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A POTENTIAL THEORETIC APPROACH TO TWISTING

NICOLA ARCOZZI, ENRICO CASADIO TARABUSI, FAUSTO DI BIASE
AND MASSIMO A. PICARDELLO

To the 70" anniversary of the birthday of Nicu Boboc

ABSTRACT. We establish a new, potential theoretic approach to the study of twist points
in the boundary of simply connected planar domains.

1. MOTIVATION AND OUTLINE OF OUR RESULTS

This paper is an overview of some results of ours. Proofs appear in [1). We introduce
a geometric, potential theoretic approach to the study of twist points in the boundary
of planar domains. Our main motivation is the general principle that the use of poten-
tial theoretic methods will improve our understanding of the correspondence between
geometric praperties of the domain and analytic properties of the conformal map of
the unit disc onto the domain, and hint at possible higher dimensional versions; cf. [3).

1.1. Background. The Riemann mapping theorem states, in essence, that all bounded,
connected, simply connected open sets in the plane are analytically isomorphic to
each other. Let S, be the family of all such planar domains. If D € S}, then let 8D

denote the boundary of D. Let U def {z € R? : |z} < 1) be the unit disc of center 0. If

D € §y and x € D then an analytic isomorphism
f:U=D

such that f(0) = x is called a Riemann map of D with pole at x. This map is determined
modulo a rotation of U. Let & (f) c U be the set of points 8 € 83U where the angular
limit of f at 8, denoted by f,(8), exists; see [25], p. 6. A theorem of Fatou [10[ implies
that the set & (f) has full Lebesgue measure. Denote by dy D the image of the map

fo:F(f)—aD.
In general, f; is not onto, but its image is independent of f and dense in dD. Indeed, if
w € 3D, the following conditions are equivalent:

(a) there is a point @ € U such that f;,(0) = w;
(b) there is a Jordan half-open arc in D ending at w.

Observe that condition (a) is expressed in terms of the Riemann map of the domain,
while (b) is expressed entirely in terms of the geometry of the domain. Properties of the
first kind are called analytic while those of the second are called geometric; cf. [2]. The

2000 Mathematiics Subject Classification. Primary 31A15; Secondary 30C85.
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study of the correspondence between analytic conditions or quantities and geometric
ones is one of the main aims of the theory of the boundary behavior of conformal maps
(we quote from [25] and refer to it for further background; see aiso [4)).
This correspondence may reveal itself in subtle guises. For example, the analytic
Bloch function
logf:U—C
has the following remarkable property:

For Lebesgue a.e. 6 € 8 U, the angular boundary behavior of log f' at 6 determines
whether D is twisting or sectorially accessible at f,(8) € 4D;

see below for precise definitions of these terms. Recall that the statement holds for
almost every point, but not at every point; see [25) and [21].

Let S be the class of all analytic univalent functions f : U — €, normalized by f(0) =
0and f'(0) = 1. If log is the branch equal to 0 at { =0 and { € U then the quantity

')
N

is an analytic functional of f € S (see [25, p. 123]) about which a number of properties
are known. We mention the following:

log

+ Seidel [26]: A domain D is starlike relative to x = 0 € D ifand only |f1 arg }r—]’ <Z

forall { € U(cf. [25));
« Grunsky [15]: the inequality

|arg(f'(() <lo g1+IC'|
f 1-1¢]
holds and is sharp for f € Sand{ € U; cf. [13, p. 117} and [24, p. 168).

1.2, Outline of our results. Let #(D) be the space of real valued functions defined on
D and harmonic therein. For each D € Sy, we define and study a certain function

hp:D — FE(D),

that recaptures
{f'@)
arg
fQ
directly in terms of geometric data of the domain D € Sy, where D = f(U). Here are the
most salient properties of the function /1p.

For fixed x € D and for a.e. w € D, relative to harmonic measure, the behavior of
hp(x)(z) when z — w predicts whether D is twisting or sectorially accessible at w. For
NTA domains we establish the previous assertion in a quantitative way. The definition
of NTA domains is found in [17). Thus, hp plays the role of log f’ and is instrumental
for a potential theoretic approach to twisting.

