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THE LUSIN AREA FUNCTION AND LOCAL ADMISSIBLE
CONVERGENCE OF HARMONIC FUNCTIONS

ON HOMOGENEOUS TREES

LAURA ATANASI AND MASSIMO A. PICARDELLO

Abstract. We prove admissible convergence to the boundary of functions
that are harmonic on a subset of a homogeneous tree by means of a discrete
Green formula and an analogue of the Lusin area function.

1. Introduction

A classical result in analysis, the Fatou non-tangential convergence theorem,
characterizes the boundary behavior of harmonic functions in the Euclidean half
plane R

2
+ as follows. The boundary of R

2
+ is identified with the real line R. For

any z ∈ R and any α > 0, the cone Γα(z) with vertex z is the set

Γα(z) =
{
(x, y) ∈ R

2
+ : |x − z| < αy

}
.

If f(x, y) is defined at those points in R
2
+ near a boundary point z, then f has

a non-tangential (or admissible) limit at z, say equal to l, if for every α > 0 the
conditions (x, y) ∈ Γα(z) and (x, y) → z imply that f(x, y) → l. Moreover, f is
called non-tangentially (or admissibly) bounded at z if, for some α, f is bounded in
Γα(z) (by a constant which depends on α and z). The Fatou theorem states that if
f is harmonic in R

2
+, then the non-tangential boundedness of f and the existence

of its non-tangential limits are almost everywhere equivalent.
This result can be localized as follows. For every point x of any measurable

subset E of R, choose a cone (of arbitrary width) in R
2
+ with vertex in x, and form

the union Ẽ of all these cones. Then the local version of the Fatou theorem asserts
that, if f is defined in Ẽ and harmonic, then the non-tangential boundedness of f
and the existence of its non-tangential limits are almost everywhere equivalent in
E.

There is another condition, known as the Lusin area theorem, which is equivalent
to non-tangential boundedness of harmonic functions. This condition is expressed
in terms of the area integral introduced by Lusin (see [18]). For every α > 0 the
area integral of f is a function defined on R which applies to z ∈ R the integral on
Γα(z) of the square of the gradient of f .
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The area theorem states the almost everywhere equivalence between non-tangen-
tial boundedness and the finiteness of the area integral for harmonic functions on
R

2
+.
The local Fatou theorem has been proved by Privalov, and the area theorem is

due to Marcinkiewicz and Zygmund and Spencer (see [18]).
The general version of the local Fatou theorem and the area theorem for Eu-

clidean half-spaces is due to A. P. Calderon [2] and E. M. Stein [16] (see also [17,
chapter VII]).

The approach of Stein relies on the differential properties of the Laplacian. An
important tool is the Green formula which is used to transform the area integral
of a harmonic function over smooth compact domains to an integral over their
boundary curves.

In analogy with the case of Euclidean spaces, the local Fatou theorem and the
area theorem have been naturally generalized to the Poincarè half-plane or hyper-
bolic disc [3]. Observe that in the hyperbolic metric the cone Γα(z) becomes a
tube around a geodesic whose end point is z. For general symmetric spaces of
rank one similar results have been proved by A. Korànyi and R. Putz [7], via a
suitable extension of Stein’s approach based on the Green formula. P. Malliavin
and M. P. Malliavin [10] extended the area integral to the product of two hyper-
bolic discs and used it to prove the local Fatou theorem in this framework; shortly
later A. Korànyi and R. Putz [8] generalized this argument to products of rank one
symmetric spaces. Except for these degenerate cases, the asymptotic behavior of
harmonic functions has never been studied for higher rank symmetric spaces via
the geometric approach based on the Lusin area integral and the Green formula,
although the area integral has been used in a probabilistic approach to describe
local admissible convergence almost everywhere of functions harmonic everywhere
on a Riemannian space of negative curvature [11]. Indeed, a higher-dimensional
extension of the area integral which could be suitable to investigate non-tangential
limits of harmonic functions in a geometric way has never been obtained. In higher
rank, the algebra of invariant differential operators is not generated by the Laplace
operator only: it has as many independent generators as the rank. Instead of con-
sidering harmonic functions, one studies the jointly harmonic functions of these
generators. Admissible convergence of harmonic functions in this sense has been
studied by other methods (see, for instance, [15]). However, these methods rely
upon the Poisson integral of boundary data, and therefore yield global harmonic
functions: by their very nature, they cannot provide local admissible convergence
results for functions that are harmonic only locally. Instead, to prove a local Fatou
theorem we would need an area integral and an approach similar to [7] and [17],
based upon surrounding the region of harmonicity with a contour and transporting
the area integral over that region to a lower dimensional contour integral.

A natural discrete counterpart of semisimple symmetric spaces of non-compact
type of rank one is given by homogeneous spaces of semisimple p-adic groups.
It consists of the so-called Bruhat-Tits buildings. In the rank one case, these
buildings are nothing but homogeneous and semihomogeneous trees (see [14]). A
natural Laplace operator on a homogeneous tree is the nearest neighbor isotropic
transition operator. This leads to a fruitful theory of harmonic functions defined on
the vertices of homogeneous trees (see [5]). Non-tangential convergence of harmonic
functions on homogeneous trees has been studied in [6].
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The area integral has another important application in classical harmonic anal-
ysis. It was proved in [1] that the non-tangential maximal function of a harmonic
function f in R

2
+ is Lp-bounded if and only if its area function is Lp-bounded (and if

and only if its square function, defined in terms of martingales associated with f , is
also Lp-bounded). This theorem is the building block of a wide-reaching extension
of the classical theory of Hp spaces. For the purpose of investigating Hp spaces,
the area function has been introduced in [9] on a large class of trees, which includes
the homogeneous ones. This, in turn, sheds light on the boundary behavior of har-
monic functions thereon, although this subject was only briefly mentioned at the
end of [9]. The methods used in this reference are probabilistic. An independent
approach to Hp theory, inspired by Stein’s methods (good lambda inequalities),
was developed in [4]: this approach is more geometric, because it makes use of a
natural adaptation of the Green formula (hence it carries to the discrete framework
of trees methods which are typical of differential analysis). This viewpoint is crucial
for the spirit of the present paper.

