
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. NUMER. ANAL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 45, No. 6, pp. 2345–2367

SPECTRAL ANALYSIS OF NONSYMMETRIC QUASI-TOEPLITZ
MATRICES WITH APPLICATIONS TO PRECONDITIONED

MULTISTEP FORMULAS∗

DANIELE BERTACCINI† AND FABIO DI BENEDETTO‡

Abstract. The eigenvalue spectrum of a class of nonsymmetric preconditioned matrices arising
in time-dependent partial differential equations is analyzed and discussed. The matrices generated
by the underlying numerical integrators are small rank perturbations of block Toeplitz matrices;
circulant-like preconditioners based on the former are considered. The eigenvalue distribution of
the preconditioned matrix influences often crucially the convergence of Krylov iterative accelerators.
Due to several reasons (lack of symmetry, band structure, and coefficients depending on the size)
the classical approach based on smooth generating functions gives very little insight here. Therefore,
to characterize the eigenvalues, a difference equation approach exploiting the band Toeplitz and
circulant patterns generalizing the well-known results of Trench is proposed.
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1. Introduction. In this paper we focus on small rank perturbations of block
nonsymmetric Toeplitz matrices preconditioned by circulant approximations intro-
duced in [3, 4, 7].

An n× n matrix An = (aj,k) is said to be Toeplitz if aj,k = aj−k, j, k = 1, . . . , n,
i.e., An is constant along its diagonals, and quasi-Toeplitz if it is a small rank per-
turbation of a Toeplitz matrix. Ăn is circulant if it is Toeplitz and its diagonals
satisfy ăn−j = ă−j . The circulant matrices Ăn are diagonalized by the Fourier matrix
F = (Fj,k), Fj,k = e2πijk/n/

√
n, j, k = 0, . . . , n − 1, and i is the imaginary unit;

see [19]. Circulant matrices are easily and efficiently invertible using the fast Fourier
transform (FFT), as in [16].

Perturbations of block nonsymmetric Toeplitz matrices arise in the numerical
approximation of time-dependent partial differential equations (PDEs) by generaliza-
tions of implicit multistep formulas used in boundary value form [20, 1, 14]. The
techniques considered here could be adapted to other discretization schemes based on
finite differences for PDEs.

Other circulant-like matrices used in the PDE context can be found in [8].
As explained in section 2.1, the matrices of the underlying linear systems can be

written as follows:

(1.1) M = A⊗ I − hB ⊗ J,
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where A and B are n× n small rank perturbations of band Toeplitz matrices whose
entries are given by the coefficients of the scheme involved, I is the identity, and J is
an m × m matrix which can be large and sparse. More precisely, J is the Jacobian
matrix of a system of equations discretized in space by finite differences; see [4] for
details.

Unfortunately, when m and/or n are (even moderately) large, iterative solvers for
(1.1), used without preconditioners or with general purpose preconditioners, such as
those based on incomplete factorizations, often converge very slowly or not at all; see
[4, section 5]. In general, direct methods cannot exploit the block structure of (1.1).

Preconditioners introduced in [4] take into account this structure. They are block-
circulant and, in compact form, can be written as

(1.2) P = Ă⊗ I − h B̆ ⊗ J̃ ,

where Ă and B̆ are circulant-like approximations for A, B, respectively, and J̃ is a
suitable approximation for J . Their performance has been tested in several papers
[4, 5, 17].

The distribution of the eigenvalues of the matrices M and P−1M can influence
the convergence of iterations of Krylov subspace methods. This is the case, e.g., if
the condition number of the eigenvector matrix is moderate; see [22].

Tables of the condition number κ2(X) of the eigenvector matrix X for the (left)
preconditioned matrix P−1M and related discussions can be found in [9], showing
that eigenvalues can give reasonable information in our setting. Similar conclusions
hold true for the nonpreconditioned case for most of the methods considered here.
More details are reported in section 6.

A theoretical investigation of the eigenvalues is hard because, in general, P and
M are nonsymmetric and nonsymmetrizable. Moreover, as explained in section 3 an
analysis of the eigenvalues based on the generating function of the underlying Toeplitz
matrices is not feasible here, although very meaningful for Hermitian matrices [16, 23].

These difficulties motivate us to a “direct” analysis, based on the generalized
eigenvalue problem

M u = λP u.

The tools used here are completely different from those in previous works such as [10],
[7], or [25]. In particular, we cannot write Ă, B̆ as small rank perturbations of A, B.

By using instead linear difference equation theory and generalizing Trench’s ap-
proach [33, 34], we derive closed formulas and first-order expansions for λ as a function
of the time step h and of the eigenvalues of the Jacobian matrix J . This characteri-
zation involves the roots of a sparse polynomial whose degree is related to the size of
A and B.

Our estimates are explicitly computed for some well-known 2-step integrators and
compared with the “true” eigenvalues approximated by Matlab. The approach seems
very useful for spectrum localization and is not too expensive provided that A and B
have moderate size or an efficient rootfinder is associated with our technique.

The paper is organized as follows. Section 2 introduces the problem and the main
circulant preconditioning techniques. In section 3 we discuss the relevant literature for
spectral analysis, and we explain in more detail the motivation of our work. Section 4
is devoted to the spectral analysis, from the general case to the 2-step case study. In
section 5 we describe two classical PDE examples, representing the test problems for
our experiments of section 6.
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2. Preliminaries. Let us consider a model problem based on a first-order initial-
boundary value time-dependent partial differential equation

(2.1)

⎧⎪⎨
⎪⎩

∂u
∂t

= L(u) + f, x ∈ D,

G(u) = g, x ∈ ∂D,
u = u0, t = t0, x ∈ D,

where D is an open domain in R
N , N ≥ 1, and L is a differential operator, nonlinear

in u in general. Equations (2.1) are evolutionary because they describe evolving
phenomena and combine differentiation with respect to both space and time. For
simplicity, we will focus on linear operators L and G. However, most of the techniques
considered here can be applied to a more general nonlinear framework by recalling
that often numerical codes linearize the nonlinear algebraic equations by using a
quasi-Newton step; see [21].

2.1. Linear multistep formulas in boundary value form. In the following,
a brief description of a generalization of linear multistep formulas is given.

If the partial differential equation (2.1) is first discretized in space, we obtain a
system of ordinary differential equations (ODEs). Such a system can be very large
and is treated by means of a numerical method for ODEs.

Here we focus on linear multistep formulas applied in boundary value form (see
[1, 14]), which generalize classical implicit linear multistep formulas by using both
initial and boundary conditions even in the presence of an initial value problem. Such
schemes have a relatively long history (see, e.g., [20, 1]) and can be very useful in
some communities where “time” has no special orientation (see an example of these
problems in the work by Shirley referred to in [26]).

More precisely, we suppose that (2.1), with solution u(x, t), has been discretized
in space on a certain grid Ωτ , with mesh width τ > 0, to yield a semidiscrete system

(2.2) y′(t) = F (t, y(t)), t0 ≤ t ≤ ts, y(t0) given,

with y(t) = (uj(t))
m
j=1, m being related to the number of grid points in space, and,

for unidimensional spatial domain D, i.e., N = 1 in (2.1), uj(t) approximates u(xj , t)
at some xj , j = 1, . . . ,m. The contribution of the discretized boundary conditions
is enclosed in F . In order to approximate u(x, t) on Ωτ for t = t0, t1, . . . , ts, an
appropriate temporal mesh, we apply an ODE method with step size h > 0.