The definition of hp is not based on the Riemann map of D, it is purely geometric
and potential theoretic.

For each x € D, the function

hp(x):D—R
is a harmonic Bloch function on D.
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The harmonicity of ip(x) : D — R does not appear to be obvious from direct inspec-
tion of its definition; indeed, it will be seen to be the expression of a symmetry under
reflections on lines — even for domains that are not symmetric.

If f is a Riemann map of D with pole at x € D, then the composition

hp(x)of:U—R

is equal to the map { — arg ey Thus, our function hp yields a geometric, potential
q 10 g

]
theoretic representation for the analytic quantity arg %

2. PRELIMINARY RESULTS AND DEFINITIONS

Throughout this paper, D € Sy, f is the Riemann map of D with pole at x€ D, and
Gp:D x D - (—co,00] is the Green function of D.

If 1w € B2 we denote dist(w) : RZ — [0,00) the function dist(iw)(z) & |z— w| and by
dist(8D) the function on R? given by dist(dD) def min dist(w). We write dist(dD, z) for
Wwe

dist(@D)(2). Let Blw,r) E(zeR?: 12— w| < r) and Blw,r)  (ze R : |z- 10} < r].

Following [9, Section 1.1.2] the unweighted average of a function u over dB(w, r) is de-
noted by L(u, w, r).

If A, B c C, the set of continuous maps from A to B is denoted C(A, B). We let J(A, B)
be the subset of C(A, B) consisting of injective maps. If g € C(A,C) and w € C then g -
w € C(A,C) is the function s g(s) — w. We use Im(z) to denote the imaginary part of
z€ €, Re(=z) for its real part and z* for its complex conjugate. Let C(3D) be the Banach
space of real valued continuous functions on 8D, endowed with the uniform norm.

2.1. Harmonic measure. If ) € C(@D) then the unique harmonic function on D whose
boundary values are equal to ¢ is denoted ¢" and called the harmonic extension on D
of ¢. The harmonic extension operator

§: C(aD) — FF(D)
is the map ¢ — ¢". If z € D, the functional ¢ — ¢"(z) is given by integration with respect

to a Borel probability measure on D, denoted by u7, and called harmonic measure for
D with pole at z. Thus,

2.1) ¢”(z)=LD¢(w)pzD(dw), YzeD,Y¢eCoD).

Harmonic measures with different poles are mutually absolutely continuous. Observe
that if B = B(x,r) and u € C(3D) then

Liu,x,r) =f u(2)pp(dz).
dB
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2.2. NTA domains. NTA domains in R"” were introduced in [17], where the precise def-
inition can be found. Let NTA; be the collection of all planar NTA domains. Then
NTA; < Sy, with proper inclusion, since a planar NTA domain is a quasidisc; see [17]
and [25]. The boundary of a planar NTA domain need not be differentiable; see, for
example, the von Koch snowflake [18]. If D e NTA;, wedDand a>0then Tp(w)c D
is defined as

Tg(wy={zeD:|z—w| < (1 +a)dist(@D, z)].

If D has smooth boundary then the approach regions I';(w) are comparable to open
triangles having vertex at w and contained in D. In general, 'z (w) may not contain
any triangle having vertex at w.

Theorem 2.1. IfD e NTA; and U € #(D) thendD = Nu PuU L where:
(i) N has harmonic measure zero;
(ii) if w € P ther U is unbounded above and below inT o (w) n B(w, r) for each posi-
tivea,r;
(iii) if w e L then U has a finite limit along Tz (w) foreach a > 0.

2.3. Sectorial accessibility. The set Sect(f), defined in [25, p. 144] is a subset of dU.
We now define the corresponding subset of 4D.

Definition 2.2. We define Sect(D) c 4D as follows: a point w € 4D belongs to Sect(D)
if and only if D contains an open triangle having a vertex at w.

Remark. The correspondence between Sect(f) and Sect(D) is given by the following
relation:

(2.2) Ju(Sect(f)) = Sect(D).

