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Mammographic images suffer from low contrast and signal dependent noise, and a very
small size of tumoral signs is not easily detected, especially for an early diagnosis of breast
cancer. In this context, many methods proposed in literature fail for lack of generality.
In particular, too weak assumptions on the noise model, e.g., stationary normal additive
noise, and an inaccurate choice of the wavelet family that is applied, can lead to an
information loss, noise emphasizing, unacceptable enhancement results, or in turn an
unwanted distortion of the original image aspect. In this paper, we consider an optimal
wavelet thresholding, in the context of Discrete Dyadic Wavelet Transforms, by directly
relating all the parameters involved in both denoising and contrast enhancement to
signal dependent noise variance (estimated by a robust algorithm) and to the size of
cancer signs. Moreover, by performing a reconstruction from a zero-approximation in
conjunction with a Gaussian smoothing filter, we are able to extract the background and
the foreground of the image separately, as to compute suitable contrast improvement
indexes. The whole procedure will be tested on high resolution X-ray mammographic
images and compared with other techniques. Anyway, the visual assessment of the results
by an expert radiologist will be also considered as a subjective evaluation.

Keywords: Discrete Dyadic Wavelet Transform; heteroscedastic additive noise; adaptive
thresholding.
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1. Introduction and Statement of Main Results

In this paper, we deal with the denoising and contrast improvement of low contrast
images. We consider a general noise model given by

I(n, m) = I0(n, m) + Ĩ(n, m) = I0(n, m) + η(n, m) · σ(I0(n, m)), (1.1)

where n = 1, . . . , N , m = 1, . . . , M , I0(n, m) is a N × M matrix representing a
low contrast noise free image, η(n, m) is a Wide Sense Stationary (WSS) Gaussian
random process with zero mean and unitary variance and σ(I0(n, m)) : [0, 1] → R

denotes the intensity-dependent standard deviation of random process Ĩ(n, m). The
scope of our work is to perform denoising and contrast enhancement of I(n, m),
under the following hypotheses: noise is assumed to be heteroscedastic (i.e. with
nonconstant variance), images have low contrast and very small details, which are
commonly encountered features in medical images such as, for example, X-ray mam-
mographic images.1 In fact, in this context the acquisition and formation processes
cause noise heteroscedasticity that can mask small details, while the similar absorp-
tion characteristics of normal glandular tissue and tumoral lesions cause a very low
local contrast, thus making the early diagnosis of breast cancer a nontrivial task.
According to AIRC (Italian Association on Cancer Research) and ACS (American
Cancer Society), radiologists miss out 10–20% of lesions during diagnosis, so image
quality improvement represents a key issue in every Computer Aided Diagnosis Sys-
tem (CADx). Moreover, cancer signs usually have various shape, dimension, and
distribution in the images. For example, in mammographic images, cancer signs can
be classified into microcalcifications, where tiny deposits of calcium appear as small
bright spots with a mean diameter in the range [0.1–1]mm which are relevant if
distributed in cluster and massive lesions that are space occupying lesions, with a
mean luminance much more similar to glandular tissue and a mean diameter in the
range [0.3–40]mm. In this paper, we consider mainly region containing microcalci-
fications, that represent the most difficult signs to be detected by every Computer
Assisted Diagnosis system (CADx) owing to the small size and the high similarity
to noise.

Actually, in the last 20 years, many approaches have been applied to deal with
the contrast enhancement of medical images (we refer to Ref. 6 and references
therein), including filtering methods,32 global and local thresholding methods,14,9

histogram equalization,21 unsharp masking,4 region-based approach,36 morpholog-
ical operators,27,28 wavelet transform,50,22 and fuzzy logic approaches.5 Basically,
all these methods deal with contrast manipulation, noise reduction, background
removal, edge detection, and smoothing. The approaches can be roughly classi-
fied into three categories: contrast stretching techniques, region-based enhancement
techniques, and feature-based approaches.

The first group includes unsharp masking that improves contrast by subtracting
a smoothed version of the image to the image itself and adaptive neighborhood
processing9 that uses first derivative filters (Sobel) and local statistical properties.
However, this class of methods changes the final image or emphasizes noise.
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The second group uses modified versions of region growing algorithm to grow
regions around a seed pixel. In this way, a detailed reconstruction of objects is
achieved, also in low contrast images. However, this kind of approach is success-
fully applied to the segmentation of large objects, such as massive lesions. On the
contrary, this technique is not suitable for the denoising of small spots.

Finally, the third group includes multiscale approaches by wavelet trans-
form,25,17,38,42 B-spline function,44 decimated wavelet transform,48,49 undecimated
biorthogonal transform,43,45 fractal28,27 and morphological analysis.47 The latter
two methods are used especially in strongly low contrast images, where the dense
tissue reduces the visibility of microcalcifications. On the contrary, the wavelet
approaches can preserve the shape of details (microcalcifications or the boundary
of a tumoral mass) better than morphological operators. Therefore, despite of a
growing complexity in the implementation of the methods and in the tuning of
the parameters, wavelet transform represents one of the most effective approaches
for the contrast enhancement of mammographic images, emphasizing small details,
and reducing noise.

In this context, many wavelet thresholding techniques have been investigated.
Some methods19,40 evaluate the correlation between wavelet coefficients at different
scale, as to identify noisy pixel (showing no correlation) and signal pixel (high corre-
lation). Unfortunately, for a low number of levels and low noise, this approach fails
while detecting microcalcifications. Other methods11,10,23,7,18 select the thresholds
for denoising directly by evaluating some statistical properties of the noise, or iter-
atively.2 In particular, in Ref. 10, the authors suggest to use the robust estimator
MAD (Median Absolute Deviation) to compute noise variance at each level, in a
orthogonal wavelet transforms framework. The same work has then been extended
in Ref. 20 by considering data affected by correlated noise in orthogonal wavelet
framework and in Ref. 3 by assuming additive Gaussian noise in translation invari-
ant DWT framework. Unfortunately, in this setting the assumption of a signal-
independent, Gaussian, and homoscedastic noise and the choice of a decimated
family of wavelets appear not suitable for many real-world images, such as medical
images. In particular, it has been shown23 that ultrasound, X-ray, and MRI images
both are corrupted by a mixture of noise contributions. Moreover, it is well known
that translation invariant undecimated wavelets, such as Discrete Dyadic Wavelet
Transforms (DDWT), preserve much more information than classical orthogonal
wavelet transforms, while reducing noise and improving contrast. In this paper, we
exploit DDWT30 to deal with the case of a signal-dependent noise contribution
modeled in (1.1).