Using the shortened notation Fn+i = F (tn+i, yn+i), i = 0, . . . , k, if yn approxi-
mates y(tn), linear multistep formulas in boundary value form are given by

(2.3)
k∑

i=0

αiyn+i = h

k∑
i=0

βiFn+i, n = 0, . . . , s− k,

where y0 = y(t0) is provided by initial conditions of (2.1), while y1, . . . , yν−1 and
ys−k+ν+1, . . . , ys, computed at the mesh points t0, . . . , tν−1, ts−k+ν+1, . . . , ts, are de-
termined by using other difference formulas, usually of the same order of (2.3). In
practical use, we couple three sets of formulas: ν − 1 for y1, . . . , yν−1, s− k + 1 with
the coefficients as (2.3) and k − ν for ys−k+ν+1, . . . , ys. We note that the formulas of
the first and third sets are still based on linear multistep finite differences expressions
as (2.3), but each one has different coefficients (and is independent from those in
(2.3)), while all formulas in the second set, based on (2.3), share the same coefficients
α0, . . . , αk, β0, . . . , βk.
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As announced, we simplify the notation; i.e., we suppose F linear, F (t, y(t)) =
J y(t)+ g(t), where J ∈ R

m×m and g is a vector-valued function of t. The underlying
discrete boundary value problem can be solved by forming the following linear system:

Mz = b, M = A⊗ Im −B ⊗ (hJ), zT =
(
yT0 , y

T
1 , . . . , y

T
s

)
,

b = e1 ⊗ y0 + h(B ⊗ Im)g, gT = (g(t0)
T . . . g(ts)

T ),(2.4)

where A, B are (s + 1) × (s + 1) real-valued quasi-Toeplitz nonsymmetric matrices
and e1 is the first column of the identity matrix. In practice, we accommodate the

coefficients αj , α
(r)
j , j = 0, . . . , k, r = 1, . . . , ν − 1, s − k + ν + 1, . . . , s in A and

βj , β
(r)
j , j = 0, . . . , k, r = 1, . . . , ν − 1, s− k + ν + 1, . . . , s in B such that we can

look at A as Â + RA and B as B̂ + RB , Â and B̂ Toeplitz matrices with stencil(
0 . . . 0 α0 . . . αν . . . αk0 . . . 0

)
and (

0 . . . 0 β0 . . . βν . . . βk0 . . . 0
)
,

respectively. The underlined element is the one on the main diagonal, and RA and
RB have nonzero elements at most in their ν× (k+1) upper left and (k−ν)× (k+1)
lower right corners.

The additional work needed for the solution of the discrete problems (2.4) with
respect to those for the solution of implicit standard linear multistep formulas (i.e.,
used with only initial values) is justified by better stability and order properties; see
[14, 4] for details and discussions.

More on the matrices A, B, and M generated by the schemes above can be found
in [7, 6]. Examples of matrices A, B, and M for 2-step formulas will be given in what
follows.

2.2. A review of block-circulant preconditioners. We noted in [4] that, in
d dimensions, d > 1, when a fine enough spatial discretization is used in (2.1), direct
methods are often not feasible to solve linear systems (2.4). Iterative methods are
mandatory when the discrete problem is generated by a three-dimensional or even two-
dimensional differential model (2.1). In [3, 4] Krylov subspace methods were proposed
to solve (2.4). However, without preconditioning, the convergence can be very slow or
iterations do not converge at all. Therefore, in [3, 4] a preconditioning strategy based
on circulant matrices was introduced (see also [16]). Thus, other approximations
were introduced in [5, 8]; see [8] for a more comprehensive bibliography. By left
preconditioning we mean solving the equivalent nonsymmetric linear system

(2.5) P−1Mx = P−1b

instead of Mx = b. Right preconditioning is obtained by considering

MP−1y = b, x = P−1y.

Note that matrices MP−1 and P−1M are similar and hence share the same eigenval-
ues. Since we are interested in the eigenvalues of (2.5), our analysis is based entirely
on left preconditioning.

In what follows, some block-circulant and block-circulant-like preconditioners for
(2.4) are briefly reviewed.
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Let us consider the following approximation of the matrix M :

(2.6) P = Ă⊗ Im − hB̆ ⊗ J̃ ,

where J̃ is a suitable approximation of the Jacobian matrix or the Jacobian itself. Ă,
B̆ are circulant matrices whose entries are derived from the coefficients of the main
method (2.3) as follows:

Ă = circ(ă), ăj = cj,1(s)αj+ν + cj,2(s)αj+ν−(s+1),

B̆ = circ(b̆), b̆j = cj,3(s)βj+ν + cj,4(s)βj+ν−(s+1), j = 0, . . . , s,(2.7)

where circ(·) denotes the circulant matrix having the first column specified in the
argument, and the cj,i(s), i = 1, . . . , 4, j = 0, . . . , s, are linear in j. It is understood
that αj (βj) is zero for j < 0 or j > k in (2.7), so that the sparsity of A, B implies

that of Ă, B̆. The coefficients ci,j(s) in (2.7) are chosen in such a way that Ă, B̆ are
suitable approximations of A, B in (2.4), respectively.

The approximation of A, B with T. Chan’s optimal circulant preconditioner (see
[18]) requires that

(2.8) cj,1(s) = cj,3(s) = 1 − j

s + 1
, and cj,2(s) = cj,4(s) =

j

s + 1
, j = 0, . . . , s,

while for Strang’s natural (or simple) circulant preconditioner (see [29])

cj,1(s) = cj,3(s) = 1, j = 0, . . . ,

⌊
s + 1

2

⌋
,

cj,2(s) = cj,4(s) = 1, j =

⌊
s + 1

2

⌋
+ 1, . . . , s, cj,i(s) = 0 otherwise.

On the other hand, if we consider, instead of (2.8), the following definition of the
coefficients cj,i(s) for Ă and B̆:

(2.9) cj,1(s) = cj,3(s) = 1 +
j

s + 1
, cj,2(s) = cj,4(s) =

j

s + 1
, j = 0, . . . , s,

we get the so-called P-circulant approximations which, used in (2.6), gives the P-
circulant (block) preconditioner, introduced in [3, 4]. The latter definition avoids
singularity problems which are sometimes typical of the former choices.

In [3, 4] and in [17] it was shown that both the P-circulant and generalized Strang
preconditioned systems can be effective to accelerate the convergence. Unfortunately,
when the Jacobian matrix J has some small (or zero) eigenvalues, the simple circulant
or Strang preconditioner can be severely ill-conditioned or even singular (see [3, 4, 5]).
An analysis of the spectrum for the preconditioned matrix based on simple circulant
approximations can be found in [10]. However, we stress that the tools used here are
completely different from those in the former. In particular, we cannot write anymore
Ă, B̆ as small rank perturbations of A, B, respectively.

Therefore, we will focus on preconditioners (2.6) based on T. Chan’s and the
P-circulant approximations in the following discussions. Practical examples for the
matrices A, B, Ă, B̆, M , and P can be found below.

Another approximation which was found effective (but is not considered here)
is based on {ω}-circulant approximations for matrices A and B in (2.4); see [8]. In
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particular, Ă, B̆ are {ω}-circulant matrices approximating A and B, respectively.
The {ω}-circulant matrices are Toeplitz matrices whose first entry of a row is given
by multiplying the last entry of the preceding row by ω = exp (iθ); see [19] for more
details. Notice that the {1}-circulant matrices (θ = 0) are just circulant matrices (and
therefore generate simple or Strang’s approximations for a given Toeplitz matrix),
while {−1}-circulant matrices (θ = π) are skew-circulant matrices.

