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1. Introduction

Quantum Markov chains were introduced in Ref. 1 in the case of one-dimensional

lattices. Since then, the problem to extend the theory to multi-dimensional lattices

has remained open. Even if the intrinsic characterization of the Markov property

in terms of the modular automorphisms group proposed in Ref. 5 is independent

of the dimension, for a long time it did not bring, in the multi-dimensional

case, to an easy controllable structure which would allow the construction of a

multiplicity of nontrivial and physically meaningful examples as it happened in the

one-dimensional case.

Let A be a von Neumann algebra. Denote F the family of finite parts of Zd,

and let, two filtrations {AΛ}, {AΛ′} of von Neumann subalgebras of A be given for

Λ ∈ F . Here Λ′ denotes the set-theoretical complement of Λ, and both filtrations are

increasing by inclusion. In order to avoid topological complications, it is convenient

to think of A as to the algebra of observables localized on a large but finite region
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Λ̂ of the lattice.a In such a way, all the discussions are restricted to a finite volume

and one could pass to the infinite volume limit in a second moment, see below.

Let ϕ be a faithful normal state on A, and consider the canonical ϕ-conditional

expectation firstly introduced in Ref. 3,

Eϕ
AΛ′

: A 7→ AΛ′ .

In the classical case we easily have

AΛ′ = Fix(Eϕ
AΛ′

) , (1.1)

where Fix(Eϕ
AΛ′

) denotes the set of all fixed points of Eϕ
AΛ′

.

In the quantum case, it was soon realized that the equality in (1.1) is too

strong a condition. Then, in order to investigate the quantum Markov property

for multi-dimensional models, we start with the following generalization.

First of all, to each Λ ∈ F one associates another bounded set Λ̄ with the

property that Λ ⊂ Λ̄.

Then, instead of (1.1), one requires the weaker condition

AΛ̄′ ⊂ Fix(Eϕ
AΛ′

) =: Afix
Λ′ ⊂ AΛ′ , (1.2)

where the last inclusion in (1.2) is usually proper.

By Ref. 3, Afix
Λ′ is the largest subalgebra of AΛ′ with the property that the

canonical ϕ-conditional expectation

Eϕ

Afix

Λ′
: A 7→ Afix

Λ′

is a Umegaki conditional expectation onto Afix
Λ′ . A constructive characterization of

Eϕ

Afix

Λ′
can be given as the individual ergodic limit

Eϕ

Afix

Λ′
= lim

n

1

n

n−1
∑

k=0

(Eϕ
AΛ′

)k

which always exists because of Ref. 17. Suppose that the local algebras {AΛ} satisfy

the additional conditions

A′
Λ′ = AΛ , A = AΛ ∨ AΛ′ . (1.3)

Since condition (1.2) implies that, for each aΛ̄ ∈ AΛ̄, aΛ̄′ ∈ AΛ̄′ , one has

Eϕ

Afix

Λ′
(aΛ̄aΛ̄′) = Eϕ

Afix

Λ′
(aΛ̄)aΛ̄′ ,

it follows that Eϕ

Afix

Λ′
is uniquely determined by its restriction on AΛ̄.

Moreover, (1.3) implies that

Eϕ

Afix

Λ′
(AΛ̄) ⊂ AΛ̄ ∧ AΛ′ =: A∂Λ (1.4)

aIn such a situation, Λ′ is understood as the complement in Λ̂, that is Λ′ = Λ̂\Λ.
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which is an equivalent formulation of the classical Dobrushin–Markov property,

see Refs. 2, 11–13. Conversely, given a ϕ-invariant Umegaki conditional expectation

EΛ′ : A 7→ BΛ′

satisfying the following property analogous to (1.2):

AΛ̄′ ⊂ BΛ′ ≡ Fix(EΛ′) ⊂ AΛ′ ,

it follows by maximality that

BΛ′ ⊂ Afix
Λ′ .

If in addition (1.3) holds, then EΛ′ enjoys the Dobrushin–Markov property (1.4).

Summing up, we get the following:

Theorem 1.1. Let ϕ be a faithful state on A, and AΛ a von Neumann subalgebra

of A as above.

The following assertions are equivalent.

(i) The canonical ϕ-conditional expectation Eϕ
AΛ′

satisfies the Markov property

(1.2).