Indeed, in this paper, following an idea of A. Korànyi, we return to the subject
of admissible convergence of harmonic functions on homogeneous trees, and focus
our attention on the local boundary behavior, i.e., the local Fatou theorem. The
Green formula of [4] allows us to transport to trees the approach of [17] and [7].
Our proof follows the arguments of [17] and for the last part (Theorem 5.3) an
idea of C. Fefferman extended to rank-one symmetric spaces in [7]. However, as
usual when transporting to trees methods tailored for continuous environments, we
must handle several intriguing complications. A part of the proof (Theorems 5.1
and 5.2) could be derived by estimates for the area functions given in [4], but the
proof of [4], based on the combinatorial-probabilistic tools of [9], is considerably
more complicated (it is aimed to Lp estimates, not just pointwise estimates almost
everywhere).1

The motivation for this work is the hope of opening the way for future extensions
of these results to higher rank Bruhat-Tits buildings. Buildings are still simplicial
complexes and their vertex set is countable. Therefore an appropriate definition of
area function, suitable to handle admissible convergence of harmonic functions, is a
purely combinatorial task, therefore presumably simpler than for symmetric spaces.
We share with Adam Korànyi the feeling that such a definition would shed light on
how to introduce an area function on higher rank symmetric spaces. Unfortunately,
buildings have a very intriguing and complicated combinatorial structure, and an
extension of our results is a very challenging task.

The second named author acknowledges several inspiring conversations with
Adam Korànyi about the motivation and the results of this paper and is thankful
for the hospitality offered by the City University of New York. Both authors were
supported by the funds of Research Project in Harmonic Analysis jointly financed
by the Italian Ministry of University and Scientific Research and the University of
Roma “Tor Vergata”. In particular, the first named author was supported by a
research grant of the University of Roma “Tor Vergata” in the framework of this
Research Project.

1Note added in proof: Pointwise estimates of this type, based on the approach and the results
of [9], were also obtained in [12], whose arguments, phrased in a more probabilistic and less
combinatorial fashion, do not share our aim to emphasize the geometric analogy between trees
and symmetric spaces (the Green formula is not used).
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2. Notation and preliminaries

2.1. Trees. We follow most of the terminology established in [4]. Here is a review.
A tree T is a connected, simply connected, locally finite graph. With abuse of
notation we shall also write T for the set of vertices of the tree. We suppose that
T is homogeneous, that is, every vertex of T belongs exactly to q + 1 edges, where
q � 2 is a constant. For x, y ∈ T we write x ∼ y if x, y are neighbours. For
any x, y ∈ T there exist a unique n ∈ N and a unique minimal finite sequence
(z0, . . . , zn) of distinct vertices such that z0 = x, zn = y and zk ∼ zk+1 for all
k < n; this sequence is called the geodesic path from x to y and is denoted by [x, y].
The integer n is called the length of [x, y] and is denoted by d(x, y); d is a metric on
T . We fix a reference vertex o ∈ T and call it the origin. The choice of o induces
a partial ordering in T : x � y if x belongs to the geodesic from o to y. For every
x ∈ T , x �= o, there exists exactly one predecessor x− of x in this ordering (i.e.,
x− � x and x− ∼ x). For x ∈ T , the length |x| of x is defined as |x| = d(o, x). For
any vertex x and any integer k � |x|, xk is the vertex of length k in the geodesic
[o, x]. For α � |x|, x(−α) denotes the α-retract of x, that is, the vertex x|x|−α in
the geodesic [o, x]. For α > |x|, we let x(−α) = o.

For 0 � s < k < ∞, let [s; k] be the corona {x ∈ T : s � |x| � k} and
[s;∞) = {x ∈ T : |x| � s}. For k ∈ N let Sk be the circle {x ∈ T : |x| = k}.

Let Ω be the set of infinite geodesics starting at o. In analogy with the previous
notation, for ω ∈ Ω and n ∈ N, ωn is the vertex of length n in the geodesic ω. For
x ∈ T the interval U(x) ⊂ Ω, generated by x, is the set U(x) =

{
ω ∈ Ω : x = ω|x|

}
.

The sets U(ωn), n ∈ N, form an open basis at ω ∈ Ω. Equipped with this topology
Ω is compact and totally disconnected.

For every positive integer n the family {U(x) : |x| = n} is a partition of Ω into
(q+1)qn−1 open and closed sets. We define the o-isotropic measure ν on the algebra
of sets generated by the sets U(x), by

(2.1) ν (U(x)) = (q + 1)−1q1−|x|.

The measure ν extends to a regular Borel probability measure on Ω.

2.2. Harmonic functions and Poisson kernel. We refer the reader to [5] for
more details on the contents of this section.

Definition 1. The simple average operator L on functions f on the vertices of T
is

Lf(x) = (q + 1)−1
∑

y:d(x,y)=1

f(y).

The Laplace operator associated with L is ∆f = Lf − f.

Definition 2. A function f : T → R is harmonic if ∆f(x) = 0 for every x ∈ T .

We shall say that f is harmonic at x if ∆f(x) = 0 for the vertex x.
For x ∈ T and ω ∈ Ω, let N(x, ω) ∈ N be the bifurcation index, that is, the num-

ber of edges in common between the finite geodesic [o, x] and the infinite geodesic
ω.