We observe that various trigonometric approximations can be combined. For
example, {ω}-P-circulant preconditioners can be defined by using (2.9) to give the first
row of the related {ω}-circulant approximation. A similar combination can be made by
using T. Chan’s optimal circulant matrices. Moreover, it is straightforward to observe
that P-circulant approximations can be seen as {ω}-circulant preconditioners with
θ = 0, whose entries are defined as in (2.9). More comments on these generalizations
can be found in [8].

2.3. Dahlquist’s hypothesis. In the proposed eigenvalue analysis for the pre-
conditioned linear systems (2.5), unless otherwise specified, we choose J = μ (i.e.,
a scalar) in (2.2), where μ ∈ C

− := {λ ∈ C : Reλ ≤ 0} (“Dahlquist’s hypothe-
sis”). It is customary to consider this scalar problem in the linear stability theory
for ODEs. The parameter μ can be any eigenvalue of the Jacobian matrix J of the
given PDE, supposed diagonalizable. Indeed, notice that, supposing J diagonalizable,
we have

J = V DV −1, D = diag(μ1, . . . , μm).

This framework is not restrictive for our analysis since

M = A⊗ Im − hB ⊗
(
V DV −1

)
= (Is+1 ⊗ V )(A⊗ Im − hB ⊗D)(Is+1 ⊗ V −1).

Assuming that the preconditioner is based on the exact Jacobian, a similar expression
can be derived for P . Let us write

M(q) = A− qB, P (q) = Ă− qB̆, q = hμ.

It is straightforward to observe that the eigenvalues of the preconditioned/transformed
linear system (2.5) are given by the union of the eigenvalues of the finite sequence of
matrices

{P (q)−1M(q)}q, q = hμi, i = 1, . . . ,m.

Just to have an idea of the matrix structures, we sketch below the explicit expression
of M(q) and P (q) for the particular example of a 2-step generalized Adams–Moulton
method in connection to a P-circulant preconditioner, with an additional final condi-
tion given by the implicit Euler method:

M(q) =

⎛
⎜⎜⎜⎜⎜⎝

1 0
−1 1 0

. . .
. . .

. . .

−1 1 0
−1 1

⎞
⎟⎟⎟⎟⎟⎠− q ·

⎛
⎜⎜⎜⎜⎜⎝

2
3 − 1

12
5
12

2
3 − 1

12
. . .

. . .
. . .

5
12

2
3 − 1

12
0 1

⎞
⎟⎟⎟⎟⎟⎠ ,
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P (q) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 − s
s+1

− s
s+1 1 0

. . .
. . .

. . .

− s
s+1 1 0

0 − s
s+1 1

⎞
⎟⎟⎟⎟⎟⎠− q ·

⎛
⎜⎜⎜⎜⎜⎜⎝

2
3 b̆1 b̆s
b̆s

2
3 b̆1
. . .

. . .
. . .

b̆s
2
3 b̆1

b̆1 b̆s
2
3

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where b̆1 = − s+2
12(s+1) , b̆s = 5s

12(s+1) .

We recall that the underlying generalizations of Adams–Moulton formulas, which
should be used only as implicit methods with one initial (given) and one final condi-
tion, are (i) A-stable not only for k = 2 but for arbitrarily high-order k+1 and (ii) all
formulas preserve important properties such as the time reversal symmetry and the
Hamiltonian function; see [14]. Note that if we use the usual 2-step Adams–Moulton
formula, we should supply another starting value y1.

3. Motivation of the work. From now on, we will assume Dahlquist’s hypoth-
esis (see section 2.3) in order to simplify the theoretical analysis.

Understanding the behavior of iterative solvers for (2.4) requires the knowledge
of the following features:

1. How does the spectrum of M depend on the discretization parameters? For
instance, for which values of q (both involving the time step and the Jacobian
of the PDE) can we ensure that the spectrum lies in C

+ := {λ ∈ C : Reλ >
0}? Can we exclude the pathological situation where M is singular?

2. When a suitable preconditioner is applied, we know that the spectrum of
P−1M is clustered; see, e.g., [23]. But which localization of the cluster (and of
the outliers, if present) should be expected? Again, how does that localization
depend on q?

Concerning the first issue, the literature contains plenty of spectral results in-
volving Toeplitz matrices (see, e.g., [12, 13]), even though the nonsymmetric case is
more difficult to treat (surprisingly, smoothness of the generating function can be a
disadvantage: see [32]). In particular, this difficulty arises in our setting, where gen-
erating functions are trigonometric polynomials, and the accurate localization results
typical for Hermitian matrices are no longer applicable. Moreover, such results are
of the asymptotic type and require a critical assumption: the entries of M must not
depend on the size. In other words, as the size varies we obtain a finite section of a
fixed infinite matrix. This is not our case, since varying s (the size of matrices A and
B and s = O(h−1)) gives a different value of q in M .

The only known results we can apply concern mainly algorithms for computation
of a few eigenvalues (in [2]) or a theoretical analysis of the “pencil” A − qB (in the
sense of generalized eigenvalues) in [14]: in the latter book we can find conditions on
q for which M is nonsingular, that is, a partial answer to our questions raised above.

In summary, to the best of our knowledge, a general theoretical characterization
of the eigenvalues of M = A − qB as functions of q is still lacking. The underly-
ing algebraic setting is the (standard) eigenvalue problem for nonsymmetric Toeplitz
matrices with small rank corrections.

Concerning the second issue, some mathematical tools for the spectral analysis
of P−1M have been proposed in the literature (see, e.g., [4, 10, 17, 25]), but they
all assume that M − P has small rank. This is true for some choices of P (such as
Strang’s preconditioner and a few extensions), but several other important instances
(such as T. Chan’s or P-circulant approximations) give rise to matrices M −P whose
rank is usually full.
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Therefore, appropriate tools for the analysis of the case where P differs from M by
more than a matrix whose rank is small1 are still unknown. An exception is provided
in the Hermitian case, not of interest in this context. The underlying algebraic setting
is the generalized eigenvalue problem for nonsymmetric Toeplitz matrices with small
rank corrections.

The following sections will attempt to give some answers to the open questions
discussed so far.

4. Spectral analysis. From now on we focus on the generalized eigenvalue prob-
lem for nonsymmetric quasi-Toeplitz matrices:

(4.1) M(q)u = λP (q)u, u �= 0.

The standard eigenproblem falls into this notation by making the formal assumption
P (q) = I (in this section we are interested just in the structure of the matrices
involved).

The lack of symmetry and the band structure imply that the classical approach
based on generating functions gives very little insight here (see the results presented
in [32]). Therefore, the best way to characterize eigenvalues (and potentially eigen-
vectors) by exploiting the band Toeplitz pattern seems to be the difference equation
approach, proposed by Trench [33] for the standard, pure Toeplitz case.

Let the s+1 equations of (4.1), as well as the entries of u, be indexed from 0 to s;
the indices from ν to s− k + ν correspond to the rows of M(q) and P (q) not affected
by the low rank correction and containing all of the coefficients of the main method.
The resulting relations

k∑
i=0

(αi − qβi)ui+j = λ

k∑
i=0

(ăi−ν − qb̆i−ν)ui+j , j = 0, . . . , s− k

(where we assume a periodic pattern for ăi and b̆i, whenever a subscript is out of
range), can be treated as linear k-order homogeneous difference equations with con-
stant coefficients. The first and last rows of (4.1) will provide us with initial and final
conditions.