We take into account the following critical aspects:

— heteroscedasticity of noise modeled by (1.1) and represented by an additive
Gaussian noise with a signal-dependent noise variance,

— very low local contrast and a poor visual discrimination between details and
background tissue,

— very small size of details to be enhanced,
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and requirements

— need of a translation invariant and undecimated wavelet transform (DDWT) to
avoid geometric distortion in the images and loss of details,

— need of very high performance, in terms of computational time,
— need of preserving as much as possible the aspect of the original image, while

enhancing details. This topic is crucial for helping radiologists in the diagnosis
of cancer signs.

The algorithm we propose can be summarized in the following steps.

(i) Estimate the noise variance of I(n, m) in (1.1) by applying a modified ver-
sion of the algorithm described in Refs. 15 and 35, suitable in the case
of heteroscedastic signal dependent noise. This step provides the estima-
tion σ̂(Î(n, m)) of the noise variance σ2(I0) versus intensity value Î(n, m)
where Î(n, m) is a preliminary estimation of I0(n, m) obtained by applying a
smoothing filter to I(n, m). Actually, we do not assume a direct dependence
of the noise variance on the spatial locations. A preliminary investigation of
a more general noise model with a spatial dependent noise variance can be
found in Ref. 33.

(ii) Manually extract from the original image a suspicious Region of Interest
(ROI) that could contain small cancer signs.

(iii) Perform wavelet decomposition by DDWT in D = 3 levels by applying gra-
dient filters.

(iv) Apply wavelet thresholding for denoising, using σ̂(Î(n, m)), and relate it to
noise variance in each subband by energy evaluation of filters implementing
DDWT. In this step, Theorem 1.1 will be fundamental since it will allow a fast
implementation under suitable assumptions validated by simulation results.

(v) Apply again gradient filters so that a Laplacian is globally performed through
steps (iii) to (v).

(vi) Perform enhancement by wavelet thresholding using considerations similar to
those of step (iv) for the threshold selection. A new gain selection is also imple-
mented by relating the gain to the mean size of cancer signs. In particular,
the thresholding we implement for the enhancement is slightly different from
the classical one since we make the following assumption: higher coefficients
are related to details to be enhanced while lower ones reasonably represent
very low contrast small spots related to noise or structures belonging to the
tissue that have not been modified by denoising. This hypothesis is supported
by the fact that details we are interested in, i.e. microcalcifications, have a
medium contrast.

(vii) Extract separately background (glandular tissue) and foreground (cancer
signs in our case) by performing a reconstruction from zero-approximation
in conjunction with a Gaussian smoothing filter. As noted in Sec. 3, this
procedure will allow us to perform a selective processing of foreground and
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background and consequently the performance optimization of the global
procedure.

(viii) Recover the final enhanced image by a suitable superimposition of background
and foreground extracted at step (vii).

While introducing our approach, for the reader’s convenience, we will also recall
the main properties of DDWT.

1.1. Wavelet thresholding in DDWT

With respect to the DDWT firstly introduced by Mallat,29–31 which represents
a translation invariant and redundant representation, we consider the particular
subclass of DDWT based on the so-called Spline Dyadic Wavelets since the scaling
function φ(x) is a box spline function whose Fourier transform is given by Φ(ω) =
(sin(ω/2)/(ω/2))z+1e(−ιεω/2) (where z is an integer and if ε = 1 z is even and zero
otherwise). The filters banks for decomposition and reconstruction are shown in
Figs. 1 and 2 where filters H , G, L and K in the Fourier domain are given by

H(ωq) = eιωqs1 cosp+1
(ωq

2

)
, G(ωq) = eιωqs2

(
2ι sin

(ωq

2

))r

, (1.2)

K(ωq) =
(1 − |H(ωq)|2)

G(ωq)
, L(ωq) =

(1 + |H(ωq)|2)
2

(1.3)

GI( ωv) GII ( ωv)

GI( ωh) GII ( ωh)

H( ωv) H ( ωh)

GI(2 ωv) GII (2 ωv)

GI(2 ωh) GII (2 ωh)

dI
{v ,1 }

dI
{h, 1}

a1

dI
{v ,2 }

dI
{h, 2}

dII
{v ,1 }

dII
{h, 1}

dII
{v ,2 }

dII
{h, 2}

H( 2ωv) H (2 ωh)

a2

Fig. 1. Filter bank implementation of DDWT decomposition in two-dimensional case.
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dII
{v ,1 }

dII
{h, 1}

dII
{v ,2 }

dII
{h ,2 }

a2

K( ωv)L ( ωh)

L( ωv)K ( ωh)

H( ωv)H ( ωh)

+

K(2 ωv)L (2 ωh)

L( 2ωv)K (2 ωh)

H( 2ωv)H (2 ωh)

+

Fig. 2. Filter bank implementation of DDWT reconstruction in two-dimensional case.

with p ∈ N, s1 = 1
2 ((p + 1)mod2), r ∈ {1, 2}, s2 = 1

2 (r mod 2), q ∈ {v, h},
where the notations ωv and ωh mean that the filters are applied to the rows and
the columns of the input image respectively owing to the separability of filters
implementing the DDWT. Note that, in the two-dimensional case we have verti-
cal and horizontal detail coefficients at level l that we will denote in the following
as do

q,l with q ∈ {v, h}, o ∈ {I, II} at level l. This paper deals, in particular,
with the case p = 1, r = 2 in (1.1). It is well known that this choice is greatly
suitable to perform image enhancement (see Ref. 13 and references therein). In
order to perform denoising, the filter G(ωq), q ∈ {v, h} is splitted into two cas-
caded gradient filters13,46 (see Fig. 1), denoted as GI(ωq) and GII (ωq), given by
e−ιωq/2(2ι sin(ωq/2)) and eιωq/2(2ι sin(ωq/2)) respectively, and denoising is applied
after GI(ωq). This approach improves denoising performance, since the Signal-to-
Noise Ratio (SNR) is higher after GI than after GII . Nevertheless, the enhancement
step is better performed after GII as said before. The splitting we perform is a cru-
cial point since it allows us to differentiate the actions we perform. Owing to the
typical luminance values of the details to be enhanced, to their similarity in size with
noise, and finally to their low contrast, denoising and enhancement performance
are optimized by applying the splitting of the Laplacian filters into two gradient
filters.
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Consider now only the decomposition part shown in Fig. 1. Then, the transfer
functions of filters at a generic level l are given by



Gl(ωq) = G(2l−1ωq) = −4 sin2

(
2l−1ωq

2

)
= Gl,I(ωq) · Gl,II (ωq)

Hl(ωq) = H(2l−1ωq) = cos2
(
2l−1 ωv

2

) (1.4)

with l = 1, . . . , D, q ∈ {v, h} and splitted filters given by


Gl,I(ωq) = e−
2l−1ιωq

2 2ι sin
(ωq

2

)
Gl,II (ωq) = e

2l−1ιωq
2 2ι sin

(ωq

2

) (1.5)

with l = 1, . . . , D and q ∈ {v, h}. Consider again scheme in Fig. 1 and let us denote
with GT

l (ωq) and HT
l (ωq) the cascaded transfer functions up to level l having the

noisy image as input and do
q,l and al as outputs respectively, with q ∈ {v, h},

o ∈ {I, II}, l = 1, . . . , D. Then, we have{
GT

l (ωq) = H1(ωq) · · ·Hl−1(ωq) · Gl(ωq),

HT
l (ωq) = H1(ωq) · · ·Hl−1(ωq) · Hl(ωq).