2.4, Curves. If B ¢ C, the elements of C([0,1[, B) are called curves in B. The points
¢(0), c(1) are called the endpoints of the curve c; c(0) is the initial point of ¢, c(1) its
endpoint and c is said to be a curve from ¢(0) to ¢(1). The image of c is also denoted
by c. If convenient, we may assume, after change of parameter, that the parameter
space is equal to [a, B[, where —co < a < ff < oo; see [20]. A curve in B whose endpoints
coincide is called a closed curve in B. A change of parameter shows that closed curves
in B are elements of C{3U, B). We denote by Zg(y, z) the set of smooth curves in B from
yE€EBtozeB.

2.5. Half-open arcs. If B c C, the elements of C([0,1), B) are called half-open arcs in B.
We say that the half-open arc ¢ ends at w € C or that ¢ is a half-open arc from c(0) to
w if the limit llm c(s) exists and is equal to w. Elements of J([0, 1), B) are called Jordan

half-open arcs m B. We denote J([0,1), B) by J(B).

2.6. Accessibility. If@ € U and s € [0,1) let py(s) %' s8. Then pg € J(U) and pg ends
at 8. If c € J(U) ends at some point of dU then it is not necessarily true that f o ¢ ends
at some point of 3D. However, if ¢ € /(D) ends at some point of D then f~!oc ends at
some point of U, see [20]. Indeed, the set d, D, image of f;, can be described geomet-
rically,
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(i
(i

Lem

2.7.

sayt
simj
of g

2.8.
a lif
of ¢
half

Pro
and
€

2.9.
sucl

Len

R is
2.1C
C —-—
bets
fori

Pro

a— — p—

a1

Pro

2.1
bol



McMILLAN TWIST THEOREM 7

Lemma 2.3. If w € D then the following conditions are equivalent:
(i) there is0 € & (f) such that f,(0) = w;
(ii) there is @ € 0U such that f o pg ends at w;
(iii) there is@ € U and c € J(U) ending at 8 such that f o c ends at w;
(iv) there is c € J(D) ending at w.

The proof of the following result can be found in [20, Section II1.6] and [9].
Lemma 2.4, The setd,D is denseindD and it has full harmonic measure.

2.7. Liftings. If Ais atopological space, g € C(A,C\{0}),y € C(A,C) and e¥ = g then we
say thaty isa lifting of g. Let L(g) denote the set of all liftings of g. If Ais connected and
simply connected, then each g € C(A,C\{0)) has a lifting and, if y, and y; are liftings
of g, then there is a unique n € Z such that y) = y2 + 2min; see [14][.

2.8. Twisting half-open arcs. Let c be a half-open arc in C\[0} and assume that ¢ has
a lifting y such that Im(y) is unbounded above and below on [0,1). Then each lifting
of ¢ has the same property and we say that c is twisting. Let I be the set of twisting
half-open arcsin C\[0).

Proposition 2,5. Letc),cz € J(C\{0)}) be Jordan half-open arcs having as initial point
and ending at the origin. Assume that ci(s1) = ca(sp) if and only if sy = s = 0. Then
a €T ifandonlyifcaed.

2.9, Twist points of the Riemann map, Let Twist(f) c dU be the set of points 8 € & (f)
such that fopg - f,(B) €T .

Lemma 2.6. Iff € F(f) then the following conditions are equivalent:
(i) 8 € Twist(f);
(ii) foc— fo(8) €T foreachce J(U) ending at6;
(iii) for each c € J(U) ending at8 and each g € L(f — f;,(8)), the mapIm(g)ec:[0,1) —
R is unbounded above and below.

2.10. Twist points of the domain. Let twist(D) be the set of points w € 8, D such that
c—w e J for each ¢ € J(D) ending at w. The following result clarifies the relation
between Twist(f) and twist{D). Since we could not find it in the literature, we record it
for future reference.

Proposition2.7. Ifw € dyD then the following conditions are equivalent:
(1) w e twist(D);
(2) [B € F(f): fp(6) = w} < Twist(f);
(3) [B e Z(f): fp(6) = winTwist(f) # @.