The eigenvector u is a nonzero solution of the difference problem and therefore
can be characterized in terms of the algebraic characteristic equation of degree k:

(4.2) π(z) − λπ̆(z) = 0, π(z) :=

k∑
i=0

(αi − qβi)z
i, π̆(z) :=

k∑
i=0

(ăi−ν − qb̆i−ν)z
i

(notice that π̆(z) simplifies into zν in the standard problem).
From now on we assume that, for each eigenvalue λ, all of the roots z1(λ), . . . , zk(λ)

of the characteristic equation are distinct (otherwise, λ is called defective [34], but this
pathological situation occurs just in isolated cases and for specific values of s). In this
case, each component of the solution of the difference equation has the form

(4.3) uj =

k∑
l=1

clzl(λ)j , j = 0, . . . , s,

for suitable coefficients c1, . . . , ck determined by the boundary conditions.

1In the sense that s is supposed large with respect to the band of the Toeplitz matrices involved,
and the rank is not depending on s.
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More specifically, the first ν and the last k − ν rows of (4.1) represent additional
conditions on the sequence uj . In the standard problem, we have ν initial and k − ν
final conditions since just the first and last entries of u are involved, respectively.
In the generalized problem, the circulant structure of P (q) determines a mixing of
initial and final entries in all of these k equations, but for simplicity we keep the same
terminology.

Substituting (4.3) into the mentioned equations, we obtain k homogeneous rela-
tions involving the unknown coefficients c1, . . . , ck, which can be put in matrix form
as follows:

(4.4)
Kin(z1(λ), . . . , zk(λ))c = 0,
Kfin(z1(λ), . . . , zk(λ))c = 0,

where Kin ∈ C
ν×k,Kfin ∈ C

(k−ν)×k and we have emphasized the dependence of these
Vandermonde-like matrices on the roots of the characteristic equation. The trivial
solution c = 0 would imply u = 0 and therefore must be discarded; hence the square
matrix

(4.5) K(z1(λ), . . . , zk(λ)) :=

(
Kin

Kfin

)

must be singular. Its (vanishing) determinant can be regarded as a function of λ
having the same zeros of the characteristic polynomial of (4.1).

An alternative parameterization with respect to the roots zj(λ) can be useful for
a different characterization of λ.

Let ζ be one of the roots, say, z1(λ). From one point of view, ζ is a function
of λ, but it is understood that λ can be retrieved as well from ζ by means of the
characteristic equation

(4.6) λ(ζ) =
π(ζ)

π̆(ζ)
(λ(ζ) = ζ−νπ(ζ) in the standard case);

we remark that any root gives the same value of λ. The other roots can be expressed
in terms of λ by inverting some elementary symmetric functions. For example, in the
generalized problem with k = 2 and ν = 1, the easiest way is to consider the ratio
between the constant term and the leading coefficient in (4.2)

α0 − qβ0 − λ(ăs − qb̆s)

α2 − qβ2 − λ(ă1 − qb̆1)
= z1(λ)z2(λ),

whence, after the substitution λ = λ(ζ) given in (4.6),

(4.7) z2(λ) = ζ−1 (α0 − qβ0)π̆(ζ) − (ăs − qb̆s)π(ζ)

(α2 − qβ2)π̆(ζ) − (ă1 − qb̆1)π(ζ)
=: ζ2(ζ).

In general, we can assume that we have explicit functions ζ2(ζ), . . . , ζk(ζ) that replace
z2(λ), . . . , zk(λ) in the matrix K of (4.5). Thus

det K(ζ, ζ2(ζ), . . . , ζk(ζ)) =: det(ζ; q)

is a function of the single complex variable ζ, containing q as a parameter.
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Table 4.1

Coefficients for some 2-step formulas.

Type α0 α1 α2 β0 β1 β2

Midpoint (MP) −1 0 1 0 2 0

Simpson (S) −1 0 1
1

3

4

3

1

3

Adams–Moulton (AM) −1 1 0
5

12

2

3
− 1

12

As we will see in specific examples, the analysis of the function det(ζ; q) can be
sometimes reduced to the study of a sparse polynomial, which makes feasible a first-
order analysis (perhaps a direct computation) of its roots ζ(q). Finally, the relation
(4.6) allows us to obtain a knowledge of λ from that of ζ(q).

Remark 4.1. det(ζ; q) has a number of redundant roots that should be discarded
in order to simplify the analysis. Some of them are “spurious” values for which
ζ = ζj(ζ) or ζj(ζ) = ζl(ζ), with j �= l (the matrix K turns out to have two equal
columns), violating the assumption of distinct roots. Furthermore, if ζ is a root of
det(ζ; q), then ζ2(ζ), . . . , ζk(ζ) are roots as well, and they all give the same eigenvalue
λ. In summary, since there are s + 1 eigenvalues, we expect to find k(s + 1) roots
of det(ζ; q), plus the spurious roots (whose number cannot be estimated a priori, in
general).

Remark 4.2. Once the behavior of ζ(q) has been obtained, in principle this can
be used also for the study of eigenvectors: the key relation is (4.3), and the main
issue would be the behavior (in terms of q) of the coefficients c1, . . . , ck. This problem
is not treated in the present paper, where we are interested only in the eigenvalues
λ(q).

4.1. A case study: 2-step formulas. In this paper, we focus on 2-step meth-
ods as the principal (or main) scheme (2.3) for a linear multistep formula in boundary
value form, with one initial condition and one final condition provided by an implicit
Euler scheme. For those methods, we have

k = 2, ν = 1,

and Dahlquist’s hypothesis of section 2.3 allows us to assume that

(4.8) A =

⎛
⎜⎜⎜⎜⎜⎝

α1 α2 0
α0 α1 α2

. . .
. . .

. . .

α0 α1 α2

−1 1

⎞
⎟⎟⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎜⎜⎝

β1 β2

β0 β1 β2

. . .
. . .

. . .

β0 β1 β2

0 1

⎞
⎟⎟⎟⎟⎟⎠ ,

where parameters are given in Table 4.1 for the most common cases.
Circulant approximations for A and B are given by

(4.9) Ă =

⎛
⎜⎜⎜⎜⎜⎝

ă0 ă1 ăs
ăs ă0 ă1

. . .
. . .

. . .

ăs ă0 ă1

ă1 ăs ă0

⎞
⎟⎟⎟⎟⎟⎠ , B̆ =

⎛
⎜⎜⎜⎜⎜⎜⎝

b̆0 b̆1 b̆s
b̆s b̆0 b̆1

. . .
. . .

. . .

b̆s b̆0 b̆1
b̆1 b̆s b̆0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where the examples for its entries considered here are shown in Table 4.2.
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Table 4.2

Entries for the preconditioner P = P (q).

Type ă0 ă1 ăs b̆0 b̆1 b̆s

MP, P-circ 0
s + 2

s + 1
− s

s + 1
2 0 0

S, P-circ 0
s + 2

s + 1
− s

s + 1

4

3

s + 2

3(s + 1)

s

3(s + 1)

AM, Chan 1 0 − s

s + 1

2

3
− s

12(s + 1)

5s

12(s + 1)

AM, P-circ 1 0 − s

s + 1

2

3
− s + 2

12(s + 1)

5s

12(s + 1)

We are not interested in T. Chan’s approximation for the midpoint and Simpson
methods, since it becomes singular in such cases [7, p. 1819].