(1.6)

Equation (1.6) holds either if Gl(ωq) ≡ Gl,I(ωq) and if Gl(ωq) ≡ Gl,II (ωq). In the
two cases, we get |GT

l,I | and |GT
l,II |, respectively. Following above observations, the

whole denoising and enhancement scheme is shown in Fig. 3. The denoising operator
D(·) is implemented by a soft-threshold function,10 defined by

D(x) =

{
sign(x)(|x| − Tnoise) |x| ≥ Tnoise,

0 otherwise,
(1.7)

where Tnoise is the denoising threshold to be suitably set. Soft-thresholding is usually
preferred to hard-thresholding12 since the use of a continuous operator D(x) instead

Gl, I ( ωv) Gl, II ( ωv)

dI
{v ,1 } dII

{v ,1 }

D( ) E( ) 

Gl, I ( ωh) Gl, II ( ωh)

dI
{h, 1} dII

{h, 1}

⋅ ⋅

D( )⋅ E( ) ⋅
Fig. 3. Splitting of the second-order derivative filters (level l is shown) for denoising and contrast
enhancement.



September 15, 2010 10:15 WSPC/S0219-6913 181-IJWMIP 00375

720 A. Mencattini et al.

of a discontinuous one avoids the introduction of artifacts in the wavelet coefficients.
This issue is crucial in critical applications such as medical image processing.

It is well known that Tnoise is mainly related to noise variance. Consequently,
extending results in Refs. 11 and 26 in case of heteroscedastic additive noise, we
use the following threshold modela:

Tnoise(l, Î(n, m)) = σ̂dI (q, l, I(n, m))
√

2 log(N · M),

n = 1, . . . , N, m = 1, . . . , M,
(1.8)

where N × M is the size of digital image I(n, m), q ∈ {v, h}, for each level l =
1, . . . , D, and σ̂dI (q, l, I(n, m)) is the estimation of the noise standard deviation
performed on details coefficients dI

q,l at level l. Note that thresholds in (1.8) depend
on the intensity, owing to term σ̂dI (q, l, I(n, m)), since we assumed heteroscedastic
noise in the image I(n, m). Later, we will show in details this relationship. At
this point, we recall a preliminary result, proved in Ref. 34, that represents the
starting point of this paper. In particular, in Ref. 34 it was proved that given a
two-dimensional WSS homoscedastic random process x(n, m), input of filter bank
in Fig. 1, and consider relations (1.4) and (1.6), then, by symmetry of the filter
bank in Fig. 1, the constant variance of process dI

q,l, denoted as σ2
dI (q, l), where

q = {v, h} and l = 1, . . . , D, is given by

σ2
dI (q, l) = σ2

x

(22(l−1) + 1)(22l−1 + 1)
3 · 26(l−1)

(1.9)

where σ2
x is the constant variance of the random process x(n, m).

This result models the propagation of noise variance throughout wavelet levels
for DDWT under the assumption of additive homoscedastic noise model with a
constant noise variance σ2

x.
In this paper, we consider the case of a heteroscedastic intensity-dependent

additive noise model whose variance can be represented by σ2(I0(n, m)) referring
to (1.1).

Let us denote with σ̂2(Î) the estimation of the noise variance in the image
I(n, m). Then, we introduce the local variation VS [σ̂2(Î)] defined by

V1[σ̂2(Î)] ≡ sup
n,m

|σ̂2(Î(n − 1, m − 1)) − σ̂2(Î(n, m))|,

V2[σ̂2(Î)] ≡ sup
n,m

(k,j)∈{1,2}×{1,2}
|σ̂2(Î(n − k, m − j)) − σ̂2(Î(n, m))|

· · ·
VS [σ̂2(Î)] ≡ sup

n,m
(k,j)∈{1,...,S}×{1,...,S}

|σ̂2(Î(n − k, m − j)) − σ̂2(Î(n, m))|.

(1.10)

aThe model in (1.8) is the natural generalization of classical formulation Tnoise(l) = σl ·p
2 log(N · M), when noise is assumed to be WSS (see Refs. 10 and 34).
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Then, we will prove the following

Theorem 1.1. Let us consider noise model (1.1) and the DDWT implementation
given in schemes 1 and 2. Then, the estimated subband variances σ̂2

dI (q, l, I(n, m)),
σ̂2

a(l, I(n, m)) with q = {v, h}, l = 1, . . . , D, are given by

σ̂2
dI (q, l, I(n, m)) = σ̂2(Î(n, m))

(22(l−1) + 1)(22l−1 + 1)
3 · 26(l−1)

+
N∑

k=1

M∑
j=1

(σ̂2(Î(n − k, m − j)) − σ̂2(Î(n, m)))(gT
l (k, j))2,

σ̂2
a(l, I(n, m)) = σ̂2(Î(n, m))

(22l+1 + 1)2

9 · 26l

+
N∑

k=1

M∑
j=1

(σ̂2(Î(n − k, m − j)) − σ̂2(Î(n, m)))(hT
l (k, j))2,

(1.11)

where gT
l (k, j) and hT

l (k, j) are the impulse responses of filters having transfer func-
tion GT

l (ωv, ωh) = GT
l (ωv) · HT

l−1(ωh) (or analogously changing ωv and ωh) and
HT

l (ωv, ωh) = HT
l (ωv) ·HT

l (ωh) respectively given by (1.6), with Gl(ωq) ≡ Gl,I(ωq),
q ∈ {v, h}, l = 1, . . . , D. Moreover, we will show that∣∣∣∣σ̂2

dI (q, l, I(n, m)) − σ̂2(Î(n, m))
(22(l−1) + 1)(22l−1 + 1)

3 · 26(l−1)

∣∣∣∣
≤ VSg [σ̂2(Î)]

(22(l−1) + 1)(22l−1 + 1)
3 · 26(l−1)

,∣∣∣∣σ̂2
a(l, I(n, m)) − σ̂2(Î(n, m))

(22l+1 + 1)2

9 · 26l

∣∣∣∣ ≤ VSh
[σ̂2(Î)]

(22l+1 + 1)2

9 · 26l

(1.12)

using definition given in (1.10) where Sg and Sh are the support of filters gT
l and

hT
l respectively. Moreover, following (1.11) and (1.12), we are induced to adopt the

approximations

σ̂2
dI (q, l, I(n, m)) = σ̂2(Î(n, m)) · (22(l−1) + 1)(22l−1 + 1)

3 · 26(l−1)

and

σ̂2
a(l, I(n, m)) = σ̂2(Î(n, m)) · (22l+1 + 1)2

9 · 26l
.