Definition 3. For every x ∈ T , ω ∈ Ω the Poisson kernel P (x, ω) is

P (x, ω) = q2N(x,ω)−|x|.
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For every x ∈ T , P (x, ·) is a function on Ω which is constant on each interval
U(z) with |z| = |x|. Therefore P (x, ·) ∈ L2(Ω) for every x ∈ T . For each ω ∈ Ω the
function P (·, ω) is harmonic in T .

The Poisson integral of a function h in L1(Ω) is defined by

Ph(x) =
∫

Ω

h(ω)P (x, ω)dν.

More generally, by integrating measures on Ω against the Poisson kernel one obtains
harmonic functions on the vertices of T . In this sense the measure ν on Ω represents
the harmonic function with constant value 1. It is called the Poisson measure and
its support Ω is the Poisson boundary of T .

2.3. The Green formula. We need results introduced in [4]. We state them here.
Denote by Λ the set of all the oriented edges (i.e., ordered pairs of neighbours).
For σ ∈ Λ denote by b(σ) the beginning vertex of σ and by e(σ) the ending vertex:
σ = (b(σ), e(σ)). The choice of a reference vertex o ∈ T (see Subsection 2.1) gives
rise to a positive orientation on edges: an edge σ is positively oriented if b(σ) is the
predecessor of e(σ).

The beginning and ending vertices induce two maps b : Λ → T and e : Λ → T
defined as above. These maps induce two different liftings, f ◦ b and f ◦ e, for any
f : T → R.

Definition 4. For any function f : T → R, the gradient ∇f : Λ → R is

∇f(σ) = f(e(σ)) − f(b(σ)).

For x ∈ T , let Λ(x) = {σ ∈ Λ : b(σ) = x} be the star of x.

Definition 5. For x ∈ T , let

‖∇f(x)‖2 = (q + 1)−1
∑

σ∈Λ(x)

|∇f(σ)|2.

Definition 6. The boundary ∂Q of a subset Q ⊂ T is ∂Q = {σ ∈ Λ : b(σ) ∈
Q, e(σ) �∈ Q}. The trace b(A) of a subset A ⊂ Λ is b(A) = {b(σ) : σ ∈ A}. For
Q ⊂ T , the set b(∂Q) = {x ∈ Q : y �∈ Q for some y ∼ x} is also called the
frontier of Q.

The Green formulas are well known in the continuous setup. In this discrete
context an interesting analogue has been observed in [4].

Proposition 2.1 (The Green formula). If f and h are functions on T and Q is a
finite subset of T , then∑

Q

(h∆f − f∆h) = (q + 1)−1
∑
∂Q

(h ◦ b∇f − f ◦ b∇h).

Proposition 2.2 (The Green identity). For all real valued functions f on T and
for every x ∈ T ,

∆(f2)(x) = ‖∇f(x)‖2 + 2f(x)∆f(x).
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3. Non-tangential convergence, local Fatou theorem

and the area function

For x ∈ T and ω ∈ Ω we consider the distance d(x, ω) = minj∈N d(x, ωj).

Definition 7. Let α � 0 be an integer; the tube Γα(ω) around the geodesic ω ∈ Ω
is

Γα(ω) = {x ∈ T : d(x, ω) � α} .

Recalling the definition of α-retract given in Subsection 2.1 we observe that
x ∈ Γα(ω) ⇔ ω ∈ U(x(−α)), in particular x ∈ Γ0(ω) ⇔ ω ∈ U(x).

Definition 8. The area function of f on T is the function on Ω defined by

Aαf(ω) =

⎛
⎝ ∑

x∈Γα(ω)

‖∇f(x)‖2

⎞
⎠

1
2

.

Observe that, if f ∈ L1(T ), Aαf(ω) < ∞ for every α, ω.

Definition 9. A function f on T has non-tangential limit at ω ∈ Ω if, for every
integer α � 0, lim f(x) exists as |x| → ∞ and x ∈ Γα(ω).

Definition 10. A function f on T is non-tangentially bounded at ω ∈ Ω if, for
some M > 0, one has |f(x)| � M for x ∈ Γ0(ω).

Remark. The terminology adopted in the previous definition is meaningful because
it amounts to the more elegant statement that, for some non-negative integer α =
α(ω), f is bounded on a tube of width α around the geodesic Γ0(ω) (by a different
constant depending on α).

The main goal of this paper is the following result, which extends to homogeneous
trees the celebrated Lusin area theorem [18]. In analogy with the previous Remark,
condition (iii) below is equivalent to the classical statement that at almost every
boundary point there is a width α � 0 such that the area function of width α is
finite.

Main Theorem. Let E be a measurable subset of Ω and f a harmonic function
on T . Then the following are equivalent:

(i) f is non-tangentially bounded at almost every ω ∈ E;
(ii) f has non-tangential limit at almost every ω ∈ E;
(iii) for almost every ω ∈ E

A0f(ω) < ∞;

(iv) for every fixed α � 0, Aαf(ω) < ∞ for almost every ω ∈ E.

4. Uniform estimates

We need some more notation and some lemmas.

Definition 11. The tube Wα(E) over a measurable subset E of Ω is

Wα(E) =
⋃

ω∈E

Γα(ω).

For any integer s > 0 let W s
α(E) =

⋃
ω∈E Γα(ω) ∩ [s;∞).
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Now we want to impose some uniform conditions.

Lemma 4.1. For every measurable subset E of Ω,

lim
n

ν(E ∩ U(ωn))
ν(U(ωn))

= 1

for almost every ω ∈ E.

Proof. Given a function F ∈ L1(Ω), consider the martingale associated with F ;
that is, the sequence of functions

Fn(ω) =
1

ν(U(ωn))

∫
U(ωn)

Fdν.