(ii) There exists a von Neumann subalgebra BΛ′ of A such that

AΛ̄′ ⊂ BΛ′ ⊂ AΛ′ ,

and the canonical ϕ-conditional expectation Eϕ
BΛ′

is a (surjective) Umegaki

conditional expectation.

In the following we restrict ourselves to the case when BΛ′ coincides with Afix
Λ′ ,

being the latter the largest subalgebra of AΛ′ invariant under the modular group

σϕ
t of the state ϕ. We then have the monotonicity condition

Λ1 ⊂ Λ2 ⇒ Afix
Λ′

2
⊂ Afix

Λ′
1

which is equivalent to the standard projectivity condition

Λ1 ⊂ Λ2 ⇒ Eϕ

Afix

Λ′
2

= Eϕ

Afix

Λ′
1

for the corresponding Umegaki conditional expectations.

Therefore, one can apply the formulation of Dobrushin’s theory developed in

Ref. 2, to the expected filtration {Afix
Λ′ , E

ϕ

Afix

Λ′
}.

If as in the case of quantum lattice systems, the local algebras are factorizable:

AΛ1∪Λ2
∼= AΛ1

⊗̄AΛ2
, Λ1 ∩ Λ2 = ∅ ,

then

A∂Λ = AΛ̄ ∧ AΛ′

and it is natural to define

∂Λ := Λ̄ ∩ Λ′ .
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Since Eϕ

Afix

Λ′
is uniquely determined by its restriction EΛ′ to AΛ̄, we can limit our

considerations to the (finite volume) Umegaki conditional expectation

EΛ′ : AΛ̄ 7→ R(EΛ′ ) ⊂ A∂Λ

which was called transition expectation in Refs. 4 and 6. If in addition the AΛ̄ have

atomic centers (as in quantum lattice systems), then one can take advantage of the

structure theory for such maps (see Refs. 14 and 15), and use it to extend to random

fields the structure theorems proved for processes in Refs. 4–6. In particular, we

associate to each (generalized) Markov field a potential which allows to recover

uniquely the associated conditional expectations. We will show elsewhere that the

conditions on this potential are explicit enough to allow the construction of a

multiplicity of nontrivial examples.

2. Notations

To each site i of the lattice Zd, we associate a fixed full matrix algebraMi ≡ Mk(C),

describing the observables localized in i. The algebra of all observables localized in

a bounded region Λ ⊂ Zd is then defined as

AΛ := ⊗i∈ΛMi . (2.1)

Denote by F the class of all finite subsets of Z
d, and F the net generated by F

ordered by the inclusion between sets. We associate a fixed bounded “boundary”

∂Λ ⊂ Λ′ to each bounded region Λ, where Λ′ is the complement of Λ. In such a

situation, we define

Λ̄ := Λ ∪ ∂Λ .

For example,

∂Λ := {i ∈ Λ′ : dist(i,Λ) ≤ δ}

for a fixed δ > 0 describing the range of the interaction.

We further write Λ1 ⊂⊂ Λ2 if Λ̄1 ⊂ Λ2.

We consider the quasi-local algebra A obtained by the C∗-inductive limit

associated to the directed system {AΛ}Λ∈F with the natural embeddings

ιΛ,Λ̂ : AΛ ∈ AΛ → AΛ ⊗ IΛ̂\Λ ∈ AΛ̂ , Λ ⊂ Λ̂ .

In this situation we write

A := ⊗i∈ZdMi ,

and extend (2.1) to arbitrary regions Λ ⊂ Zd. In these cases, the infinite tensor

product is defined w.r.t. the unique C∗-cross norm. We often denote by ιΛ : AΛ 7→ A

the canonical injection of AΛ into A. The restrictions ϕdAΛ
of a state ϕ ∈ S(A) to

local algebras AΛ, will be denoted as ϕΛ. The reader is referred to Refs. 8, 9 and

28 for further details.



April 7, 2003 14:36 WSPC/102-IDAQPRT 00107

Quantum Markov Fields 127

By a (Umegaki) conditional expectation E : A 7→ B ⊂ A we mean a norm-one

projection of the C∗-algebra A onto a C∗-subalgebra (with the same identity

I) B. The map E is automatically a completely positive identity-preserving

B-bimodule map, see Sec. 9 of Ref. 23. When A is a matrix algebra, the structure

of a conditional expectation is well-known, see Proposition 2.2 of Ref. 15 and

Proposition 5 of Ref. 14 for the generalization to the case when A and B have

atomic (possibly infinite-dimensional) centers.