This result allows us to consider a wide class of noise additive models suitable
for very different applicative contexts. This turns out to be the right setting in
many practical cases. In particular, when low contrast images are considered and
DDWT is implemented by a few levels (D ≤ 3) that are enough to emphasize
small objects, then this approximation gives satisfactory simulation results. This
is motivated by a low VS [σ̂2(Î)] and a small support S in these practical cases,
recalling the estimates given in (1.11). In Sec. 3, we will provide simulation results
to validate this assumption. Finally, we get
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Remark 1.1. Results in Theorem 1.1 are used in relation (1.8) in order to provide
a direct tuning of denoising threshold given by

Tnoise(l, Î(n, m)) =
√

2 log(N · M) ·
√

σ̂2(Î(n, m))
(22(l−1) + 1)(22l−1 + 1)

3 · 26(l−1)
. (1.13)

Note that Tnoise(l, Î(n, m)) at level l does not depend on the noise variance at
level l, but only on the noise variance estimation σ̂2(Î(n, m)), thus making possible
an easy and fast implementation of thresholds selection. In the following sections
we will confirm this statement.

Then, the crucial step of denoising is the estimation of term σ̂2(Î(n, m)) that is
performed here by a recent and clever algorithm described in Ref. 15. In Sec. 3, we
will provide also some results of the whole estimation procedure.

At this point, considering again schemes in Figs. 1 and 3, we can deal with the
contrast enhancement operator E(·). It is well known that denoising in mammo-
graphic images is necessary to optimize contrast improvement performance. This
step is needful to improve image quality and diagnosis capability of radiologists in
the case of mammographic images. Consequently, a suitable enhancement operator
has to be implemented. In this paper, we consider the operator E(·) defined by

E(x) =

{
0, |x| < Tenh,

G · (sign(x)(|x| − Tenh)), |x| > Tenh.
(1.14)

A hard task in this topic is the choice of Tenh and G, which turn out to be crucial
in the applications. In respect to previous works,41,8 here we are able to set the
threshold Tenh and the gain G as follows:

Tenh takes into account residual noise kept by the preliminary denoising procedure.
In fact, in order to preserve details that mostly retain information about small can-
cer signs, denoising procedure cannot be too conservative. Consequently, threshold
Tenh is computed following an analogous approach as for Tnoise in operator D(·)
that we will describe in the following. Here, it can be important to note that opera-
tor E(x) still set to zero small Laplacian coefficients, in contrast with the standard
soft-thresholding operators used in literature for contrast enhancement. This fact
has been already motivated in step (vi) in Sec. 1.

G is chosen according to considerations made in Sec. 1. In particular, assuming that
gradient coefficients at first level contain mostly noise and that microcalcifications
are in the second or in the third level according to their dimension, we set G1 = 2,
and we set G2+G3 = const. Doing so, we need to choose only G2 or G3. This further
setting is accomplished by comparing the number of nonzero wavelet coefficients
in (dII

v,l + dII
h,l) in levels 2 and 3. The more the information is at level 2 the more

G2 tends to maximum value. G3 is chosen accordingly. These considerations turn
out by a statistical analysis performed over 200 mammographic images containing
microcalcifications. In Sec. 3, we will also provide numerical values for G in some
practical cases.
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Consider now the setting of threshold Tenh. As a preliminary result we state that

Theorem 1.2. Let us consider noise model (1.1) and the DDWT implementation
given in schemes 1 and 2. Consider also scheme in Fig. 3. Then, the subband
variance σ̂2

dII (q, l, I(n, m)) with q = {v, h}, l = 1, . . . , D, is given by

σ̂2
dII (q, l, I(n, m)) = σ̂2(Î(n, m))

(22l + 2)(22l + 5)
9 · 26(l−1)

+
N∑

k=1

M∑
j=1

(σ̂2(Î(n − k, m − j))

− σ̂2(Î(n, m)))(gT
l (k, j))2 (1.15)

where gT
l (k, j) is the impulse response of filters having transfer function

GT
l (ωv, ωh) = GT

l (ωv) · HT
l−1(ωh) (or analogously changing ωv and ωh) and

HT
l (ωv, ωh) = HT

l (ωv) ·HT
l (ωh) respectively given by (1.6) with Gl(ωq) ≡ Gl,II (ωq),

q ∈ {v, h}, l = 1, . . . , D. Moreover, we will show that

∣∣∣∣σ̂2
dII (q, l, I(n, m)) − σ̂2(Î(n, m))

(22l + 2)(22l + 5)
9 · 26(l−1)

∣∣∣∣
≤ VSg [σ̂2(I0)]

(22l + 2)(22l + 5)
9 · 26(l−1)

(1.16)

where VSg is defined as in Theorem 1.1. As above, following (1.15) and (1.16), we
are induced to adopt the approximation

σ̂2
dII (q, l, I(n, m)) = σ̂2(Î(n, m)) · (22l + 2)(22l + 5)

9 · 26(l−1)
. (1.17)

The validity is the same as discussed previously.

Later, we will show that the term (22l+2)(22l+5)

9·26(l−1) represents the energy of the
cascaded filters |GT

l (ωv, ωh)| given by Eq. (1.6) with Gl(ωq) ≡ Gl,II (ωq). Finally,
using Eqs. (1.15) and (1.16) we have the following remark.