The characteristic equation (4.2) has a quadratic form, with

π(z) = γ0 + γ1z + γ2z
2 (γi := αi − qβi),

π̆(z) = ğs + ğ0z + ğ1z
2 (ği := ăi − qb̆i);

its roots ζ and ζ2 are then related through (4.7), where we observe that the numerator
vanishes for ζ = 0, whereas the denominator loses its quadratic term. Hence we define

N(ζ) :=
γ0π̆(ζ) − ğsπ(ζ)

ζ
, D(ζ) := γ2π̆(ζ) − ğ1π(ζ),

which are both linear polynomials such that

(4.10) ζ2(ζ) =
N(ζ)

D(ζ)
.

In light of Remark 4.1, we know that the function det(ζ; q) has two spurious roots for
which ζ = ζ2, satisfying the quadratic equation N(ζ)− ζD(ζ) = 0; hence we know in
advance that N(ζ) − ζD(ζ) exactly divides det(ζ; q).

In order to form the explicit expression of det(ζ; q), first we must compute the
2 × 2 matrix

K(ζ, ζ2) =

(
γin(ζ) γin(ζ2)
γfin(ζ) γfin(ζ2)

)
,

where γin(·) and γfin(·) are suitable polynomials obtained by imposing boundary con-
ditions on the main difference equation.

More precisely, since k = 2 and ν = 1, we have just one initial condition (the first
equation in (4.1))

γ1u0 + γ2u1 = λ(ğ0u0 + ğ1u1 + ğsus)

and one final condition (the last of (4.1))

−us−1 + (1 − q)us = λ(ğ1u0 + ğsus−1 + ğ0us),
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where uj given by (4.3),

uj = c1ζ
j + c2ζ

j
2 ,

should be substituted.
This way we obtain two homogeneous equations in the unknowns c1, c2, whose

coefficients contribute to the matrix K. For instance, the coefficient of c1 in the initial
condition is

γin(ζ) = γ1 + γ2ζ − λ(ğ0 + ğ1ζ + ğsζ
s),

whereas that in the final condition is

γfin(ζ) = −ζs−1 + (1 − q)ζs − λ(ğ1 + ğsζ
s−1 + ğ0ζ

s).

The same holds for c2 with ζ2 in place of ζ; it must be remembered that

(4.11) λ(ζ) =
π(ζ)

π̆(ζ)
=

π(ζ2)

π̆(ζ2)
.

Some further algebraic manipulations give the following compact formulas:

γin(z) = π0(z) −
π(z)

π̆(z)
R[zsπ̆], γfin(z) = zs−2πs(z) −

π(z)

π̆(z)
R[zs−1π̆],

where the notation R[P ] means the s-degree remainder of P modulo zs+1 − 1, and

π0(z) :=
π(z) − π(0)

z
, πs(z) := (1 − q)z2 − z.

A useful simplification arises by observing that in light of (4.11) λ needs not to
be evaluated in ζ2 when we form the second column of K. Therefore, the determinant
is given by

det(ζ; q) = γin(ζ)γfin(ζ2) − γin(ζ2)γfin(ζ),

where

γin(ζ2) = π0(ζ2) −
π(ζ)

π̆(ζ)
Qs(ζ2)

and

γfin(ζ2) = ζs−2
2 πs(ζ2) −

π(ζ)

π̆(ζ)
Q̃s(ζ2),

with suitable s-degree polynomials Qs and Q̃s; the substitution (4.10) shows that
det(ζ; q) is a rational function whose denominator is π̆(ζ)2D(ζ)s. From the linearity
of N and D, the function

(4.12) d(ζ; q) := π̆(ζ)2D(ζ)s det(ζ; q)

is a (2s+4)-degree polynomial in ζ, for which N(ζ)− ζD(ζ) is a known exact divisor.
Its significant roots occur in pairs (ζ(q), ζ2(q)), each of them providing a unique value
of λ(q).
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The formulas derived so far simplify very much if we are concerned with the
nonpreconditioned case: it suffices to put formally π̆(z) := z, so that

ζ2 =
γ0

γ2ζ
, γin(z) := π0(z) −

π(z)

z
= −γ0

z
, γfin(z) := zs−2(πs(z) − zπ(z)),

whence

det(ζ; q) = −γ2ζ
s−1
2 (πs(ζ2) − ζ2π(ζ2)) + γ2ζ

s−1(πs(ζ) − ζπ(ζ));

here the denominator is just ζs+2, and the spurious roots of d(ζ; q) := ζs+2 det(ζ; q)
are ±

√
γ0/γ2.

It is important to observe that d(ζ; q) is a sparse polynomial, which makes a
first-order analysis feasible.

We sketch below the essential formulas arising for the specific examples under
consideration, which represent the individual instances of (4.10) for ζ2, (4.12) for
d(ζ; q), and (4.6) for λ(q) := λ(ζ(q)). In the preconditioned cases, polynomials N and
D have been scaled by a constant common factor σ which has been explicitly reported;
hence the true expression of d(ζ; q) should be multiplied by σs, but obviously this
correction has no influence on the roots and will not be considered in the subsequent
analysis.

Nonpreconditioned matrices M(q).

Midpoint (MP).

ζ2 = −1

ζ
,

d(ζ; q) = (−1)s((1 + q)ζ + 1) + ζ2s+3(1 + q − ζ),

λ(ζ(q)) = ζ(q) − 2q − 1

ζ(q)
.

Simpson (S).

ζ2 =
γ

ζ
, γ :=

q/3 + 1

q/3 − 1
,

d(ζ; q) = γs+1
(q

3
− 1

)(
1 +

q

3
+

(
1 +

q

3

)
ζ +

q

3γ
ζ2

)
,

− ζ2s+2
(q

3
− 1

)(q
3

+
(
1 +

q

3

)
ζ +

(q
3
− 1

)
ζ2

)
,

λ(ζ(q)) =
(
1 − q

3

)
ζ(q) − 4

3
q −

(
1 +

q

3

)
/ζ(q).

Adams–Moulton (AM).

ζ2 =
γ

ζ
, γ := −5 − 12

q
,

d(ζ; q) = γs−1

(
1 +

5

12
q

)(
γ

(
1 +

5

12
q

)
− 1

3
γqζ +

5

12
qζ2

)

+ ζ2s+2 q
2

36

(
5

4
− ζ − 1

4
ζ2

)
,

λ(ζ(q)) =
q

12
ζ(q) + 1 − 2

3
q −

(
1 +

5

12
q

)
/ζ(q).
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Preconditioned matrices P (q)−1M(q).

MP, P-circulant.

σ = −s + 1

2
, N(ζ) = q − ζ, D(ζ) = 1 + qζ, ζ2 =

N(ζ)

D(ζ)
,

d(ζ; q) =
2π(ζ)

s + 1
(N − ζD)

[
−

(
1 − 1

s + 1

)
ζsNs +

(
1 +

1

s + 1

)
Ds

]

+

(
1 − 1

(s + 1)2

)
π(ζ)2[Ns − (ζD)s]

− 2(1 + q)π̆(ζ)

s + 1
[Ns+1 − (ζD)s+1] +

4

(s + 1)2
[Ns+2 − (ζD)s+2],

π(ζ) = ζ2 − 2qζ − 1, π̆(ζ) = π(ζ) +
1

s + 1
(ζ2 + 1), λ(ζ(q)) =

π

π̆
.

