of n-point correlation functions for a particle interacting with a 
nonrelativistic quan tum field, i.e., we prove Theorem 1. 

Using the Weyl-operator  product  rules 

eic'P ei~q = ei(aP+gq) ei �89 

we obtain the free energy of field operator  (7) 

1 [_i(_l)e{~___ff 1 t 2}] ai ( t , k  ) - sexp (ga(k) + kp) + k q -  -~-~k a~(k). (28) 

For the index sequence e = { e 2 , , . . . , q }  E {1,0} 2", we obtain 

- i ( - 1 )  ~' z ,  k ~ ]  a'"(kh) , a2( t j 'kJ)  = 11  ~ e x p  
\J=~ J=~ . A JJ 

(29) 

while 

a~h(kh) = E H 5(km'h - k~h)cmhm'.(k~")' 
\ h m t  m'hCm h h = l  

(30) 

which is equal to the sum of pairings of all creat ion-annihi la t ion operators. The  operators are assumed to 
be ordered from right to left in these products;  therefore, we obtain 

ai'(t,, k, 
\ j = l  

= exp - i ( - 1 )  (' ~ ( ~ o ( k j ) + k j p ) + k j q -  2A 2 a j j j x  

n 

• l - I  - 
s mh~km h h = l  

(31) 

Using the Weyt-operator  product  rules, we find 

2 {1 
exp 

i , . t j - h i  
= exp 2 ~ ( - 1 ) e ' + q ~ j t q ~  ~ x 

l<_j<l<_2n 

x exp - i ~ - ~ ( - 1 )  ~' ~ ( ~ ( k j )  
j = l  

1 tj 2 

(32) 

Because tile indices m,~ and mh range over disjoint halves of tile 2n indices l, ( - 1 )  %'~, = 1, and ( - 1 )  ~ ' .  = 
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-1,  we obtain the following expression for the phase factor entering formula (32)" 

2TI 
i 
2 E E(-1)'~+~'kJ kt(t) - t,) = 

/ = l  j<l 

i~-~.{ ~ (_l)~kjkm,(tj_t.~,)- = - ~  
h : l  l<j<rn h 

i E km.k ,%(t ,%-tm,) -  
---- ~ h : l  o~ 

~ m h  m - t  "ro.~ ~ m  h 

- E k.%kmh(tm, - t ~ . ) +  E 

_- i 

2 
h : l  

Here, we have used kin, 
fourth term, we obtain 

E (-1)~kjkmh(tj-tm") 
l ~ j<mh  

rnfl<rn~h 

kin0 kmz (tmfi - tm'~)-- 

k.~,kmh (tin, - tm~); 
/ 

= 

(33) 

= km~. Unifying the first term with the third term and the second term with the 

I h = 

'<-4, m;<mh m e .  

E km~ - t m ~  ) -  E 
a ~t 

i i i i 
m e .  ( m  h rrl.c. ~ m h 

E km~km,(tm. - tmh) + E 
ot ot 

m h < = m : < m l h  

km. kmh(tm; - tmh) = 

m I .~ < rn h 

km~km.(tm~-tm,~)- E km~kmh(tm'~-tmh) = 

' <m'h m Q  

E k'~~ E k'~okmh(tmh-tm'h) 
o~ o~ 

! 
for  m h > m h a n d  

m h ~(l~. a ( m  h 71~ a 

for m~ < rnh. The sum of the second and fourth terms is 

tin' h ) q- kmh k,n h ( trna -- tin' h ) 

rn~<rn~ m 6  < nZh 

- I I h =  E krnokmh(trna--tm'a )- E km*kma(tm~-tma) = 

rnB <m~h m 5  " ( r n h  m 6  < m h  

= E kmokmh(trn~-tm'~) - E k'~k'~(t'~-tmk)- ~ km~kmh(tm'h--tmh) = 
fl 6 6 

m h  < r n B  < r r t h  m s < r o b  

E km~krnh(tm~ ~ -- tm'~) + E krn~krnh(trnh -- trn'~) q- kmakrna(trna - trn,h) 

for m' h > 'mh and 

i 
Tn h < n a  3 < Tit h Tn6 <~ r r t  h 

- I I h = -  Z k'~jk"~h(t"~.J-t'r E k'"~k"~a(tmh-tm'h) 
fl 5 
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for m~ < mh.  We now have 