Assume that A is a matrix algebra and consider the (finite) sets {Pi} and {Qj} of

minimal central projections of A and B respectively. Denote Ai := APi
, Bj := BQj

,

Aij := APiQj
, Bij := BPiQj

, the corresponding von Neumann algebras.b Define:

(i) σij : Bij 7→ Bj the isomorphism reciprocal to the induction isomorphism

Bj 7→ Bij ;

(ii) the column-Markovian matrix γ := [γij ] determined by

E(Pi) =
∑

j

γijQj ;

(iii) the conditional expectation Eij : Aij 7→ Bij which is the zero-map whenever

γij = 0, and

Eij(A) := γ−1
ij PiE(A)

otherwise.

Then we obtain for the given conditional expectation,

E(A) =
∑

i,j

γijσij(Eij(PiQjAQj)) .

Further, as Aij and Bij are finite dimensional factors, we have an explicit

description of the conditional expectations {Eij}, see Lemma 3.1 of Ref. 6.

Indeed, we easily decompose

Aij = Nij ⊗ N̄ij ,

where Nij
∼= Bij and N̄ij

∼= B′
ij ∧ Aij .

Then there exist states φij on N̄ij such that

Eij(a⊗ ā) = φij(ā)a⊗ I . (2.2)

The case we are interested in, is precisely that corresponding to {i} being a

singleton. We have reported here the above general case for possible applications

to more general situations.

bLet M be a von Neumann algebra acting on the Hilbert space H, and p ∈ M a self-adjoint
projection. The reduced von Neumann algebra Mp is defined as the von Neumann algebra pMp

acting on the Hilbert space pH. Analogously, if p ∈ M ′, then the induced von Neumann algebra

Mp is the von Neumann algebra pM acting on the Hilbert space pH.
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Let N ⊂ M be an inclusion of von Neumann algebras equipped with a

normal faithful state on M . By the ϕ-conditional expectation we mean the

identity-preserving normal faithful completely positive map

Eϕ : M 7→ N

defined in Ref. 3. Such a map preserves the state ϕ and seems to be the natural

generalization of the concept of conditional expectation in the sense of Umegaki,

even if the former is not in general a norm-one projection.

Such a ϕ-conditional expectation is written as

πϕdN
(Eϕ(a)) = JϕdN

PϕdN
Jϕπϕ(a)JϕJϕdN

,

where the J are the Tomita antiunitary conjugations, and PϕdN
∈ πϕ(N)′ is the

cyclic projection relative to πϕ(N), see e.g. Ref. 16.

3. The Quantum Markov Property on the Spin Algebra: An

Intrinsic Definition

Following the suggestion of Theorem 5.1 of Ref. 4, we show a characteristic of the

Markov property in terms of the properties of canonical ϕ-conditional expectations,3

here denoted also as generalized conditional expectations, which are in our situation,

canonical objects intrinsically associated to the local structure of the quasi-local

algebra A, and the state ϕ under consideration.

Definition 3.1. A locally faithful state ϕ ∈ S(A) is said to be a Markov state if,

for every pair of regions Λ, Λ̂ ∈ F with Λ ⊂⊂ Λ̂, we have

E
ϕ

Λ̂

Λ̂\Λ
dA

Λ̂\Λ̄
= idA

Λ̂\Λ̄
. (3.1)

where ϕΛ̂ is the restriction of ϕ to AΛ̂, and E
ϕ

Λ̂

Λ̂\Λ
: AΛ̂ 7→ AΛ̂\Λ is the ϕΛ̂-conditional

expectation relative to the inclusion AΛ̂\Λ ⊂ AΛ̂.

The ergodic limit

EΛ̂\Λ := lim
n

1

n

n−1
∑

k=0

(E
ϕ

Λ̂

Λ̂\Λ
)k

exists (see e.g. Refs. 17 and 19 for the most general situation) and is the conditional

expectation onto the largest subalgebra of AΛ̂\Λ left invariant by the modular

group σ
ϕ

Λ̂

t . Furthermore by (3.1), AΛ̂\Λ̄ ⊂ R(EΛ̂\Λ), being the last range of EΛ̂\Λ.