S, P-circulant.

σ = −9(s + 1)

2
, N(ζ) = (3 + q)(2q + (q − 3)ζ), D(ζ) = (3 − q)(q + 3 + 2qζ),

d(ζ; q) = π(ζ)(N − ζD)(ğ1D
s−1φ1 + ğs(ζN)s−1ψ0)

−
(
ğ1ğsπ(ζ)2 +

2Dψ0

9(s + 1)

)
[Ns − (ζD)s] − 2ψ1

9(s + 1)
[Ns+1 − (ζD)s+1]

(ği := ăi − qb̆i, where ăi and b̆i are given by Table 4.2),

φ1 :=
2D

9(s + 1)
, ψ0 := −π̆(ζ) +

s

s + 1

(
1 +

q

3

)
π(ζ), ψ1 := (1 − q)π̆(ζ) +

4

3
qπ(ζ),

π(ζ) = ζ2 − 1 − q

3
(ζ2 + 4ζ + 1), π̆(ζ) = π(ζ) +

1

s + 1

(
1 + ζ2 +

q

3
(1 − ζ2)

)
.

AM, Chan.

σ = −12(s + 1)

2q/3 − 1
, N(ζ) = 5q + 12, D(ζ) = −qζ,

d(ζ; q) =

(
1 − 1

s + 1

)
π(ζ)(N − ζD)

[
q

12
Ds−1φ1 −

(
1 +

5

12
q

)
(ζN)s−1ψ0

]

+ ζNDφ1ψ0[N
s−2 − (ζD)s−2] + (ζNφ1ψ1 + Dφ0ψ0)[N

s−1 − (ζD)s−1]

+

[
φ0ψ1 +

q

12

(
1 − 1

s + 1

)2 (
1 +

5

12
q

)
π(ζ)2

]
[Ns − (ζD)s],

φ0 :=

(
1 − 2

3
q

)
(π̆(ζ) − π(ζ)), φ1 :=

q

12

[
π̆(ζ) −

(
1 − 1

s + 1

)
π(ζ)

]
,

ψ0 := −π̆(ζ) +

(
1 − 1

s + 1

)(
1 +

5

12
q

)
π(ζ), ψ1 := (1 − q)π̆(ζ) −

(
1 − 2

3
q

)
π(ζ),

π(ζ) = ζ − 1 − q

12
(ζ2 − 8ζ − 5), π̆(ζ) = π(ζ) +

1

s + 1

(
− q

12
ζ2 + 1 +

5

12
q

)
.
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AM, P-circulant.

σ = −(s+1), N(ζ) =

(
1 +

5q

12

)(
1 − 2

3
q +

qζ

6

)
, D(ζ) =

q

12

[(
1 − 2

3
q

)
ζ − 2 − 5

6
q

]
,

d(ζ; q) = π(ζ)(N − ζD)(ğ1D
s−1φ1 + ğs(ζN)s−1ψ0) + ζNDφ1ψ0[N

s−2 − (ζD)s−2]

+ (ζNφ1ψ1 + Dφ0ψ0)[N
s−1 − (ζD)s−1] + (φ0ψ1 − ğ1ğsπ(ζ)2)[Ns − (ζD)s]

(ği := ăi − qb̆i, where ăi and b̆i are given by Table 4.2),

φ0 :=

(
1 − 2

3
q

)
(π̆(ζ) − π(ζ)), φ1 :=

q

12

[
π̆(ζ) −

(
1 +

1

s + 1

)
π(ζ)

]
,

ψ0 := −π̆(ζ) +

(
1 − 1

s + 1

)(
1 +

5

12
q

)
π(ζ), ψ1 := (1 − q)π̆(ζ) −

(
1 − 2

3
q

)
π(ζ),

π(ζ) = ζ − 1 − q

12
(ζ2 − 8ζ − 5), π̆(ζ) = π(ζ) +

1

s + 1

(
q

12
ζ2 + 1 +

5

12
q

)
.

4.2. A first-order analysis. The parameterization of λ as a function of q ob-
tained so far allows us to investigate the behavior of the eigenvalues for q small.

We recall that q = hμ, where h is the time discretization step and μ represents
any eigenvalue of the Jacobian matrix J in (2.4) related to the space discretization.
Thus, a small value of q is a physically meaningful situation, occurring whenever,
e.g., the Jacobian matrix has eigenvalues with a small modulus (as in the examples
sketched in section 5) and/or a small time step is used. A particular care is required
in the latter instance: we stress that s → ∞ as h → 0, so that the polynomial d(ζ; q)
raises its degree, increasing the number of the roots ζ(q). However, the insights given
by the first-order analysis are generally in good agreement with the localization of λ,
as we will see in the numerical experiments of section 6.

In what follows, we present a first-order expansion of λ(q) centered in zero for
all of the three nonpreconditioned methods (MP, S, AM) and for two preconditioners
(P-circulant approximations for MP and AM).

The starting point is the continuity of polynomial roots with respect to coefficients
(provided that the degree remains constant). Hence ζ(q) is very close to ζ(0) for small
q, and its first-order dependence on q can be made explicit.

In the MP method, ζ = ζ(0) is a root of d(ζ; 0) = (−1)s(1 + ζ) + ζ2s+3(1 − ζ),
and therefore

|ζ|2s+3 =

∣∣∣∣1 + ζ

1 − ζ

∣∣∣∣ .
Squaring both sides of the previous equation and letting ζ = ρeiθ, after some algebraic
manipulations, we get

(4.13) cos θ =
1 + ρ2

2ρ
· ρ

4s+6 − 1

ρ4s+6 + 1
.

(4.13) is the equation, in polar coordinates, of a curve containing all of the roots ζ(0)
and lying in the following region of the complex plane:

Ω =

{
θ ∈

(
π

2
,
3

2
π

)
, ρ < 1

}
∪

{
|θ| < π

2
, ρ > 1

}
∪ {±i},

where ±i are exactly the spurious roots for which ζ = ζ2.
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Therefore, λ(0) can be localized through the transformation λ = ζ − 1/ζ of the
previous curve. In particular, since Reλ = (ρ − 1/ρ) cos θ, it is straightforward to
observe that Reλ > 0 whenever ζ ∈ Ω (except for the spurious roots). By continuity,
we have the useful result that the eigenvalues of M lie on C

+ for q small enough.
We recall that projection methods such as GMRES or BiCGstab show often a faster
convergence behavior whenever the matrix of the linear systems we have to solve has
all eigenvalues in one half-plane; see [22].

If we are interested in a deeper analysis, we can check that the roots ζ(0) are
distinct and therefore

ζ(q)
.
= ζ(0) + ζ ′(0)q,

where
.
= denotes a first-order approximation of the function on the left-hand side.

Therefore,

λ(q)
.
= ζ(0) − 1

ζ(0)
+

[
ζ ′(0) +

ζ ′(0)

ζ(0)2
− 2

]
q;

the explicit expression of ζ ′(0), if desired, can be retrieved from the classical theory
on the conditioning of zeros of polynomials (see, e.g., [30, section 5.8]).