Remark 1.2. Threshold Tenh(l, Î(n, m)) in the contrast enhancement operator
E(·), under the assumption of the heteroscedastic noise model described in (1.1) is
set to

Tenh(l, Î(n, m)) =
√

2 log(N · M) ·
√

σ̂2(Î(n, m)) · (22l + 2) · (22l + 5)
(9 · 26(l−1))

(1.18)

where σ̂2(Î(n, m)) is evaluated following the same observations made in the setting
of threshold Tnoise.
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By setting the thresholds Tnoise(l, Î(n, m)) and Tenh(l, Î(n, m)) using Eqs. (1.13)
and (1.18) we provide an efficient procedure within DDWT for denoising and con-
trast enhancement of low contrast regions with very small cancer signs, thanks
to an accurate subband energy evaluation. The main differences among scheme in
Fig. 1 and schemes described in Refs. 25 and 24 concern, first of all, the thresholds
selection method, that here is directly related to noise power taking into account
heteroscedasticity of noise contribution. Secondly, in our work denoising operator
D(·) and enhancement operator E(·) are applied directly to wavelet coefficients
in each subband separately. In converse, D(·) is usually applied to the modulus

of gradient Ml =
√

(dI
v,l)2 + (dI

h,l)2 and E(·) to Laplacian coefficients given by

Ll = dII
v,l + dII

h,l. As a drawback, considering Ml and Ll, pseudo-inverse filtering
operations are needed in order to obtain the two subband matrix coefficients after
the processing of Ml and Ll thus introducing computational errors. Moreover, by
considering Ml and Ll, the intersubband noise correlation between dI

h,l and dI
v,l,

and between dII
h,l and dII

v,l should be evaluated. Finally, recalling that this choice is
motivated by the isotropy of Ll and of Ml, note that, in the case of mammographic
images, details such as microcalcifications have a very small size so that isotropy is
not a crucial property. Moreover, to avoid geometric distortion, we apply the same
threshold Tnoise(l, Î(n, m)) to dI

v,l and dI
h,l and the same Tenh(l, Î(n, m)) to dII

v,l,
and dII

h,l.
In the following section we will prove the statements of the main results while

in Sec. 3, we will provide results of the application of the proposed algorithm and
we will inspect numerical aspects of the method.

2. Proofs of the Main Results

Here below we recall noise model in Eq. (1.1).

I(n, m) = I0(n, m) + Ĩ(n, m) = I0(n, m) + η(n, m) · σ(I0(n, m)),

with n = 1, . . . , N , m = 1, . . . , M . In order to propagate the noisy contribution
Ĩ(n, m) through a Linear Shift Invariant (LSI) filter, let us denote with If (n, m) the
output of a 2D LSI filter having Ĩ(n, m) as input and f(n, m) as impulse response.
By convolution, we have that If (n, m) = Ĩ(n, m) ∗ f(n, m). Moreover, we assume
separability of used filters, so that in the Fourier domain transfer function F (ωv, ωh)
of the filter corresponds to F (ωv) · F (ωh). Then, we have the following result.

Lemma 2.1. The estimated noise variance of the noisy output If (n, m) is given
by

σ̂2(If (n, m)) =
N∑

k=1

M∑
j=1

(f(k, j))2σ̂2(Î(n − k, m − j)). (2.1)
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Proof. The proof can be easily accomplished by standard arguments from random
process theory (see for example Ref. 39) and considering the definition of filters
given in Sec. 1.

As a corollary of Theorem 1.1 and Lemma 2.1, and using again the definition
of VS [σ̂2(Î)], we easily get the following

Corollary 2.1. With the same notations of Lemma 2.1 and using the definition of
VS [σ̂2(Î)] we also have∣∣∣∣∣∣

N∑
k=1

M∑
j=1

σ̂2(Î(n − k, m − j))(f(k, j))2 −
N∑

k=1

M∑
j=1

σ̂2(Î(n, m))(f(k, j))2

∣∣∣∣∣∣
≤ VS [σ̂2(Î)]

N∑
k=1

M∑
j=1

(f(k, j))2.

Finally, using Lemma 2.1 and Corollary 2.1, for small values of S, or more
generally for small values of VS [σ̂2(Î)], we may and do assume the following
approximation

σ̃2(If (n, m)) = σ̂2(Î(n, m))
N∑

k=1

M∑
j=1

(f(k, j))2, (2.2)

or equivalently, by Parseval’s inequality

σ̃2(If (n, m)) = σ̂2(Î(n, m))
1

4(π)2

∫ π

−π

∫ π

−π

|F (ωv, ωh)|2 dωv dωh. (2.3)

The assumptions in Corollary 2.1 are usually verified in very low contrast images
represented by a small range of luminance values such as mammographic images
where the gradient of intensity image is locally small owing to the similar absorp-
tion characteristics of glandular tissue and tumoral masses. Since noise variance
depends on the intensity, if this has a slow variation the same holds for the noise
variance. This consideration is strengthened by the fact that filters implementing
DDWT have a small support, especially using only three decomposition levels, that
are enough to detect and isolate bounded cancer signs such as microcalcifications.
Using Lemma 2.1, Corollary 2.1, and results proved in Ref. 34 we are able to prove
Theorem 1.1.

2.1. Proof of Theorem 1.1

Proof. Using Corollary 2.1 we need to evaluate 1
4(π)2

∫ π

−π

∫ π

−π |F (ωv, ωh|2dωvωh in
each subband with F given by

|F (ωv, ωh)|2 =
l−1∏
k=1

|Hk(ωv)|2|Gl(ωv)|2
l−1∏
r=1

|Hr(ωh)|2
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with Gl(ωq) = GI
l (ωq), q = {v, h}. By Ref. 34 (Theorem 3.2), it follows that

1
4(π)2

∫ π

−π

∫ π

−π

|F (ωv, ωh)|2 dωv dωh =
(22(l−1) + 1)(22l−1 + 1)

3 · 26(l−1)
,

ending the proof.

Using now relations (1.11) and considering again relation (1.8), we finally get

Tnoise(l, Î(n, m)) =
√

2 log(N · M) ·
√

σ̂2(Î(n, m))
(22(l−1) + 1)(22l−1 + 1)

3 · 26(l−1)
, (2.4)

that is Remark 1.1 (Eq. (1.13)). Now, let us consider threshold Tenh(l, Î(n, m))
in the contrast enhancement operator E(·). Following above considerations for the
setting of the threshold Tnoise(l, Î(n, m)), using again Lemma 2.1 and Corollary 2.1,
let us prove Theorem 1.2.

2.2. Proof of Theorem 1.2

Proof. Applying results of Lemma 2.1 and Corollary 2.1 to σ̂2
dII (q, l, I(n, m)), with

gT
l (k, j) related to the transfer function F (ωv, ωh) = GT

l (ωv)HT
l−1(ωh) or, by sym-

metry, F (ωv, ωh) = GT
l (ωh)HT

l−1(ωv) with Gl(ωq) = GI
l (ωq)GII

l (ωq), we easily get∣∣∣∣∣∣σ̂2
dII (q, l, I(n, m)) − σ̂2(Î(n, m))

N∑
k=1

M∑
j=1

(gT
l (k, j))2

∣∣∣∣∣∣ ≤ VS [σ̂2(Î)]
N∑

k=1

M∑
j=1

(gT
l (k, j))2.