Lemma 3.2. With the above notations,

EΛ̂\Λ = EΛ̂\Λ ⊗ idA
Λ̂\Λ̄

,

where

EΛ̂\Λ := EΛ̂\ΛdAΛ̄

is a conditional expectation of AΛ̄ onto a subalgebra of A∂Λ.
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Proof. It is enough to verify that EΛ̂\Λ(AΛ̄) ⊂ A′
Λ̂\Λ̄

∧ AΛ̂\Λ. Let aΛ̄ ∈ AΛ̄ and

aΛ̂\Λ̄ ∈ AΛ̂\Λ̄. We get

EΛ̂\Λ(aΛ̄)aΛ̂\Λ̄ = EΛ̂\Λ(aΛ̄aΛ̂\Λ̄)

= EΛ̂\Λ(aΛ̂\Λ̄aΛ̄)

= aΛ̂\Λ̄EΛ̂\Λ(aΛ̄) .

Namely, EΛ̂\Λ(aΛ̄) ∈ A′
Λ̂\Λ̄

∧ AΛ̂\Λ, which is the assertion.

Now let Λ,Λ1,Λ2 ∈ F with Λ ⊂⊂ Λ1 ⊂ Λ2, and consider EΛi\Λ, i = 1, 2. Then

the restriction of EΛ2\Λ to AΛ1
also leaves ϕΛ1

invariant. Hence its range is globally

invariant under the modular group σΛ1

t by Takesaki Theorem.24 Moreover, since this

restriction is the identity on AΛ1\Λ̄ (hence by Lemma 3.2, it satisfies EΛ2\ΛdAΛ1
=

EΛ2\Λ ⊗ idAΛ1\Λ̄
), its range is contained in AΛ1\Λ. But

EΛ2\Λ(AΛ1
) ⊂ R(EΛ1\Λ)

as the last algebra is, by Theorem 5.1 of Ref. 3, the largest ϕΛ1
-expected subalgebra

of AΛ1\Λ (that is the largest subalgebra of AΛ1\Λ left globally invariant by the

modular group σΛ1

t ). Since for i = 1, 2,

R(EΛi\Λ) = R(EΛi\Λ) ⊗ AΛi\Λ̄ ,

we obtain

R(EΛ2\Λ) ⊂ R(EΛ1\Λ) .

Namely, {EΛ̂\Λ : Λ̂ ∈ F , Λ̂ ⊃⊃ Λ} is a decreasing net of conditional expectations

defined on the full matrix algebra AΛ̄, which converges to a conditional expectation

by a standard martingale convergence theorem, see Theorem 3 of Ref. 26. Denoting

EΛ′ := lim
Λ̂↑Zd

EΛ̂\Λ ,

and

B∂Λ := R(EΛ′ ) ⊂ A∂Λ ,

we obtain a conditional expectation

EΛ′ := EΛ′ ⊗ idAΛ̄′

with

EΛ′ : A 7→ IAΛ
⊗ B∂Λ ⊗ AΛ̄′ .

By construction, the net {EΛ′}Λ∈F of conditional expectations leaves the state

ϕ invariant.

We have proved the most part of the following:

Theorem 3.3. Let ϕ ∈ S(A) be a Markov state.
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For each Λ ∈ F there exists a Umegaki conditional expectation EΛ′ on A, which

projects into the complement of Λ.

Moreover, the net {EΛ′}Λ∈F satisfies:

(i) EΛ′ (AΛ̄) ⊂ A∂Λ,

(ii) EΛ′dAΛ̄′ = idAΛ̄′ ,

(iii) ϕ ◦EΛ′ = ϕ,

(iv) if Λ1 ⊂ Λ2 then EΛ′
2
EΛ′

1
= EΛ′

2
.

Proof. We have to show only the projectivity condition (iv). Let Λ1 ⊂ Λ2 ⊂⊂ Λ̂,

and consider the region Γ := Λ̄1 ∪ Λ̄2. In order to recover the EΛ′
i
, it is enough to

consider the conditional expectations

F i

Λ̂\Γ
:= EΛ̂\Λi

dAΓ
.

By maximality (Theorem 5.1 of Ref. 3), we get for each Λ̂ ⊃ Γ,

R(F2
Λ̂\Γ

) ⊂ R(F1
Λ̂\Γ

) . (3.2)

Namely, we have two decreasing nets {F i

Λ̂\Γ
: Λ̂ ∈ F , Λ̂ ⊃ Γ}i=1,2 of conditional

expectations whose fixed points satisfy (3.2). Hence, the martingale-limits

F i
Γ′ := lim

Λ̂↑Zd

F i

Λ̂\Γ
, i = 1, 2

satisfy the analogous relation (3.2). The assertion follows as for i = 1, 2,

EΛ′
i
:= F i

Γ′ ⊗ idAΓ′ .