The Simpson method has a quite similar analysis. In addition, since the matrix
A is the same as the previous case, the zero-order terms of ζ(q) and λ(q) are exactly
equal to the corresponding ones for MP. On the other hand, the first-order expansion
for S has a different expression, which is reported below:

λ(q)
.
= ζ(0) − 1

ζ(0)
+

[
ζ ′(0) +

ζ ′(0)

ζ(0)2
− 4

3
− ζ(0)

3
− 1

3ζ(0)

]
q,

where ζ ′(0) is different from the MP method.
The analysis of the AM method shows a further complication with respect to the

previous cases. It is evident that d(ζ; q) loses several degrees when q goes to zero, so
that many roots ζ(q) become infinite. Hence we are not able to predict the behavior
of λ(q), unless we apply an appropriate change of variable. For this purpose, let

ξ := q1/2ζ, β := γq,

and rewrite the polynomial d in terms of the new variable ξ. We obtain

qsd(ξ; q) = βs−1

(
1 +

5

12
q

)(
β

(
1 +

5

12
q

)
− 1

3
βq1/2ξ +

5

12
qξ2

)

+ ξ2s+2/36

(
5

4
q − q1/2ξ − 1

4
ξ2

)
,

whence ξ(q)
.
= ξ(0) + ξ′(0)q1/2, where ξ(0) solves the equation

(−12)s − ξ2s+4/144 = 0,

that is, ξ(0) = 2
√

3 exp(i( lπ
s+2 + π

2 )), l = 1, . . . , s + 1. Other values of the index l
would give spurious roots or already obtained values of λ. Taking into account the
change of variable, the behaviors of ζ and λ are, respectively,

ζ(q)
.
= ξ(0)q−1/2 + ξ′(0),

λ(q)
.
= 1 +

i√
3

cos
lπ

s + 2
q1/2 +

[
ξ′(0)

12
+

ξ′(0)

ξ(0)2
− 2

3

]
q.
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Hence, for small values of q, the eigenvalues of M are close to a vertical segment on
C

+ with the midpoint placed at 1.
The main difficulty arising in the preconditioned case is given by the presence

of the spurious divisor N − ζD in all instances of d(ζ; q). In order to perform the

analysis, it is worth considering the quotient d̂(ζ; q) := d(ζ; q)/(N − ζD), studied for
q ≈ 0. Let

Fm(ζ; q) :=
Nm − (ζD)m

N − ζD
=

m−1∑
j=0

N j(ζD)m−j−1;

this expression appears in almost all of the terms of d̂(ζ; q) and will determine the
first-order behavior of the significant roots.

Concerning the P-circulant preconditioner for the MP method, for q = 0 we have
N(ζ) = −ζ, D(ζ) = 1. Therefore,

Fm(ζ; 0) = ζm−1
m−1∑
j=0

(−1)j =

{
ζm−1 if m is odd,

0 otherwise.

Thus, the zero-order localization of the roots ζ(q) strictly depends on the parity of s:
more specifically, when s is odd they solve the equation

(ζ2 − 1)ζs+1 +
2

s + 1
(ζ2 − 1)(ζ2s + 1)

+
1

(s + 1)2
[4ζs+1 − (ζ2 − 1)ζs−1 + 2(ζ2 − 1)(1 − ζ2s)] = 0,

and when s is even the equation becomes

(ζ2 − 1)(1 − ζs − ζ2s) +
1

s + 1
[(ζ2 − 1)(ζ2s + 1) − (ζ2 + 1)ζs] = 0.

For q very small, the eigenvalues of P−1M can be estimated from the roots ζ = ζ(0)
through the relation

λ(0) =
ζ2 − 1

ζ2 − 1 +
1

s + 1
(ζ2 + 1)

.

After more heavy computations we are able to obtain the first-order terms in the
expansions of ζ(q) and λ(q). In section 6 we will present explicit estimates based on
the formulas derived so far and compare them with values obtained numerically.

The difficulties found in the analysis of the AM method arise in the P-circulant
preconditioned case as well. Many ingredients of d(ζ; q) degenerate for q = 0: among
others, polynomials N(ζ), D(ζ), π(ζ), and π̆(ζ) drop their degree. This causes several
roots ζ(q) to go to infinity: also here we need a suitable change of variable.

Let ξ := qζ, and rewrite all of the polynomials N,D, π, π̆, φi, ψi(i = 0, 1) in terms
of the new variable, in particular,

N(ξ) =

(
1 +

5

12
q

)(
1 − 2

3
q +

1

6
ξ

)
, D(ξ) =

1

12

[(
1 − 2

3
q

)
ξ − q

(
2 +

5

6
q

)]
.

The “clean” polynomial d̂ takes the following expression after some algebra:

d̂(ξ; q) = q−s−1ď(ξ; q),
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where ď has constant degree 2s + 2 (independently on q) and its zero-order form is

ď(ξ; 0) =

(
− 1

s + 1

)s

ξs+1

{
− 1

12s+1(s + 1)

[
ξs−3(12 + 2ξ)2 + ξs+1

]
−

(
1 − 1

s + 1

)(
1 +

1

12
ξ

)(
1 +

1

6
ξ

)s}
.

Notice that s + 1 roots of ď are distinct and behave as ξ(q)
.
= ξ(0) + ξ′(0)q, whence

ζ(q)
.
= ξ(0)q−1 + ξ′(0).

These are the roots going to infinity, associated with the values of λ(q) with

λ(0) =
12 + ξ(0)

12 + ξ(0)

(
1 − 1

s + 1

) ;

the same eigenvalues are associated with the corresponding “dual” roots given by
ζ2 = N(ξ)/D(ξ) which are finite for q = 0, as a direct look at N and D shows.
Through the transformation ξ = qζ2 we find the remaining s + 1 roots of ď, which
collapse at the origin.

We will compare these results with numerical estimates for this setting as well;
see section 6.

5. Model problems. As a first benchmark of our analysis, we consider two
simple model problems which encompass two important types of spectra for their
Jacobian matrices: real and negative and pure imaginary eigenvalues, respectively.
Only one-dimensional (1D) problems are considered, but extensions to 2D and 3D
cases are straightforward and not necessary in our setting.

Diffusion equation. As a typical example of a problem whose Jacobian matrix
has negative (real) eigenvalues, we report the variable coefficient 1D diffusion equation
with homogeneous Dirichlet boundary conditions at both ends. Let a = a(x) ≥ 0 be
a suitably smooth function.

(5.1)

⎧⎨
⎩

ut − c(a ux)x = 0, x ∈ [0, xmax], t ∈ (0, T ],
u(0, t) = u(xmax, t) = 0 t ∈ (0, T ],
u(x, 0) = g(x), x ∈ [0, xmax].

Discretizing the operator ∂/∂x in (5.1) with centered differences and step size Δx =
xmax/(m + 1) gives a sequence of systems of ODEs parameterized by Δx whose mth
element is given by

(5.2)

{
y′(t) = Tmy(t), t ∈ [0, T ],
y(0) = η, η = (g(x1) . . . g(xm))T ,

where xj = jΔx and

(5.3) Tm =
c

(Δx)2

⎛
⎜⎜⎜⎜⎝

a1 b1

b1
. . .

. . .

. . .
. . . bm−1

bm−1 am

⎞
⎟⎟⎟⎟⎠ ,
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where

aj = −(a(xj−1/2) + a(xj+1/2)), bj = a(xj+1/2).

The Jacobian matrix Tm is m × m symmetric, tridiagonal, and weakly diagonally
dominant with negative diagonal entries. From an extensive study performed in [15,
28] we get for each eigenvalue μj of Tm the bounds

− 4c

(Δx)2
max

x
{a(x)} ≤ μj ≤ − cπ2

(xmax)2
min
x

{a(x)}.