See [5] for more details. It follows from the Martingale Convergence Theorem (see
[9, page 225]) that limn Fn = F almost everywhere. To prove the lemma it is
sufficient to take F = χE , the characteristic function of E. �

Proposition 4.2. Let E be a measurable subset of Ω and let ε > 0. There exists
a closed set D with D ⊂ E and ν(E \ D) < ε such that for any integers α and β,
there exists an integer s such that Γβ(ω) ∩ [s;∞) ⊂ Wα(E) for every ω ∈ D.

Proof. Since W0(E) ⊂ Wα(E) for every α > 0, it is sufficient to prove the assertion
for α = 0. Given η < 1 and ε > 0, by Lemma 4.1 there exists a set D ⊂ E such
that ν(E \ D) < ε and an integer m, independent of ω, such that

(4.1)
ν(U(ωj) ∩ E)

ν(U(ωj))
> η

for j � m and all ω ∈ D. Indeed, this is an immediate consequence of Egoroff’s
theorem (see [13]). We can choose D to be closed because ν is regular.

Let s � m + β. Suppose that for some x ∈ Γβ(ω) ∩ [s;∞), with ω ∈ D, there
does not exist any ω′ ∈ E such that x ∈ Γ0(ω′). Then U(x) ∩ E = ∅. Let ωj be
the confluence point of [o, x] and ω. Then j � |x| − β � s− β, since ω ∈ U(x(−β))
and |x| � s. Moreover U(ωj) ⊃ U(x) and

ν(U(ωj) ∩ E)
ν(U(ωj))

� ν(U(ωj)) − ν(U(x))
ν(U(ωj))

� 1 − 1
qβ

.

This yields a contradiction if η � 1 − 1
qβ . �

Corollary 4.3. Let E be a measurable subset of Ω and f be non-tangentially
bounded at every ω ∈ E. For ε > 0 there exists a closed set D with D ⊂ E,
ν(E \ D) < ε such that for any fixed integer α � 0, there exists a constant
M = M(α, ε) (independent of ω) with |f | � M on Wα(D).

Proof. Since f is non-tangentially bounded on E, f is bounded on Γ0(ω) for every
ω ∈ E. Let Ek = {ω ∈ E : |f | � k in Γ0(ω)} . Then Ek ⊂ Ek+1 and

⋃
k Ek = E

because f is non-tangentially bounded on E. For ε > 0 we can choose k0 and
D̃ = Ek0 such that ν(E \ D̃) < ε

2 and |f | � k0 on W0(D̃). By Proposition 4.2 there
exists s > 0 and a closed set D with D ⊂ D̃, ν(D̃ \D) < ε

2 such that f is bounded
in W s

α(D) and then in Wα(D) since the number of vertices in [0; s] is finite. �

Now we consider the Green function on T (see [5], and in a more general envi-
ronment [9]).
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Definition 12 (Green function). Let g : T → R, g(x) = ν(U(x)) for every x ∈ T .

Observe that g is harmonic in T \ {o} [9].

Lemma 4.4. Let f be a non-negative function on T and suppose that∑
W0(E)

f(x)g(x) < ∞.

Then
∑

x∈Γα(ω) f(x) < ∞ for all α � 0 and for almost every ω ∈ E.

Proof. As f is positive, we only need to prove that
∫

E
dν

∑
x∈Γα(ω) f(x) < ∞. By

Proposition 4.2, we may assume α = 0.
With χ the characteristic function of Γ0(ω) one has:∫

E

dν
∑

x∈Γ0(ω)

f(x) =
∫

E

dν
∑

x∈W0(E)

χ(x)f(x) =
∑

x∈W0(E)

f(x)
∫

E

χ(x)dν.

Now ∫
E

χ(x)dν = ν {ω ∈ E : x ∈ Γ0(ω)} = ν (E ∩ U(x))

� ν (U(x)) = g(x),

and the assertion follows. �

Lemma 4.5. Let f be a non-negative function on T . Assume that, for each ω ∈ E,∑
Γ0(ω) f(x) < ∞. Then for every ε > 0, β � 0, there exists a closed set D ⊂ E

such that ν(E \ D) < ε and
∑

Wβ(D) f(x)g(x) < ∞.

Proof. Let Ek =
{

ω ∈ E :
∑

Γ0(ω) f(x) � k
}

. Observe that Ek ⊂ Ek+1. Moreover⋃
Ek = E. Therefore, as in Corollary 4.3, for ε > 0 we can choose k̃ such that

B = Ek̃ satisfies ν(E \ B) < ε
2 and

∑
Γ0(ω) f(x) � k̃ for all ω ∈ B. By Lemma 4.1,

there exists a closed set D ⊂ B with ν(B \D) < ε
2 and an integer m such that, for

ω ∈ D and n � m,
ν(B ∩ U(ωn)) � (1 − ε)ν(U(ωn)).

By Proposition 4.2 we may assume that β = 0. Let ω ∈ D and χ be the
characteristic function of Γ0(ω). Then

k̃ · ν(B)�
∫

B

dν
∑

Γ0(ω)

f(x) =
∫

B

dν
∑

W0(B)

χ(x)f(x)

=
∑

W0(B)

f(x)
∫

B

χ(x) dν =
∑

W0(B)

f(x)ν(B ∩ U(x))

�
∑

W s
0 (D)

f(x)(1 − ε)g(x),

where we have chosen s = m.
This completes the proof, as the set [o; s] has finite cardinality. �

The next step is to approximate the region W s
α(E) by a family of regions

{Qk(E)}k>0 with boundaries to which we can apply the Green formulas.
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Definition 13 (Approximating slabs). For k > s and for every set E ⊂ Ω we write

Qk(E) = Wα(E) ∩ [s; k].