The following result follows from the Twist Point Theorem [21]; f. [25).
Proposition 2.8. IfD e Sy, then Sect(D) u twist(D) has full harmonic measure indD.

2.11. The quasihyperbolic metric and harmonic Bloch functions. The quasihyper-
bolic distance' kp(z,y) in D from z to y is defined as the minimum of the arc length

Uniroduced in [12); see also [11] and (25, p. 92).
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integrals

f ! ds
cdist(@dD) '

evaluated along all rectifiable paths ¢ from z to y contained in D. The quasihyper-
bolic distance is a geometric quantity; cf. [25[. Observe thatif z,y € D and |z-y| <
1dist(dD, z) then

1 lz-yl |2yl

2 dist(d@D, z) dist(dD,z)

Indeed, kp(z,y) = log(1+ Es%%‘ﬁi)' by [12, Lemma 2.1]. It follows that a function U :
D — R is Lipschitz relative to the metric (D, kp), i.e.

<kp(z,y)<2

|U(z) - U(z"|
2.3 SUp ———— <00,
@3 o Tk
z#s'
if and only if U satisfies
2.4 supdist(dD){grad U| < oo.
D

If U € F€(D) satisfies (2.3) then U is called a harmonic Bloch function; cf. [19].

2.12. The hyperbolic metric and the Green function. Let Ay be the hyperbolic met-

ric of the unit disc, with the normalization such that 14(0,{) = }log :f—{g{; see [25,
def

p. 6[. Other normalizations can be found in the literature. If z,y € D then Ap(z,y) =
Au(f=1(2), f71()) is the hyperbolic distance in D between z and y. The Koebe distor-
tion theorem implies that

(2.5) Ap(z, ) < kplz,y)<4Ap(z,y), Vz,yeD.

See [25, p. 92].

The hyperbolic geodesics in D emanating from x admit both an analytic description
and a potential theoretic one. Given z € D, we denote by g = gn(x, z) the hyperbolic
geodesic in D from x to z. If f({) = z then a parametric representation of gp(x, z) is
given by ¢ — f(£{), 0 < t < 1. The arc gp(x, z) is precisely the integral curve from x to z
of the gradient of the Green function Gp(x,").

2.13. The winding angle. Fix an orientation in &2, Let c € J{[0,1[,R?) and assume that
c is smooth. Let ¢, be the potential of the double layer of constant unit density over
¢. The function ¢, is harmonic on the open set R?\¢c, complement of the image of c,
and it extends by continuity at the endpoints of ¢ but not at the other points of ¢, since
therein it is subject to a jump; see [6[. Recall that the value of ¢, at w is given by the arc
length integral

def [ 0 1
(2.6) cx(Ww) = fcdn log_dist(w) ds,

where 7 is the positively oriented normal to ¢. We call ¢, (w) the winding angle of c as
seen from w, since it is the signed variation of the argument of y— w, when y goes from
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x to z along c, as can be seen via the Green formula. Observe that c. (1) = (¢ - ) (0).
The following estimate will be useful:

2.7) lca ()| & fc T 4

Indeed,

a
anl gdlst(w)l ’ gdlst(w)l dlst(w)

If 0 & ¢ then ¢.(0) equals the integral along c of the closed differential form ﬂ%ﬁ—;’—'

modulo a sign that depends on the orientation of the plane. Since a closed differen-
tial form can be integrated along any curve, without assuming any smoothness on the
curve (see [5, p. 58[) then ¢« (w) can be defined for any curve ¢ in R? and

B xdy - ydx
|C*(IU)|—L—") x2+y2 0

Similarly, since ﬁ is a closed differential form in €\ {0}, if ¢ is curve in R? then cu(w)is

equal (modulo a sxgn) to the imaginary part of the complex line integral f cT-w w
Hy € L(c~ w) then c. (w) = Im(y(1)} - Im(y (0)); see [22]. Indeed, if c is given by the
parametric representation ¢(¢),0< t < 1 and welet ®(¢) = T%;—:zl’ then®:[0,1[—aU.
Now let @ : [0,1] — R be any lifting of ® via the universal coveringmapR — 3 U, r —
". Then c« (1) = ®™(1) ~ ®7(0) (the right-hand side being independent on the choice

of the lifting).