Note that, as Δx tends to zero, the systems of differential equations (5.2) become in-
creasingly stiff, spreading the eigenvalues of the Jacobian matrix Tm along an interval
in (−4cmaxx{a}/(Δx)2, 0) whose left boundary tends to −∞ with O((Δx)−2).

More precisely, the spectrum is equally distributed [31] as the values of the bi-
variate function a(x)f(θ), where

f(θ) =
2c

(Δx)2
(cos(θ) − 1), θ ∈ (−π, π),

is the so-called “generating function” related to the constant-coefficient version of the
problem. As stated in [27, 24], if a(x) has a zero at the origin of order α, the smallest
eigenvalue shows an asymptotic behavior like (Δx)2/mmax(2,α).

Transport equation. The linear 1D transport equation with periodic boundary
conditions and constant coefficient c > 0 in its simplest form reads:

(5.4)

⎧⎨
⎩

ut + c ux = 0,
u(x, 0) = g(x), x ∈ [0, π],
u(π, t) = u(0, t), t ∈ [0, 2π].

Discretizing the partial derivative ∂/∂x with central differences and step size Δx =
π/m, xj = jΔx gives a sequence of systems of ODEs parameterized by Δx whose
mth element is given by

(5.5)

{
y′(t) = Cmy(t), t ∈ [0, 2π],
y(0) = η, η = (g(x0) . . . g(xm−1))

T ,

with

(5.6) Cm =
c

2Δx

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 1

1
. . .

. . .

. . .
. . .

. . .

. . .
. . . −1

−1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix Cm is circulant m×m with generating function

(5.7) f̃(θ) =
c

2Δx

(
e−iθ − eiθ − e−i(m−1)θ + ei(m−1)θ

)
=

−ic (sin θ − sin(m− 1)θ)

Δx
,

where θ ∈ (−π, π). Therefore, the eigenvalues of Cm are distributed as f̃(θ) in (5.7)
and lie in the purely imaginary (closed) interval

[−2ic/Δx, 2ic/Δx],
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which becomes wider as O(1/Δx) as we refine the discretization. This implies that a
finer mesh for the time-step integrator is required to resolve the (oscillatory) solution
as Δx (the step for the discretization in space) decreases to zero.

An explicit expression of the spectrum of Cm can be obtained by observing that

(5.8) Cm = FΛF ∗,

where Λ is a diagonal matrix containing the eigenvalues μj of Cm and F is the Fourier
matrix; see, e.g., [19]. Thus, from the expression of the eigenvalues of a circulant
matrix, we have

μj = − 2ic

Δx

(
sin

2πj

m

)
, j = 0, . . . ,m− 1,

i.e., the generating function computed in the points θj = 2πj/m, j = 0, . . . ,m− 1, as
usual.

It is worth noting that the Jacobian matrices for both of the proposed model
problems are normal and therefore can be diagonalized by unitary matrices. This
feature is useful in order to use the bounds for the convergence of a Krylov accelerator
which uses the preconditioners analyzed here; see [9, Theorems 3.1 and 3.2]. In
particular, by applying the cited results, for the underlying problems we can predict
convergence in at most O(log s) (preconditioned) iterations.

6. Numerical estimates and comparisons. We compare the results of zero-
and of some first-order approximations presented in section 4.2 with the eigenvalues
computed by Matlab’s QR method for the model problems in section 5. We do not
report plots generated by Simpson’s formula because they are very similar to those
related to the midpoint formula.

In all tests, unless specified otherwise, we consider s = m = 100, c = 1, T = 2π,
xmax = π, t0 = 0. The Jacobian matrix J is taken, in light of Dahlquist’s hypothesis,
as the smallest eigenvalue (in modulus) for each one of the model problems considered
in the previous section. In the variable diffusion model problem, the diffusion function
is of the form a(x) = xk, k > 0 integer; i.e., it has a zero in the origin of multiplicity
k. However, a similar eigenvalue distribution of the preconditioned and nonprecondi-
tioned problems has been observed even in the absence of zeros on the real axis for
various functions such as a(x) = xk + ε, where ε > 0 is a small constant, varying with
O(m−1). We stress that, in both cases, eigenvalues of the Jacobian matrix (5.3), are
negative, but some of them go to zero as the space discretization gets refined. On the
other hand, the same asymptotic behavior holds for some nonzero eigenvalues of the
Jacobian matrix (5.6), although the transport equation has constant coefficients.

Results of some tests are reported in Figures 6.1 (nonpreconditioned case), 6.2,
and 6.3 (preconditioned case). In all three cases, the condition number κ2(X) of the
eigenvector matrix X is modest. Therefore GMRES’ convergence is well described by
the eigenvalues.

Note that in all tests we get that even just zero-order approximations can give
reasonable information on the qualitative behavior of the eigenvalues related to the
smallest eigenvalues (in modulus) of the Jacobian matrix of the differential problem
both in the nonpreconditioned and in the preconditioned cases, for variable and con-
stant coefficient equations, provided that the mesh for the discretization in space is
fine enough.
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Fig. 6.1. MP method, smallest eigenvalue (in modulus) for (a) the diffusion equation with
a(x) = x4, s = 20, m = 20 giving κ2(X) ≈ 7, (b) the transport equation, s = 100, m = 100,
c = 1 giving κ2(X) ≈ 28, and (c) the same equation with c = 0.1 giving κ2(X) ≈ 28; x=order 0,
o=eig(M), �=order 1 approximations.
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Fig. 6.2. MP method with P-circulant preconditioning, smallest eigenvalue (in modulus) for
(a) the diffusion equation with a(x) = x4, s = 100, m = 100 and (b) the transport equation, s = 100,
m = 100; +=order 0, o=eig(P−1M) approximations.

In order to emphasize the effect of the first-order approximations with respect to
zero order, just in Figure 6.1 (left) we use a rougher mesh with s = m = 20 for the
midpoint formula without using preconditioning.

It is surprising that, for the transport equation (upper right plot in Figure 6.1),
the order 1 approximation gives worse approximations than order 0 for some eigen-
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Fig. 6.3. Adams–Moulton with P-circulant preconditioning, smallest eigenvalue (in modulus)
for (a) the diffusion equation with a(x) = x4, s = 100, m = 100 and (b) the transport equation,
s = 100, m = 100; +=order 0, o=eig(P−1M) approximations.

values: the “wrong” values come from roots ζ(0) very close to the real axis (the same
occurs for the derivatives ζ ′(0), ζ ′′(0), etc.). This phenomenon is probably explained
by observing that q is pure imaginary in this setting, so that in the power series∑+∞

j=0 ζ
(j)(0)qj just the even terms contribute to refine the real part, as well as the

odd terms are related only to the imaginary part; this way the convergence radius of
the series could be reduced, and the actual value of q could fall outside the region
of analyticity. On the other hand, continuity still holds so that order 0 is always
meaningful.

Our conjecture is confirmed by the lower right plot in Figure 6.1, where we have
simply set c = 0.1: q has been divided by a factor of 10, and order 1 estimates become
again more accurate than order 0.

For these moderate dimensions, every ζ(0) has been computed through the Matlab
function roots. If one is interested in locating the spectrum of much larger matri-
ces, we suggest the use of more efficient rootfinders specifically designed for sparse
polynomials, such as MPSolve proposed in [11].
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