Then Qk(E) is a finite region with boundary, Qk(E) ⊂ Qk+1(E) and
⋃

k Qk(E) =
W s

α(E). Let Ik(E) = ∂Qk(E).
When there is no reason of confusion, we simply write Qk for Qk(E) and Ik for

Ik(E). One needs estimates on Ik and on b(Ik). The boundary Ik splits into its
inward, lateral and outward parts:

I1
k= Ik ∩ {σ : |b(σ)| = s},

I2
k= Ik ∩ {σ : s < |b(σ)| < k},

I3
k= Ik ∩ {σ : |b(σ)| = k} .

(4.2)

Similarly, b(Ik) splits as a disjoint union b(I1
k) ∪ b(I2

k) ∪ b(I3
k). We remark that

b(I1
k) is a portion of the circle of radius s and so its cardinality is independent of k.
From now on we denote by cq any positive constant (not always the same) which

depends only on q. Instead c(α) is any positive constant which depends only on α
and possibly on q.

Lemma 4.6. With g as in Definition 12 and Qk as in Definition 13,

i) |∇g(σ)| � cqg ◦ b(σ) for all σ ∈ Λ;
ii) ∇g(σ) < 0 if σ is positively oriented;
iii)

∑
Ik

g ◦ b � cq

∑
b(I1

k) g(x) � cq.

Proof. By the definition of g, i) and ii) are easy consequences of (2.1). We observe
that for a more general positive harmonic function g, i) is an immediate conse-
quence of Harnack’s inequality (see for example [4, page 260]). Moreover, the first
inequality in iii) is proved in Proposition 3 of [4]. The second inequality is obvious
since b(I1

k) ⊂ Ss and
∑

Ss
g = ν(Ω) = 1. �

Recall that the Poisson kernel (see Definition 3) has the following properties,
that can be easily verified

(a) P (xk+k1 , ω) = q−k1P (xk, ω) for each ω �∈ U(xk);
(a)

∫
Ω

P (x, ω)dν = 1 for every x ∈ T .

Lemma 4.7. Let ε > 0, M > 0 and h ∈ L∞(Ω). Assume that ‖h‖∞ � M and
h(ω) > r + ε for all ω ∈ U(xk) with some r ∈ R, x ∈ T , k ∈ N. Then there exists
R > 0 (which depends only on ε and M) such that Ph(x) > r when |x| = k + R.

Proof. By the hypothesis, r + ε < M . Write

Ph(x) =
∫

Ω

h(ω)P (x, ω)dν =
∫

U(xk)

h(ω)P (x, ω)dν +
∫

Ω\U(xk)

h(ω)P (x, ω)dν.

For each ω �∈ U(xk), P (x, ω) = q−RP (xk, ω). Therefore if R is sufficiently large

∣∣∣ ∫
Ω\U(xk)

h(ω)P (x, ω)dν
∣∣∣ � Mq−R

∫
Ω\U(xk)

P (xk, ω)dν � Mq−R <
ε

2
.
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Now, by (a) and (b),
∫

U(xk)
h(ω)P (x, ω)dν > (r + ε)(1− q−R). Then, recalling that

r + ε < M and Mq−R < ε
2 , now we have

Ph(x) > (r + ε)(1 − q−R) − Mq−R > r + ε − 2Mq−R > r + ε − ε = r .

�

5. Proof of the Main Theorem

The proof of the Main Theorem is rather long: we prove the chain of its implica-
tions as separate theorems. Note that (ii) → (i) and (iv) → (iii) are trivial. Then
it is enough to show that (i) → (iv), (iii) → (i) and (iii)+ (i) → (ii).

We also note that the equivalence of (iii) and (iv) is an immediate consequence
of Proposition 4.2, Lemma 4.4 and Lemma 4.5.

We prove first that (i) implies (iv).

Theorem 5.1. For every α � 0, for every measurable set E ⊂ Ω, for every har-
monic function f non-tangentially bounded almost everywhere on E, the area func-
tion of f is finite almost everywhere on E.

Proof. Since f is non-tangentially bounded almost everywhere on E, by Corol-
lary 4.3, given any non-negative integer n we can find a closed set Dn ⊂ E with
ν(E \ Dn) < 1

n and a constant M = M(α, n) such that |f | � M on Wα+1(Dn).
Since ν(E \

⋃∞
n=1 Dn) = 0, the finiteness of Aαf at almost every point of each Dn

implies the finiteness of Aαf at almost every point of E.
Therefore we can reduce the proof of the theorem to the case where E is closed

and (after multiplication by a suitable non-zero constant) |f | � 1 on Wα+1(E).
By Lemma 4.4, it is sufficient to prove that for every s > 0

(5.1)
∑

x∈W s
α(E)

‖∇f(x)‖2g(x) < ∞.

Let Qk = Qk(E) as in Definition 13. We approximate W s
α(E) with the slabs Qk.

It is enough to show that
∑

Qk
‖∇f(x)‖2g(x) is uniformly bounded in k.

Recall that g is harmonic in T \ {0}. Then, by Proposition 2.2,∑
Qk

‖∇f(x)‖2g(x) =
∑
Qk

g∆f2 =
∑
Qk

(g∆f2 − f2∆g).

Now the Green’s formula (Proposition 2.1) yields∑
Qk

(g∆f2 − f2∆g) = (q + 1)−1
∑
Ik

(g ◦ b∇f2 − f2 ◦ b∇g) = R1 − R2

where R1 = (q + 1)−1
∑

Ik
g ◦ b∇f2 and R2 = (q + 1)−1

∑
Ik

f2 ◦ b∇g.
One has

|R1| �
∑
Ik

g ◦ b|f ◦ e − f ◦ b||f ◦ e + f ◦ b| � sup
Wα+1(E)

(2|f |)2
∑
Ik

g ◦ b

and
|R2| � sup

Wα+1(E)

|f |2
∑
Ik

|∇g|.
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Since |f | is bounded, i) and iii) of Lemma 4.6 yield∑
Qk

‖∇f(x)‖2g(x) � c(α)
∑

x∈b(I1
k)

g(x) � c(α).