2.14. The relative winding angle. Consider the continuous function
('l')D:Dx D - C(OD)

defined by evaluating the winding angle along curves in D: If y,z € D, w € 8D and
c€ Zp(y, z), then

{(y,2)plw) d-—'fra:*(w).

Since D is simply connected and c, (w) is given by integrating along ¢ a differential
1-form defined on the punctured plane R?\[w} and closed therein, Stokes' theorem
implies that the function (-, -)p is well defined. Moreover, (y, z) , (w) is separately har-
monic in y,z € D for fixed 1.

Thus, (y,2) p(w), called the winding angle relative to D, measures the signed varia-
tion of the argument of y’ — w as y' goes from y to z staying within D.

Observe that (x,x)p =0, (x,z)p = (2, x) p, and in fact

(2.8) (x,y)p+(y2p=(x,2)p, Yx,y,zeD,

Lemma 2.9. Ifw € 8,D then the following conditions are equivalent:
(i) w € twist(D);

(ii) limsup (x, ¢(8)} p(w) = +oo and Iign i{)f {x,¢(5)) p(1v) = —co for each half-open arc
5=1 -
in D ending at w.

Remark. Property (ii) is independent of the choice of x.
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2.15. The harmonic winding angle. If y;,y, € D then the function {y;,y2)p :8D — R
has the harmonic extension (y; ,yg)l}): D — R. Following (2.1}, (y ,yg)% is given by

(Yl,Y2)%(z)=LD (yuy2) p(w)pup(dw), zeD.

Moreover, (Y],Y2)E)(Z) is harmonic in each variable separately, and

(2.9) lim (y1,y2)h(2) = (y1,y2) p(w) = e (w)
for each we dD and c € Zply;,y2).
Lemma 2,10,

(2.10) I(yl.yz)l})(Z)I <kplyiy2), VzeD.

3. THE FUNCTION hp

3.1. Theoriginal potential theoretic definition. We now define a function D — F2(D).
Let hp: D x D — R be the function

ho(y,2) %, Z)’},(z) =faD (2 pwipp(dw), yzeD.

Notation. Whenever convenient, we shall write hp(y)(z) for hp(y,z), so that hp(y):
D — R denotes hp(y, -) as function of the second variable.

Remark. The functional hp is covariant under translations, rotations and dilations of
D. We shall see that it uniquely determines the domain D (apart from the scale) since
it determines (the inverse of) its Riemann map.

Since hp(x, z), as function of x, is a superposition of functions harmonic in x, its
harmonicity in x follows from standard arguments. Its harmonicity with respect to z
does not seem to be equally immediate or obvious from the viewpoint of potential the-
ory; we now show that it is related, in fact equivalent, to a certain invariance property
under reflections on lines.

Proposition 3.1. IfD € Sy, then the following conditions are equivalent:

(a) for each x € D then function hp(x) is harmonic at each point of D;

(b} for each x € D then function hp(x) has vanishing mean-value over each suffi-
ciently small ball centered at the point x;

(c) foreach x€ D, ifz' denotes x+ (z— x)* and D' & {z': ze D} then
Lihp(x),x,r)=L(hp(x),x,1)
foreach r >0 such that B(x,r) < D.
Theorem 3.2. IfD€ Sy, and y € D then hp(y) is harmonic on D.
Theorem 3.3. IfD € Sy and y € D then hp(y) is a harmonic Bloch function on D.

Remark. A natural issue, related to Lemma 2.9, is to determine sufficient conditions
that make the quantity

lhp(x,2) = (x,2) p(w)]
bounded when z — w € 9, D. See Sections 3.5 and 4.
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3.2. The twist function of a smoothly bounded domain. The function A also admits
a second, less direct, potential theoretic description, based on an approximation argu-
ment. Let S{° ¢ Sy, be the set of all domains in Sy with C* boundary. If D € S° then
there is rp > 0 such that if 0 < r < rp and w € dD, then there is a point in D, denoted
nf,(w). at distance r from w, on the inner normal to 8D at w.