Now, we only need to evaluate the term
∑N

k=1

∑M
j=1(g

T
l (k, j))2 (i.e. the energy of

Laplacian filters) to induce the approximation (1.17). Apply result in Corollary 2.1
with F (ωv, ωh) given above and using (1.6) we get

|F (ωv, ωh)|2 =
l−1∏
k=1

|Hk(ωv)|2|Gl(ωv)|2
l−1∏
r=1

|Hr(ωh)|2. (2.5)

Consider now
∏l−1

k=1 |Hk(ωv)|2|Gl(ωv)|2 and
∏l−1

r=1 |Hr(ωh)|2 separately. Then,
applying Eqs. (1.4) and (1.5), by the same arguments used in Ref. 34 (Theorems 3.1
and 3.2) the evaluation of term

∑N
k=1

∑M
j=1(g

T
l (k, j))2 implies the computation of

16
2π

∫ π

−π

sin8

(
2l−1ωv

2

)

24(l−1) sin4
(ωv

2

) dωv · 1
2π

∫ π

−π

sin4

(
2l−1ωh

2

)

24(l−1) sin4
(ωh

2

)dωh.

Now, using the same setting of the Proof of Theorem 3.1 in Ref. 34, the Residues
theorem and standard algebraic identities, the above integral can be turned into
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Fig. 4. Visual evaluation of the terms of order 6s − 4.

Fig. 5. Visual evaluation of the terms of order 4s − 4.

the following expression

− 1
s8

1
4(π)2

lim
z1→0

d8s−4

dz8s−4
1



(

s−1∑
k=0

z2k
1

)4

(z2s
1 − 1)4


 · lim

z2→0

d4s−4

dz4s−4
2

(
s−1∑
r=0

z2r
2

)4

. (2.6)

Consider now separately the two limits. Referring to Figs. 4 and 5 and using an
analogous procedure as in Ref. 34, the reader can easily check that the above integral
is equal to

1
4(π)2

∫ π

−π

∫ π

−π

|F (ωv, ωh)|2 dωv dωh =
1
s8

(
2
4s3 + 5s

3

)
· 2s3 + s

6

and recalling that s = 2l−1 we have

1
4(π)2

∫ π

−π

∫ π

−π

|F (ωv, ωh)|2 dωv dωh =
(22l + 5)(22l + 2)

26(l−1)

that is the thesis.

3. Simulation Results and Performance Evaluation

In this section, we experimentally validate the assumptions made in the first part
of the paper and provide simulation results of the proposed algorithm. We consider
mammographic images taken from Digital Database for Screening Mammography
(DDSM)16,37 and, in particular, we test two classes of ROIs: 187 images containing
benign microcalcifications and 160 images containing malignant cluster of micro-
calcifications. As an example we consider here four images, 12 bpp with a spatial
resolution of 43 µm shown in Fig. 6. The reader can notice that these images have
a very low local contrast due to similar absorption characteristics of glandular
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(a) (b) (c) (d)

Fig. 6. Four mammographic images taken from DDSM. Case (a) 1626; (b) 1721; (c) 4132;
(d) 1905.

tissue (fibrous and fatty tissue) and cancer signs (massive lesions and microcalcifi-
cations), so that masses appear as a part of the tissue itself and microcalcifications
are invisible. These images are good representatives of the assumptions we made
in Theorems 1.1 and 1.2, since it is acceptable that local variations in the pixel
intensity is much smaller than the support of filters involved in the wavelet decom-
position, above all because only D = 3 levels are needed in order to localize small
features with a mean diameter of a few pixels.b Firstly, we perform noise vari-
ance estimation on these four images, providing a functional relation between noise
variance and pixel intensity values.15,35 An example is shown in Fig. 7 for image in
Fig. 6(b). The nonlinear regression performed by the Cubic Smoothing Spline allows
us to perform a regression analysis making weak assumptions on the nature of noise
affecting the image. In this way, we can take into account different noise contribu-
tions simultaneously. Note that noise variance exhibits an evident nonlinear trends
with respect to intensity values thus justifying the use of piecewise nonlinear regres-
sion. By using this map, we emphasize advantages of using Eqs. (1.11) and (2.2)
over the use of relation (2.1) by estimating σ2(I0(n, m)) through the regression
curve for every intensity Î(n, m).c Note that the implementation of Eq. (2.1) would
not be easy since the square of filters f(·, ·) should be evaluated for every subpart of
filter bank in Fig. 1 and the convolution with noise variance estimation σ̂2(Î(n, m))

bMicrocalcifications have a mean diameter in the range [0.1–1] mm so that with a spatial resolution
of 50 µm they are represented by [2 ÷ 20] pixels.
cRecall that, since we have no I0(n, m), we build a smoothed version of I(n, m), Î(n, m) by
applying a Gaussian filter to the noisy image I(n, m). Spurious data are anyway eliminated by
robust estimators.
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Fig. 7. An example of a parametric regression analysis by cubic smoothing spline with smoothing
parameter p = 0.99999 that maps intensity values into noise variance. Case 1721.

should be performed. On the contrary, implementation of Eq. (2.2) is very sim-
ple since the energy term is preliminary evaluated, and then only a multiplication
by σ̂2(Î(n, m)) is needed. Since both expressions (2.1) and (2.2) tend to zero as
decomposition level increases, the discrepancy between the two formulas has to
be evaluated carefully. To this aim, we evaluate for every level l a Mean Relative
Error (MRE) between the true value σ̂2

dI (q, l, I(n, m)) (computed by (2.1)) and its
approximation σ̃2

dI (q, l, I(n, m)) (computed by (2.2)). Formally, we have

MRE(l) = mean
n,m

(
σ̂2

dI (q, l, I(n, m)) − σ̃2
dI (q, l, I(n, m))

σ̂2
dI (q, l, I(n, m))

)
. (3.1)

To avoid time consuming, we manually extract from every original mammographic
image a Region of Interest (ROI) (see Figs. 8(a1)–8(d1)), i.e. a suspicious region
that contains microcalcifications already diagnosed by radiologists. The following
simulation results are provided for these ROIs. Note that a ROI’s size is variable
according to the spatial distribution and the size of microcalcifications that have
been already diagnosed by expert radiologists. Evaluating now the MRE for the
four ROIs we achieve results in Table 1. Note that, as expected, MRE increases
as level increases, because the support S of filter f(·) increases as level increases.
Anyway, MRE is smaller than 0.1 so that we can conclude that the difference
between the approximated value σ̃2

dI (q, l, I(n, m)) and true value σ̂2
dI (q, l, I(n, m))

is much smaller than the actual value itself and consequently approximation in
Eq. (2.2) is very good, besides being computationally advantageous.
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(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1) (d2)

Fig. 8. Four ROIs containing microcalcifications (a1)–(d1) and the corresponding enhanced
versions (a2)–(d2).