This proves (5.1). �

We prove next that (iii) implies (i).

Theorem 5.2. Let f be a harmonic function on T and E a measurable subset of
Ω. Assume that A0f(ω) < ∞ for almost all ω ∈ E. Then f is non-tangentially
bounded almost everywhere on E.

Proof. By Lemma 4.4 and Lemma 4.5, E has subsets Dn such that ν(E \Dn) < 1
n

and, given any α � 0, Aαf(ω) < M(α, n) in Dn. Arguing as at the beginning of
the proof of Theorem 5.1, we reduce the proof to the case where α � 0 is given,
E is closed and (up to normalization) Aα+1f(ω) � 1 for every ω ∈ E. With this
assumption, the proof is easily adapted from [4, Proposition 8]. We give the details
for the sake of completeness.

Let 0 < ε < 1
2 . By Lemma 4.1 and compactness there exists a closed set D,

D ⊂ E with ν(E \D) < ε such that, for some m > 0, for all k � m and ω ∈ D, one
has

(5.2) ν(U(ωk) ∩ E) � 1
2
ν(U(ωk)).

Let s � m + α. We claim that

(5.3)
∑

W s
α(D)

‖∇f(x)‖2g(x) � 2.

With this goal, for ω ∈ E, let χ be the characteristic function of Γα+1(ω). We have:

1 � ν(E) �
∫

E

(Aα+1f(ω))2 dν =
∫

E

∑
T

‖∇f(x)‖2χ(x, ω)dν

�
∫

E

∑
W s

α(D)

‖∇f(x)‖2χ(x, ω)dν =
∑

W s
α(D)

‖∇f(x)‖2

∫
E

χ(x, ω)dν.

Observe that x ∈ Γα+1(ω) if and only if U(x(−α − 1)) intersects E. Therefore∫
E

χ(x, ω) = ν {E ∩ U(x(−α − 1))} � ν {E ∩ U(x(−α))} .

If x ∈ W s
α(D), there exists η ∈ D ⊂ E such that x ∈ Γα(η) and |x| � s. Then

x(−α) = η|x|−α, with |x| − α � m. Therefore, by (5.2)

ν
{
E ∩ U(η|x|−α)

}
� 1

2
ν(U(η|x|−α)) � 1

2
ν(U(x)).

Thus

1 � ν(E) �
∫

E

(Aα+1f(ω))2 dν � 1
2

∑
W s

α(D)

‖∇f(x)‖2g(x).

This proves (5.3).
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We now replace W s
α(D) with the approximating slabs Qk = Qk(D) (see Defini-

tion 13). By (5.3), for every k,

(5.4)
1
2

∑
Qk

‖∇f(x)‖2g(x) < 1.

By harmonicity and Proposition 2.2
1
2

∑
Qk

‖∇f(x)‖2g(x) =
1
2

∑
Qk

(
g∆f2 − f2∆g

)
and by the Green’s formula (Proposition 2.1)

1
2

∑
Qk

(
g∆f2 − f2∆g

)
=

1
2
(q + 1)−1

∑
Ik

(
g ◦ b∇f2 − f2 ◦ b∇g

)
.

It is easily seen that:
∇f2 = 2f ◦ b∇f + (∇f)2.

Hence∑
Ik

(
g ◦ b∇f2 − f2 ◦ b∇g

)
=

∑
Ik

(
2(g ◦ b)(f ◦ b)∇f + g ◦ b(∇f)2

)
−

∑
Ik

f2 ◦ b∇g.

We split the boundary Ik in two parts, I+(k) = I1
k and I−(k) = I2

k ∪ I3
k ,

where Ij
k, j = 1, 2, 3, are as in (4.2). For the sake of simplicity let us write

C =
∑

Ik

(
g ◦ b∇f2 − f2 ◦ b∇g

)
.

Then C = C1 + C2 + C3 where C1 =
∑

Ik
−(f2 ◦ b)∇g, C2 =

∑
Ik

(g ◦ b)(∇f)2

and C3 = 2
∑

Ik
(g ◦ b)(f ◦ b)∇f . Moreover we let

C+
1 =

∑
I+(k)

−(f2 ◦ b)∇g and C−
1 =

∑
I−(k)

−(f2 ◦ b)∇g,

C+
2 =

∑
I+(k)

(g ◦ b)(∇f)2 and C−
2 =

∑
I−(k)

(g ◦ b)(∇f)2,

C+
3 = 2

∑
I+(k)

(g ◦ b)(f ◦ b)∇f and C−
3 = 2

∑
I−(k)

(g ◦ b)(f ◦ b)∇f.

Then (5.4) implies that

0 � C =
(
C+

1 + C−
1 + C+

2 + C−
2 + C+

3 + C−
3

)
� 2(q + 1).

From now on, M will denote a generic constant, not always the same but always
independent of k.

We observe that C+
1 , C+

2 and C+
3 are uniformly bounded, since I+(k) is contained

in a bounded set, as we remarked before. Thus the sum on I+(k) is uniformly
bounded. Hence |C−

1 + C−
2 + C−

3 | � M .
Since

⏐⏐|C−
1 | − |C−

2 | − |C−
3 |

⏐⏐ � |C−
1 + C−

2 + C−
3 |, it follows that

(5.5) |C−
1 | � |C−

2 | + |C−
3 | + M.