Ih + IIh = 

i t i i 
Tn h ~m ~ ~ h  m ~ ~rn h 

E km,~kraa(tm, -- tin.) + E km~ -- tin' h ) -  
OL Cl 

m h  < m O  < r n ~ h  r n  B < m h  

- Z k'~okmh(tmo-tm'h)- E 

- -  krnh kmh (trna - t i n '  h ) 

k~,  k.~ (tin. - t % ) -  

(34) 

! 
for m h ), mh and 

Ih + I I h  = - 

r a h ( m a ( r n h  m o 

Z km~krnh (trn a -- tmh) q- E km'~ krnh (tmh -- tm~h )q- 

t mh<mB<mh mB<mh 

+ Z kmokm.(tmo-tm' h ) -  E kmo km"(tm" -tin' h)+ 

+ k,~.km.(tm. - tin,h) 

for m~ < mh. 
We consider the following t e rm  in formula (32): 

2n { tj 
- i  y]( -1)  ~, V(~(kj) 

j=l 

n 

E H (~(kmh -- kmh)Crrthm'h (]gmh)' 
mlh~m, h=l 

Because 

the desired t e rm becomes 

E (-1)r = -  
l < l < 2 n  

(-1)r = o, 
l<l<2n 

(tin. - t%)km. ,  
l<h<n 

(35) 

\ + km.p - -~ mh f l  a(kma - kmh)c.~.% (k~,,). 
m~:/:mh h=l 

After  the change of variables 
u r e a  = tma, 

V m  a = tmh - tm k, 

we can formulate  the following lemma.  

L e m m a  1. For the correlation function in Theorem 1, we have 

(36) 

a x (tj, kj) 
\ j = l  

= exp 2A 2 Z { I h + I I h  exp i E 
h=l l<h<n 

r t  

Z 1-[ a(k,,,;,- k,nh)cm~m~(kmh)- 
mlh Crnh h=l 

vmh ( 
A-- r -  ~ (km.  ) q- krnhP-- -~ mh 

(37) 
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The phase factor in (37) is 

i I i i 
m h < m a < n t  h m ~ < m h  

Z k m Q k m h  ( - - ~ m ~  + ~nla -- Utah) + Z km~ Umh--  

mh<mB<m ~ m B < m h  

k m h k m h V m  h (a8) 

I for  m h > mh a n d  

m'h <m" <m h m~ <rn~, 

E ~rnakrnh (--Uma -t- "l~mo -- Urnh) Jr- Z k m ~  Vmh + 
c~ C~ 

i 
m h < m B < m h  m B < m h  

-~- E k r n B ~ m h ( V m h  + "U'rn'13--Utah)-- Z krnakrnhVrnh -~- krnhkmhYmh 

! 
for m h < m h .  

The Riemann-Lebesgue lemma implies that the oscillator factors of type e x p ( i k 2 u / A  2) vanish in the 
limit A -+ 0. Therefore, the partition { (mh,m~)}  in (8) survives in this limit iff for arbitrary fixed h = 
1 , . . . , n  and for any a, either 

! / ! 
m h  < m a  < rr~ h l=~ m h  < m a < m h, 

Or 
I I I 

m h  > m a  > m h "l::> m h  2> m a :> m h 

i.e., we have a partition corresponding to a semiplanar nonintersecting diagram. Correspondingly, only 
nontrivial partitions of the sequence e = {e2~,. . . . . .  , et} E {1, O} 2~ contribute to the correlation function 
in the limit. Letting { ( m h ,  rn~)} denote the partition, we find the corresponding phase factor (38), 

mh<m'o ' ' ' < r r t  h m a < m  h r n  <mh 

a a 
k ~ k m h V m ,  - k m h k ~ h v , ~  h (39) 