September 15, 2010 10:15 WSPC/S0219-6913 181-IJWMIP 00375

Denoising and Enhancement of Mammographic Images 731

Table 1. MRE vs. level l for the four

ROIs containing microcalcifications.

Levels

l = 1 l = 2 l = 3

Case 1626 0.020 0.048 0.074
Case 1721 0.004 0.012 0.020
Case 4132 0.020 0.050 0.082
Case 1905 0.005 0.015 0.025

Now, we apply denoising and contrast enhancement using the proposed algo-
rithm to the four ROIs. First of all, we show the contents of each decomposition
level before and after the application of thresholds. To reduce numbers of figures,
we show modulus of gradient Ml and Laplacian Ll. Figures 9(a)–9(d) show contents
of three levels for the image in Fig. 6(d). As expected, the first level mostly contains
noise, while third level contains tissue and greatest microcalcifications. Usually, sec-
ond level is the preferred one in order to detect microcalcifications. Anyway, all the
three levels maintain certain aspects of the same cancer signs. Figure 11(a) shows
instead the approximation matrix a3(n, m). Note that it does not contain relevant
information in order to detect microcalcifications. Anyway, after the reconstruction
step, it is emphasized and distorts the final result owing to a final image shrinking.
To prevent this effect, we perform the elaboration shown in Fig. 10 and summarized
as follows.

(a) (b) (c) (d)

Fig. 9. Three levels shown for image (d). From top to bottom first — third levels, from left to
right before and after denoising, before and after enhancement.
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Fig. 10. A new scheme to separate the denoised background from the denoised and enhanced
foreground.

— Perform wavelet decomposition, denoising and enhancement as described above.
— Perform wavelet reconstruction, setting approximation matrix a3(n, m) to zero.
— Apply a threshold to the reconstructed image maintaining only pixels with

the highest luminance, related to microcalcifications. In this way we obtain
a denoised and enhanced foreground shown in Fig. 11(b). The thresholding in
the pixel domain at this point is mainly motivated by clinical protocol aspects.
In fact, the subjectivity of an expert radiologist has to be guaranteed by allow-
ing him to slightly modify the final result by manually applying a threshold on
the pixel luminances. In this way, starting from a keep-all threshold value the
radiologist can reduce the information that are visible on the screen so to add
his professional experience to the processed image. The implementation of the
thresholding is performed by means of a scroll bar. Later, we will provide some
numerical values for this threshold.

— Apply a Gaussian filter to the original image to generate a background image.
The result is shown in Fig. 11(c). Note that, there are two main differences
between the reconstruction with a nonzero a3(n, m) and the application of a
Gaussian smoothing filter to the original image. First of all, by qualitative
results the approximation matrix a3(n, m) contains details that can confuse
the interpretation of the radiologist. So, it is preferred to eliminate it and to
recover the smoothed background by applying a Gaussian filter to the original
image. Secondly, the background could be recovered by applying only a denoising
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(a) (b)

(c) (d)

Fig. 11. (a) Approximation matrix at level three; (b) Recovered denoised and enhanced fore-
ground setting approximation matrix to zero; (c) Denoised background; (d) Bounded sum of
images (b) and (c) to preserve original aspect of the image.

procedure by DDWT to the original image, but from computational aspects this
is not advantageous.

— Perform a bounded sum of foreground and background to reconstruct an image
with the general aspect similar to the original one and with microcalcifications
enhanced. The result is shown in Fig. 11(d).

3.1. Performance evaluation

The above procedure is also needed to extract from the final image foreground and
background. In fact, in order to evaluate the performance of both the denoising
and the contrast enhancement procedures, foreground and background of the final
image have to be individually compared with foreground and background of the
original image.

Now, let us apply the whole denoising and enhancement procedure on the four
ROIs shown in Figs. 8(a1)–8(d1). Final results are shown in Figs. 8(a2)–8(d2). Here,
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Table 2. Numerical values for vector G and

threshold TH in some examples.

ROI Gains [G1, G2, G3] Threshold TH

Case 1626 [2 30 10] 0.16
Case 1721 [2 30 10] 0.26
Case 4132 [2 10 30] 0.10
Case 1905 [2 20 20] 0.16

the parameters used in the whole enhancement procedure (gain vector [G1, G2, G3]
and threshold in the pixel domain TH ) are reported in Table 2. Recall that we
consider digital images in the normalized range [0, 1]. In addition to the visual
inspection of the contrast improvement, in order to evaluate the performance of
our algorithm, we compute two indexes: Contrast Improvement Index (CII)25,6

and Peak Signal-to-Noise Ratio (PSNR).28,27 The two indexes evaluate contrast
improvement and noise reduction respectively. They are defined as

CII =
CProc

COrig
, PSNR =

p − b

σb

where CProc and COrig denote contrast in the processed and original image respec-
tively given by

C =
f − b

f + b

where f and b represent the mean gray-level in the foreground and background
respectively, p is the maximum gray-level in the foreground, and σb is the standard
deviation of the background. Obviously, when σb is evaluated on the original back-
ground it takes into account noise, so that PSNR is smaller for very noisy image.
On the contrary, CII takes into account only relative contrast between foreground
and background, without considering also noise reduction.

Obviously, the foreground contains details (microcalcifications in this paper)
while the background mostly represents glandular tissue. In the proposed method
foreground and background are easily achieved by the parallel scheme in Fig. 10.
Notice that, if denoising and enhancement are not correctly performed, also resid-
ual noise is enhanced and the extraction of f and b cannot be done properly.
Figure 12 shows the four masks needed to extract f and b for the considered ROIs.
These masks will be then used also for microcalcifications segmentation and fea-
tures extraction in a classification step. Figure 13 also shows, for a different ROI
(case 1248) the effect of contrast enhancement performed on microcalcifications.
In particular, a line of the image crossing a microcalcification is plotted for both
the original ROI and its enhanced version. The region surrounding the microcalci-
fication is smoothed, since noise is reduced, maintaining the same mean intensity
value; moreover, peak referred to the microcalcification is strongly emphasized, thus
improving the detection capability of radiologists. Performance evaluation is here
reported by the computation of CII and PSNR for 28 images (12 containing malig-
nant cluster of microcalcifications and 16 containing benign microcalcifications). In
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Fig. 12. Masks needed to extract foreground and background.