Claim:

(5.6)
∑

b(I−(k))

f2g � M.
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Proof of the Claim. First observe that as I−(k) consists of positively oriented edges
(see page 3331) we have that ∇g(σ) < 0 if σ ∈ I−(k). Then (5.5) yields:

0 � C−
1 =

∑
I−(k)

−f2 ◦ b∇g � M +
∑

I−(k)

g ◦ b(∇f)2 + 2
∑

I−(k)

g ◦ b|f ◦ b||∇f |.

Moreover, if σ ∈ I−(k), −∇g(σ) = cqg(b(σ)) (here cq = q(q − 1) as followed by
(2.1)). Then

cq

∑
I−(k)

(f2 ◦ b)(g ◦ b) � M +
∑

I−(k)

g ◦ b(∇f)2 + 2
∑

I−(k)

g ◦ b|f ◦ b||∇f |.

For any x ∈ Wα(D) there is ω ∈ D such that x ∈ Γα(ω). As D ⊂ E, we have that
Aα+1f(ω) � 1 in D, hence ‖∇f(x)‖ � 1 in Wα(D). Recall that, by Definition 5,

(5.7) |∇f(σ)| �
√

(q + 1)‖∇f(x)‖

for all x ∈ T and all σ ∈ Λ(x). Therefore |∇f(σ)| �
√

(q + 1) for all x ∈ Wα(D)
and all edges σ starting at x. In particular |∇f | �

√
(q + 1) in I−(k). Then

(choosing M � 2)∑
I−(k)

(f2 ◦ b)(g ◦ b) � M + M
∑

I−(k)

g ◦ b + M
∑

I−(k)

g ◦ b|f ◦ b|.

By iii) of Lemma 4.6,
∑

I−(k) g◦b � cq. Moreover, since
∑

b(∂Q) h◦b �
∑

∂Q h �
cq

∑
b(∂Q) h ◦ b, for every Q ⊂ Λ and every positive function h on T , we have:∑

b(I−(k))

f2g � M + M
∑

b(I−(k))

g|f |.

By Schwarz’s inequality

∑
b(I−(k))

g|f | �

⎛
⎝ ∑

b(I−(k))

g

⎞
⎠

1
2

⎛
⎝ ∑

b(I−(k))

gf2

⎞
⎠

1
2

;

hence

∑
b(I−(k))

f2g � M + M

⎛
⎝ ∑

b(I−(k))

f2g

⎞
⎠

1
2

.

This shows that the left hand side is bounded uniformly with respect to k, thereby
proving the claim.

End of the proof of Theorem 5.2. We will now use the “l2-boundedness” in (5.6) to
prove non-tangential boundedness almost everywhere in D. We proceed as follows.

We bound the function f by another F whose non-tangential behavior is known.
For this goal, let

(5.8) fk(ω) =

{
0 if ωj �∈ b(I−(k)) ∀j;
|f(ωm)| if m = max{j : ωj ∈ b(I−(k))}.

Indeed we show that

‖fk‖2
L2(ω) �

∑
x∈b(I−(k))

f2(x)g(x) � M.
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In fact, let
Ω(x) = {ω ∈ U(x) : for all j > |x|, ωj �∈ b(I−(k))} .

Then Ω(x) ⊆ U(x) and

‖fk‖2
L2(ω) =

∑
x∈b(I−(k))

f2(x)ν(Ω(x)) �
∑

x∈b(I−(k))

f2(x)g(x).

Hence, by (5.6)

(5.9) ‖fk‖2
L2(ω) � M.

Now let Fk be the Poisson integral of |fk|. We shall show that, for an appropriate
constant M independent of k, we have on Qk

(5.10) |f | � M + MFk.

By the maximum principle it is sufficient to prove (5.10) on b(∂Qk) = b(I+(k)) ∪
b(I−(k)) (see also the remark in [4, page 269]). Since the cardinality of b(I+(k)) is
finite, we can choose M so large that |f | � M on b(I+(k)). Now

Fk(x) =
∫

Ω

fk(ω)P (x, ω)dν =
∑

v∈b(I−(k))

|f(v)|
∫

Ω(v)

P (x, ω)dν.

By the definition of the Poisson kernel (Definition 3), if x ∈ b(I−(k)) one has

Fk(x) � |f(x)|q|x|ν(Ω(x)).

Observe that Ω(x) = U(x) if α > 0. Moreover if α = 0 we distinguish two cases: if
x ∈ b(I−(k)) is such that |x| = k, then Ω(x) = U(x); if |x| < k, then Ω(x) ⊂ U(x)
and there exists a vertex y such that x = y− and U(y) ⊂ Ω(x).

So ν(Ω(x)) ≈ q−|x| by (2.1). Therefore in both cases we have that Fk(x) �
cq|f(x)|. We have proved (5.10).

By (5.9), fk is a uniformly bounded sequence on L2(Ω). Thus there exists a
subsequence of {fk} that converges weakly in L2(Ω) to, say, f̃ . Denote again
by {fk} this subsequence. Let F̃ be the Poisson integral of f̃ . Then Fk converges
pointwise to F̃ and thus (5.10) implies that in W s

α(D), and consequently in Wα(D),

|f | � M + MF̃

for some M .
Since f̃ ∈ L2(Ω) and Poisson integrals of L2-functions are non-tangentially

bounded almost everywhere (see [6, theorem 1]), by Proposition 4.2 we know that
f is non-tangentially bounded almost everywhere in D. As noted at the beginning
this completes the proof. �

Finally we prove that (iii) (and (i)) imply (ii).

Theorem 5.3. Let f be a harmonic function on T and E a measurable subset of
Ω. Assume that A0f(ω) < ∞ for almost all ω ∈ E. Then f has a non-tangential
limit almost everywhere on E.

Proof. Let η > 0. By the implication ((iii) ⇒ (i)) in Theorem 5.2 and by Corol-
lary 4.3, there exists a closed set D ⊂ E, ν(E \ D) < η

2 such that f is bounded in
Wα(D), say by a constant M . We can suppose α = 0.