4. An Equivalent Formulation of the Quantum Markov Property

in Terms of Umegaki Conditional Expectations

It is of interest to investigate the converse of Theorem 3.3. This can be done by

studying some finite-dimensional distributions associated to a state ϕ consistent

with a net {EΛ′} of conditional expectations satisfying properties (i)–(iii) of

Theorem 3.3.

Suppose we have a locally faithful state on the quasi-local algebra A, then a

potential hΛ is canonically defined for each finite subset Λ ∈ F as

ϕΛ = TrAΛ
(e−hΛ · ) . (4.1)

Such a set of potentials {hΛ}Λ∈F satisfies normalization conditions

TrAΛ
(e−hΛ) = 1 ,

together with compatibility conditions

(TrA
Λ̂\Λ

⊗ idAΛ
)(e−h

Λ̂) = e−hΛ

for Λ ⊂ Λ̂.
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Let the locally faithful state ϕ be consistent with a net {EΛ′} of conditional

expectations as that in Theorem 3.3. Let Λ1 ⊂⊂ Λ2 ⊂⊂ Λ3 be fixed bounded

regions of Zd.

Lemma 4.1. Under the above conditions we have

hΛ2
= H1 + Ĥ1 ,

hΛ2\Λ1
= H1 + Ĥ , (4.2)

hΛ3
= H2 +H2,1 + Ĥ1 ,

for self-adjoint operators Hi ∈ AΛi+1\Λi
, i = 1, 2; H2,1 ∈ AΛ̄2\Λ1

; Ĥ1 ∈

AΛ̄1
; Ĥ ∈ A∂Λ1

. Moreover, the above operators satisfy the following commutation

relations:

[H2, H2,1] = 0 , [H2,1, Ĥ1] = 0 ,

[H1, Ĥ ] = 0 ; [H1, Ĥ1] = 0 .
(4.3)

Proof. The proof is quite similar to that of the implication (i)⇒(ii) of Theorem 5.1

in Ref. 4. We verify the result for hΛ3
, the others follow analogously. In such a

situation,

EΛ′ = EΛ′ ⊗ idAΛ̄′

for a transition expectation EΛ′ : AΛ̄ 7→ B∂Λ ⊂ A∂Λ.

Consider the (finite) sets {P ∂Λi
ω∂Λi

}, i = 1, 2 consisting of the minimal central

projections of the ranges B∂Λi
of the transition expectations EΛ′

i
. The state ϕ,

when restricted to AΛ3
, is determined by its value on the elements of the form

a =
∑

ω∂Λ2
,ω∂Λ1

ιΛ3
(A⊗ P ∂Λ2

ω∂Λ2
(aω∂Λ2

⊗ āω∂Λ2
)P ∂Λ2

ω∂Λ2
⊗B ⊗P ∂Λ1

ω∂Λ1

× (bω∂Λ1
⊗ b̄ω∂Λ1

)P ∂Λ1

ω∂Λ1
⊗ C) ,

where

A ∈ AΛ3\Λ̄2
, P ∂Λ2

ω∂Λ2
(aω∂Λ2

⊗ āω∂Λ2
)P ∂Λ2

ω∂Λ2
∈ A∂Λ2

,

B ∈ AΛ2\Λ̄1
, P ∂Λ1

ω∂Λ1
(bω∂Λ1

⊗ b̄ω∂Λ1
)P ∂Λ1

ω∂Λ1
∈ A∂Λ1

,

and finally C ∈ AΛ1
. In such a way,

ϕ(a) =
∑

ω∂Λ2
,ω∂Λ1

ϕ(ιΛ3
(A⊗ P ∂Λ2

ω∂Λ2
(aω∂Λ2

⊗ I)P ∂Λ2

ω∂Λ2
))

×φΛ2

ω∂Λ2
(āω∂Λ2

⊗B ⊗ P ∂Λ1

ω∂Λ1
(bω∂Λ1

⊗ I)P ∂Λ1

ω∂Λ1
⊗ I)φΛ1

ω∂Λ1
(b̄ω∂Λ1

⊗ C)

with φΛi
ω∂Λi

, i = 1, 2, states recovered according to (2.2).
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Let the potentials h2
ω∂Λ2