Definition 3.4. IfD € S{° and xe Dwedefine tp: D — C(@D) forO<r<rp

3.1) tp(x) (w) E (x, nL(w)) p(w), weadD.

The values of tp(x) are independent of r. The function tp is called the twist function
of D.

Remark. The function ¢p measures the twisting of D around dD. Thus, ¢p(x) gauges
the difference between, say, a disc and a domain shaped like a snake. Indeed, these
domains have no twist points but the disc twists much less around its boundary than
the others.

Notation. Whenever convenient, we shall write tp(x, w) for tp(x)(w).

Lemma 3.5. IfD € SJ° then the following conditions are equivalent:
(@) hp(x) = tp(x)! foreach x € D;
(b) tp(x)"(x) = 0 foreach x € D.

Theorem 3.6. /1p(x) = tp(x)" foreach D e S and x € D,

Corollary 3.7. IfD e S} then foreach wedD
(3.2) lim hp(x,2) = tp(x, w).

Remark. For domains whose boundary is not smooth, the function fp(x) cannot be
directly defined as in (3.1) and, in particular, the function /ip(x,+) does not possess
boundary values as in (3.2). Consider, for example, the von Koch snowflake {18]. In fact,
almost every point, in the boundary of the von Koch snowflake, relative to harmonic
measure, is a twist point [8, 25].

Regular exhaustions. If D € Sy, then there are domains D, € Sg“', 1 2 1, such that

(=)

Dp<cDpyy and |J D =D. Any such sequence {D,}, is called a regular exhaustion
n=1

of D.

Theorem 3.8. If D € Sy, {D,}, is a regular exhaustion of D and x € D, then the har-
monic functions tp, (x)! converge, uniformly on compact subsets of D, to a function that
is independent of the choice of the regular exhaustion of D; indeed, the limit function is
precisely hp(x).

Remark. Observe that Theorem 3.8 provides another, less direct but natural® descrip-
tion of ip. We now show that if we choose a special exhaustion of D then there is no
need to use a limiting argument.

2The statement of Theorem 3.8 is inspired by the construction of the generalized solution of Dirichlet’s
problem in arbitrary domains in R", due to N. Wiener 28],
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The Green exhaustion. We now choose the regular exhaustion given by the superlevel
sets of the Green function of the domain. If z€ D and z # x then the subdomain D7 < D
defined by

D2 €' € D: Gp(x.0) > Gp(x, 2))

has smooth boundary and contains x . Moreover, z € D3 and DZ < D. In particular,
the function fp: is defined at the point (x, 2). Recall that /ip(x, x) =0.

Theorem 3.9, IfDeSy,xeD,ze D and z # x, then
(3.3) hp(x,2) = tp:(x,z),
thus, the restriction of hp(x) to the subdomain D7, is equal to hpz (x).

3.3. The § function and the hyperbolic geodesics. The following corollaries of The-
orem 3.9 show that ip can be described in terms of the hyperbolic geodesics of the
domain. Recall the definition of gp(x, 2) € Zp(x, z) given in Section 2. Recall also that,
if c € Zp(x,z}, then c. is also defined at the endpoints xand z of c.

Corollary3.10. IfDe Sy, x,z€ D and x # z, then
3.4 hp(x,z) = gp(x,2),.(2).

If ¢ is a smooth curve and ¢’ denotes the tangent vector to ¢ then ¢’ is, in itself, a
curve in B2, In the following corollary, we consider the curve tp(x,z) defined as g’
where g = gp(x, z) is the hyperbolic geodesic in D from x to z.

Corollary3.11. IfDe Sy, x,z€ D, then
(3.5) hp(x,2)— hp(z,x) = tp(x,2)+(0).