Original Image Enhanced Image
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1
Enhanced line
Original noisy line

Fig. 13. Plotting a line containing a microcalcification for the original image (blue line) and the
enhanced version (black line). (Color online.)

particular, we denote with PSNRProc, PSNROrig, and PSNRfin the PSNR evalu-
ated in the processed ROI, in the original ROI, and the ratio PSNRProc/PSNROrig.
The images are all taken from DDSM and the DDSM identifier is also inserted
in Table 3.d In the following, we compare the proposed method for microcalcifi-
cations denoising and enhancement with the classical methods Unsharp Masking
(UM) and Adaptive Histogram Equalization (AHE) for the four ROIs in Fig. 8,
after a denoising step performed by Wiener filter. Tables 4 and 5 show results
for CII and PSNRfin respectively. In particular, we denote with subscripts W the
proposed wavelet-based method. The indexes have been evaluated using the same
binary mask obtained by the proposed method and a manually set threshold, thus
comparing only the contrast achieved in the neighborhood of microcalcifications.
Recall that larger values of the indexes mean better enhancement performance.
Visual results of the application of the proposed method, UM, and AHE are shown
in Fig. 14 for the four ROIs. Beside a quantitative evaluation of the results achieved
by the three methods, we also compare them following three criteria.

dThe DDSM identifier contains a letter (A, B, or C) representing a different scanner for the
digitalization, the case number, and an acronym identifying the mammographic view used. In
particular, L and R stand for left and right breast, while CC and MLO stand for Cranio-Caudal
and Medium-Lateral Oblique view.
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Table 3. Result for CII and PSNR for 28 images taken from DDSM.

ROI containing malignant microcalcifications

ROI — Case COrig CProc CII PSNROrig PSNRProc PSNRfin

C−0002−1.LCC 0.062 0.152 2.465 2.839 5.681 2.001
B−3030−1.RCC 0.060 0.205 3.431 4.550 13.379 2.940
B−3082−1.LCC 0.020 0.114 5.798 2.137 6.687 3.129
C−0099−1.RCC 0.052 0.144 2.791 3.655 6.579 1.800

A−1146−1.LCC 0.032 0.081 2.551 3.135 8.528 2.721
A−1213−1.LMLO 0.064 0.215 3.369 4.508 11.882 2.636
A−1214−1.LCC 0.043 0.147 3.410 4.963 12.395 2.497
A−1220−1.RCC 0.064 0.177 2.768 6.180 13.558 2.194
A−1248−1.RMLO 0.063 0.145 2.287 2.154 3.660 1.699
A−1469−1.LCC 0.049 0.277 5.627 2.786 6.913 2.481
A−1530−1.LMLO 0.082 0.210 2.557 9.100 17.337 1.905
A−1538−1.LMLO 0.015 0.146 9.762 1.527 4.886 3.199

ROI containing benign microcalcifications

C−0239−1.LMLO 0.116 0.310 2.680 3.486 9.200 2.639
C−0239−1.LCC 0.107 0.254 2.385 6.492 14.019 2.160
C−0246−1.LCC 0.052 0.164 3.165 5.957 13.063 2.193

B−3104−1.LMLO 0.058 0.155 2.688 7.568 19.118 2.526
B−3117−1.RMLO 0.064 0.153 2.402 3.346 11.743 3.509
B−3117−1.RCC 0.032 0.119 3.697 2.512 9.105 3.625
B−3124−1.RCC 0.052 0.211 4.015 5.516 21.310 3.863
B−3131−1.LCC 0.066 0.159 2.415 5.008 15.824 3.160
B−3141−1.RMLO 0.049 0.206 4.198 4.742 13.654 2.879
B−3145−1.RCC 0.083 0.216 2.594 2.313 4.664 2.016
A−1269−1.RCC 0.028 0.154 5.426 3.234 13.297 4.111
A−1280−1.LCC 0.078 0.258 3.312 9.687 24.186 2.497
A−1285−1.LMLO 0.045 0.158 3.512 2.761 10.729 3.886
A−1300−1.LMLO 0.042 0.091 2.159 4.730 16.254 3.436
A−1301−1.LCC 0.048 0.190 3.996 2.268 6.689 2.949
A−1307−1.LMLO 0.137 0.321 2.346 5.710 13.138 2.301

Table 4. Result for CII comparing our method, Unsharp Masking, and Adaptive

Histogram Equalization.

ROI — Case COrig CW CIIW CUM CIIUM CAHE CIIAHE

Case 1626 0.032 0.113 3.466 0.032 0.978 0.063 1.928
Case 1721 0.040 0.158 3.968 0.039 0.976 0.035 0.870
Case 4132 0.018 0.022 1.199 0.020 1.078 0.049 2.678
Case 1905 0.059 0.162 2.734 0.059 0.992 0.102 1.715

Table 5. Result for PSNR comparing our method, Unsharp Masking,
and Adaptive Histogram Equalization.

ROI — Case PSNROrig PSNRW PSNRUM PSNRAHE

Case 1626 2.130 7.514 1.838 2.976
Case 1721 3.782 11.838 3.350 2.755
Case 4132 3.975 8.797 6.167 3.121
Case 1905 5.062 16.110 4.490 4.867
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Fig. 14. Results of contrast enhancement by Unsharp Masking and Adaptive Histogram
Equalization.
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— Alteration of the aspect of the original image, thus misleading the interpretation
of the image.

— Residual noise.
— Contrast improvement of the important details.

So, note that AHE unacceptably alters the image, especially by the enhancement of
the background tissue. Contrast improvement is not localized in the neighborhood
of the microcalcifications, but in the whole image. This produces in the case of ROI
(c) the highest CII, but also a very low PSNR. On the contrary, UM results appear
weak either in residual noise and in contrast improvement (low CII and PSNR for
all images) even if the original aspect is maintained. Finally, the proposed method
succeeds in preserving the original aspect of the image, emphasizing only regions
around microcalcifications according to their shape and size, and moreover reducing
noise in the whole image according to the gray-level of each pixel.

4. Conclusion

In this paper, we address the problem of denoising and contrast enhancement of
mammographic images by wavelet thresholding using DDWT. It is well known that
noise corrupting X-ray images has not a trivial modelization and principally it is
signal-dependent. So, assuming a very general noise model, we have firstly applied
a robust method in order to estimate noise variance for a heteroscedastic additive
noise. Then, we have theoretically derived relations to directly set thresholds either
for denoising and for enhancement, specifically for DDWT. The thresholds we pro-
pose are both level and noise dependent, according to the assumption that noise
amount decreases as level increases and that noise power is strongly influenced by
the wavelets filters used. It is also important to underline that the use of DDWT
represents a key issue in this context in order to optimize noise reduction, avoiding
loss of details and geometric distortion. The method we propose can be applied
to many medical images containing small details such as microcalcifications, since
simultaneously performs a selective enhancement of small objects and reduces noise
according to the gray-value of each pixel, without altering the aspect of the back-
ground. This topic is crucial in every Computer Assisted Diagnosis System (CADx)
for helping radiologists in an early diagnosis of breast cancer avoiding a misleading
or a miss of a tumoral disease.
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