, h2
ω∂Λ2

,ω∂Λ1
and ĥ1

ω∂Λ1
be related to the states

A⊗ aω∂Λ2
7→ ϕ(ιΛ3

(A⊗ P ∂Λ2

ω∂Λ2
(aω∂Λ2

⊗ I)P ∂Λ2

ω∂Λ2
) ,

āω∂Λ2
⊗B ⊗ bω∂Λ1

7→ φΛ2

ω∂Λ2
(āω∂Λ2

⊗B ⊗ P ∂Λ1

ω∂Λ1
(bω∂Λ1

⊗ I)P ∂Λ1

ω∂Λ1
⊗ I) ,

b̄ω∂Λ1
⊗ C 7→ φΛ1

ω∂Λ1
(b̄ω∂Λ1

⊗ C)

respectively, according to a formula analogous to (4.1).

Now we define

H2 :=
∑

ω∂Λ2

(I ⊗ P ∂Λ2

ω∂Λ2
)(h2

ω∂Λ2
⊗ I)(I ⊗ P ∂Λ2

ω∂Λ2
) ,

H2,1 :=
∑

ω∂Λ2
,ω∂Λ1

(P ∂Λ2

ω∂Λ2
⊗ I ⊗ P ∂Λ1

ω∂Λ1
)(I ⊗ h2

ω∂Λ2
,ω∂Λ1

⊗ I)(P ∂Λ2

ω∂Λ2
⊗ I ⊗ P ∂Λ1

ω∂Λ1
) ,

Ĥ1 :=
∑

ω∂Λ1

(P ∂Λ1

ω∂Λ1
⊗ I)(I ⊗ ĥ1

ω∂Λ1
)(P ∂Λ1

ω∂Λ1
⊗ I) .

It is straightforward to verify that H2, H2,1 and finally Ĥ1 satisfy commutation

relations (4.3), and give rise to hΛ3
through (4.2).

Now we are in a position to establish the converse of Theorem 3.3.

Theorem 4.1. Let a locally faithful state ϕ ∈ S(A) be given, together with a

net {EΛ′}Λ∈F of Umegaki conditional expectations satisfying conditions (i)–(iii)

of Theorem 3.3.

Then ϕ is a Markov state in the sense of Definition 3.1.

Proof. The proof is quite similar to part (ii)⇒(iii) of Theorem 5.1 of Ref. 4, taking

into account Lemma 4.1. Namely, let Λ1 ⊂⊂ Λ2 be fixed. Then the generalized

conditional expectation

E
ϕΛ2

Λ2\Λ1
: AΛ2

7→ AΛ2\Λ1

leaving fixed ϕΛ2
can be obtained as

E
ϕΛ2

Λ2\Λ1
(A) = (idAΛ2\Λ1

⊗ TrAΛ1
)(k∗Λ2 ,Λ1

AkΛ2,Λ1
)

where kΛ2,Λ1
is the transition operator given by

kΛ2,Λ1
= e−

1
2
hΛ2 e

1
2
hΛ2\Λ1 .

Thus, by Lemma 4.1, we have

kΛ2,Λ1
= e−

1
2
Ĥ1e

1
2
Ĥ ∈ AΛ̄1

,

i.e. E
ϕΛ2

Λ2\Λ1
acts as the identity on AΛ2\Λ̄1

.
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5. Extremal Disintegration of Markov States and the Relation

with Equilibrium States

When one starts with a locally faithful Markov state, he can recover a projective

net {EΛ′}Λ∈F of Umegaki conditional expectations projecting into complements

Λ′ of bounded regions Λ ∈ F , and leaving invariant the state ϕ (Theorem 3.3).

In such a way, one can apply the results contained in Ref. 2, obtaining the extremal

disintegration for the state ϕ. In addition, a Markov state is also an equilibrium

state w.r.t. a suitable automorphism group αt. We show that almost all states

appearing in the extremal disintegration of the Markov state ϕ are also Markov

states and equilibrium states w.r.t. the same automorphism group αt.

We start by showing that a (locally faithful) Markov state is automatically a

KMS state w.r.t. an automorphism group canonically associated to ϕ.c In such a

way, we obtain the generalization to the multi-dimensional situation, of Theorem 5.3

of Ref. 4.

Theorem 5.1. Let ϕ ∈ S(A) be a Markov state, and hΛ be recovered by (4.1).