But (i) implies (iv) and we also have
∑

Γ0(ω) ‖∇f(x)‖2 < ∞ almost everywhere
in D. Let ε > 0 be given and let R be the offset given in Lemma 4.7 corresponding
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to ε and to the bound M of f . Let δ = ε2

4R2(q+1) . For almost every ω ∈ D there
exists an integer k = k(ω) such that∑

Γ0(ω)∩[k;∞)

‖∇f(x)‖2 < δ.

Let Dj = {ω ∈ D :
∑

Γ0(ω)∩[j;∞) ‖∇f(x)‖2 < δ}. Then Dj ⊂ Dj+1 for all j,
and ν(D \

⋃
j Dj) = 0. So there is an integer k0 so that ν(D \ Dk0) < η

2 and∑
Γ0(ω)∩[k0;∞) ‖∇f(x)‖2 < δ for every ω ∈ Dk0 .
Let k > k0+R. Let us write G instead of Dk0 . If x, y ∈ W k0

0 (G), then x ∈ Γ0(ω)
and y ∈ Γ0(ω̃) for some ω, ω̃ ∈ G. Suppose that |x| = |y| = k. If ω̃ ∈ U(ωk−R),
then the geodesic γ that joins x and y lies inside Γ0(ω)∪Γ0(ω̃), and its length l(γ)
is less than or equal to 2R. By the triangular inequality and by (5.7),

(5.11) |f(y) − f(x)| � l(γ) max
σ⊂γ

|∇f(σ)| < 2R
√

(q + 1)max
γ

‖∇f(x)‖ < ε.

For integers k > k0 + R we consider the new approximating regions⋃
ω∈G

Γ0(ω) ∩ [k0; k].

By abuse of notation we continue to denote by Qk = Qk(G) these regions and by
Ik their boundary, which decomposes in three disjoint parts as in (4.2).

Define fk on Ω by

fk(ω) =

⎧⎪⎨
⎪⎩

f(ωk) if ωk ∈ b(I3
k);

0 otherwise.

Denote by Fk the Poisson integral of fk, and by Φ the Poisson integral of the
characteristic function χD′ of the complement D′ of G.
Claim: for some positive constants A, B independent of k, we have, on Qk,

(5.12) Fk + AΦ + Bg > f − 2ε.

By harmonicity it is sufficient to prove (5.12) on b(Ik). Note that g is harmonic
in Qk because o �∈ Qk.

Proof of the Claim. We first handle the outward part b(I3
k) of the boundary. Let

x ∈ b(I3
k) and ω ∈ G such that ωk = x. For ω̃ ∈ U(ωk−R) the following inequality

holds:
(fk + AχD′)(ω̃) > fk(ω) − ε.

Indeed, if ω̃ ∈ D′ it is enough to choose A � 2|f | on W0(G). This is possible
because f is assumed to be bounded in W0(D̃) ⊃ W0(G). On the other hand, if
ω̃ ∈ G, let us denote by y the vertex of length k on ω̃. Then y ∈ b(I3

k) and the
inequality holds by (5.11). Now (5.12) follows by Lemma 4.7 because g is positive.

Let us now consider the lateral part b(I2
k) of the boundary. If x ∈ b(I2

k), then
there exists z such that x = z− (see Subsection 2.1) and z �∈ Γ0(ω) for every ω ∈ G.
Then U(z) ∈ D′ because otherwise there would exist ω ∈ G such that ω ∈ U(z),
hence z ∈ Γ0(ω), a contradiction. So

Φ(x) =
∫

Ω

P (x, ω)χD′(ω) dν �
∫

U(z)

P (x, ω)dν.
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As x = z−, by Definition 3 we have that P (x, ω) = q|x| for all ω ∈ U(z). On the
other hand, by (2.1) we have ν(U(z)) = (q + 1)−1q−|x|. Hence

∫
U(z)

P (x, ω)dν =
(q +1)−1. So the right hand side is a positive constant independent of k. Therefore
to prove the claim on the lateral part it is sufficient to choose A sufficiently large,
because g is positive and f is bounded in W0(G), so the same is true for Fk.

Finally let us consider the inward b(I1
k). It is obvious that 0 � Φ � 1 everywhere.

We again use the fact that f and Fk are bounded independently of k. Moreover
each element u ∈ b(I1

k) verifies |u| = k0, hence g(u) = (q + 1)−1q1−k0 . Therefore to
have (5.12) on b(I1

k) it is enough to choose B sufficiently large. Now the claim is
proved on all of b(Ik), hence on Qk.

End of the proof of Theorem 5.3. By applying the same argument to −f in place
of f , we have on Qk

−Fk + AΦ + Bg > −f − 2ε.

Now we put these inequalities together and let k → +∞. Observe that the sequence
{fk} is uniformly bounded by M . By the Banach-Alaoglu theorem, there exists a
subsequence, that we again denote by {fk}, such that

∫
Ω

hfk →
∫
Ω

hf∞, for some
bounded function f∞ and every L1-function h on Ω. Denote by F the Poisson
integral of f∞. Since P (x, ω) ∈ L1(Ω) for every x in T it follows that Fk converges
pointwise to F . Thus we have

F − AΦ − Bg − 2ε < f < F + AΦ + Bg + 2ε

everywhere in W k0
0 (G). The function F has a non-tangential limit since it is the

Poisson integral of a bounded function [6, Theorem 1]. The Green function g has
a non-tangential limit 0. By [6, Theorem 1] it follows that Φ has a non-tangential
limit 0 almost everywhere in G.

Since ε and η were arbitrary, by Proposition 4.2 it follows that f is admissibly
convergent at almost every ω ∈ E. �
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