Thus, hp(x,z)— hp(z,x) is the winding angle of tp(x, z) as seen from 0.
An application to starlike domains. A domain D is called starlike with respect to x €
Dif
(v, 2)p(w)| <m

for each w € 8D and z € D. An equivalent definition is that the line segment from x
to z is entirely contained in D for each z € D. The following result recaptures the well
known analytic characterization of starlike domains, due to W. Seidel; see Section 3.4
and, in particular, (3.9).

Proposition 3.12. A domain D € Sy, is starlike with respect to x € D if and only if
|hp(x,2)| < 5 forallze D.

3.4. An analytic description. We now give a purely analytic description of ip. On the
polydisc U® % Ux Ux U define the nonvanishing analytic function

fe: UP = C\{0)
by

(3-6) f* (C, ‘fl TI)

(oornl‘fl()
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def z, - —zi . . > .
where (2,23,23,24) = -z-l_—fjfg_—;;* is the cross ratio of the points z; in the Riemann

sphere [16, p. 58]. In particular, (oo, a,c,b) = ﬁ. Observe that f,(0,0,0) = 1. The
functional f — f. is invariant under translations, rotations and dilations. If { = ¢,
n=0¢€dU, and f, exists at 8, then (3.6), defined by continuity, is precisely the Visser-
Ostrowski quotient

_flg-6)
f* (C-C,e) - f(() -fb(g)’
see [25]. If { = ¢ and n = 0 then (3.6) yields
__ o
f*((r(uo) - f(c)_f(o) ]

the analytic quantity used by W. Seidel in order to characterize starlike domains®. Let
arg be the branch equal to zero for { = 0.

Theorem 3.13. Under the hypotheses given above, the following identities hold for all
(el withx=f(0),z= f({{), w= f,(@) and z' = f(§),

3.7) arg f+(£,6,0) = (x,2) p(w) - (0,0) (),
(3.8) arg f+({,¢,0) = (x, 2% (z) - (0,04,
(3.9) arg fx({,{,0) = hp(x,2).

Remark. Theorem 3.2 follows from (3.9). Our proof of Theorem 3.2 is purely potential
theoretic and independent of (3.9).

Remark. From (3.4) and (3.9) we obtain

arg f+({,{,0) = gp(x,2),(2),
where x = f(0) and z = f({). The previous identity can also be proved directly, as in
127, p. 672] without employing our function hp. See also [7].

3.5. The h function and relative winding. If f is the Riemann map of D and f;, exists
at 0, then the following identity is verified by computation, left to the reader.
J+(,4,8) f+(0,0,{}) £+ ({,6,0)
f* ((1 Cn 0)
Now, choose a value for arg £4 (0,0,8), such that |arg £, (0,0,8)| < . This choice uniquely
determines a branch of arg f, ({, {,8) with the given initial condition for { = 0. Now, se-
lect the branch of arg f«({,{,0), equal to 0 for { = 0 and do the same for arg f.({,0,0)
and arg f..({,8,0). The following result follows from (3.10) and Theorem 3.13.
Proposition 3.14. If f,(6) exists then, under the choices described above, for all{ € U
(3.11) hp(x,2) - (x,2) p(w) =arg f({,{,0) + hp (2, x) + £(2),
wherez= f({), x= f(0) and |e(z)| < .

Indeed, £(z) = —(0,{) 4(8) —arg £ (0,0,6). The quantity i1p(z, x) does not always re-
main bounded when z — w; the reader may verify that a negative example is given by
the domain in [13, Figure 2, p. 36).

(3.10)

=f+(0,0,8), V{eU.

35ee 126, p. 206] and [25, p. 66|
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4. THE FUNCTION fip AND TWISTING
Theorem 4.1. IfD < R? is NTA then for each a > 0 and each w € 4D

(4.1) sup |hp(x,z)=(x,z)p(w)| <co.
zel'x (W)

Remark. Observe that (4.1) is a general, intrinsic form of the estimate (1) given in [8]
in the proof of Lemma 3 of that paper. Examples show that (4.1) may fail if D is not NTA
at w; see |21].

Theorem 4.2, [fD € Sy, then for a.e. point w € dD, relative to harmonic measure, the
boundary behaviour of hp (x) at w predicts whether w € Sect(D) or w € twist(D).
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