I for m h > m h  and 

i i t ! m h <rnc~ <mh r n  o "(rn h m~ , (m  h 

krrtokmh(- '~  - - V m h )  q- ~ ]~rn,~kmhl)mh -- 
a e, 13 

km~kmhvm h + kmhkmhYm h 

for w~ ~ 77/, h. 
/ We investigate the obtained phase factor. For rn h > mh, we have 

i i 
r n  o <m h rTt h <ra~ <ralh 

Z k m ~ k m h V m h  = 
o Ct 

k m ~ k m h V m h  

i 
7~c~ ~ m h  

k m o k m h V m h  �9 

Because m~ # mh, 
I 

717. o <~ 7Tt h 

)_2 
! 

zn. o ( 'm h 

Z ~;Tn o l~rlt h 'V rrt h . 
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Hence, the phase factor is 

m h  ~ m  a ~ m  h m e ,  ~ m h  7r ib  ~ m h  

E + E 
a a B 

km Bkm hvm h -- kmhkm hvm h. 

! In the case m h < mh, the condition for the absence of intersections implies 

Therefore, the phase factor is 

i i m h <:rr* a <mh 

E kmo km~ Vmo + 

Introducing the notation 

m h < r a a  m h 

i ! rna<m h rnB <rn ~ 

E kmakmhVmh -- E 
g 

kmok=. ( -vmo - vm.). 

kmokmhVmh + kmhkmhVmh. 

Ih +I Ih  = 4~h -- (--1)eh k,~h k.~h Vmh , 
! ! where ( -1)  ~h = 1 for m h :> mh and ( -1)  ~" = -1  for m h < mh, we obtain the formulas for the phase factor, 

( I )  h = - -  

E 
l < h < n  

E (-1)~hkm~176 - ~ (--1)e~ 
ae(mh,m' h) or (m' h ,mh) o,:he(m~, ,reX) or (rn 2 ,m a) 

~ h : - - 2  E E (-1)~~ 
I < h < n  a:hE(ma,m~)or(mX,mo) 

- - - - - -2  E E(--1)e': 'X(m~ (mh)km~ 
l < h < n  

Here, X(m,,ma) is the indicator of the interval (ma, m ' )  or (m~, ms).  Therefore, the following lemma is 
proved. 

L e m m a  2. The contribution of  nonintersecting diagrams in the correlation function is 

exp i E ( W ( k m h ) - F  kmhP ) q- E(-1)c"/k(m,~,m,)(rlZh)k.m,~kmh - 
l<h< :n  a 

)] - ~k :h  + ~ (-1)e'k2mh E 1-I 6(km'h--kmh)Cmh'% (kmh)" 
rnlh :/=mh h = l  

Using Eq. (11) and keeping only nontrivial partitions, we obtain 

l i r a  a e2" e2,~- l . . :~__+o ( x (t2n,k2'~)ax ( t 2 , - , , k 2 , - t )  . a ~ ' ( t l , k l ) ) =  

= E 1 - I  ~ ( k r n ;  - kmh)Cmhmrh (kmh)27r(~(tm'h -- t m h ) X  
rnlh ~mh h : l  

X ~(W(kmh)  + kmhp + E(--1)c'~X(m~,m.)(mh)]gm,.kmh - - ~ h k 2 h ) ,  
OL 

where {(m~j,mj): j = 1 . . . . .  n} is the nontrivial partition {1 , . . . ,2n}  associated with E. Theorem 1 is 
proved. 

This work was partially supported by the Russian Foundation for Basic Research (Grant No. 96-01- 
00312) and })y INTAS (Grant No. 96-0698). 
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