Then the pointwise-norm limit

αt(a) := lim
Λ↑Zd

e−ithΛaeithΛ (5.1)

exists and defines a strongly continuous one-parameter automorphism group of the

quasi-local algebra A which admits ϕ as a KMS state. Furthermore, ϕ has a normal

faithful extension on all of πϕ(A)′′.

In particular, any locally faithful Markov state is faithful.

Proof. Starting from Λ1 ⊂⊂ Λ2 ⊂⊂ Λ3, the cocycle eithΛ3 e−ithΛ2 commutes

with each element a ∈ A localized in AΛ1
by Lemma 4.1. Now let a ∈ A be

localized in the bounded region Λa. By the above considerations, one concludes

that e−ithΛaeithΛ coincides with e−ithΛ̄aaeithΛ̄a for each bounded region Λ such

that Λ̄a ⊂⊂ Λ. Thus e−ithΛaeithΛ becomes asymptotically constant (t fixed) on

the localized elements a ∈ A, i.e. it trivially converges pointwise in norm, on the

localized elements of A. Furthermore, by a standard 3-ε trick, it converges on all of

A. It is straigthforward to verify that t 7→ αt is actually a group of automorphisms

of A, which is also pointwise-norm continuous in t, i.e. a strongly continuous group

of automorphisms of A. By constuction, ϕ is automatically a KMS state for αt at

inverse temperature β = −1.

The last assertions follow by Corollary 5.3.9 of Ref. 10, taking into account that

A is a simple C∗-algebra (Proposition 2.6.17 of Ref. 9).

The disintegration theory of states which are invariant w.r.t. a net of conditional

expectations was developed in Ref. 2 (see also Ref. 22 and 25). We will show these

results in the situation under consideration.

cIndeed, this automorphism group is canonically associated to the net {EΛ′}Λ∈F , see below.
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As a Markov state ϕ is automatically invariant w.r.t. a net {EΛ′}Λ∈F of

conditional expectations which acts locally (Theorem 3.3), we can extend the EΛ′

to normal faithful conditional expectations εϕ
Λ′ acting on all of πϕ(A)′′. Namely, the

conditional expectations defined as

εϕ
Λ′ := EΛ′ ⊗ idπϕ(AΛ̄′ )′′

do the job.

In such a way, we have a decreasing net {εϕ
Λ′}Λ∈F of normal faithful conditional

expectations which converges pointwise in the strong operator topology, to a

conditional expectation εϕ
∞ by a standard convergence result.26 As the algebra

at infinity

Z⊥
ϕ :=

∧

Λ∈F

πϕ(AΛ′)′′

coincides in our situation with the center

Zϕ := πϕ(A)′ ∧ πϕ(A)′′

of the representation (Theorem 2.6.10 of Ref. 9), we then obtain a conditional

expectation

εϕ
∞ : πϕ(A)′′ 7→ Zϕ

of πϕ(A)′′ onto Zϕ which is precisely the conditional expectation described by

Lemma 3.1 of Ref. 2. Furthermore, if eϕ
Λ′ is the cyclic projection relative to R(εϕ

Λ′ ),

the decreasing net {eϕ
Λ′}Λ∈F converges in the strong operator topology, to the

corresponding cyclic projection eϕ
∞ relative to R(εϕ

∞) ≡ Zϕ.

In such a situation we have

Theorem 5.2. Let ϕ ∈ S(A) be a Markov state. Consider the net {EΛ′}Λ∈F

of conditional expectations given in Theorem 3.3, together with the convex set SE

of its invariant states.

Then SE is a Choquet simplex. Thus ϕ admits the extremal disintegration

ϕ =

∫

∂SE

ψµ(dψ) , (5.2)

where µ is a unique Borel probability measure supported on the Gδ-set ∂SE

consisting of all extremal invariant states. Moreover, the set ∂SE consists of

factor states.

Proof. It follows directly by Sec. I of Ref. 2, together with Sec. I.4 of Ref. 7, taking

into account that A is a separable C∗-algebra.

As a consequence of the above result, we have that the extremal

disintegration (5.2) of a Markov state ϕ coincides with the disintegration given

in Theorem 5.3.30 of Ref. 10, when ϕ is considered as a KMS state.
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Proposition 5.3. Let ϕ ∈ S(A) be a Markov state.

Then the measure µ given in (5.2) (considered in a trivial way, as a measure

on all of S(A)) is identical to the central measure corresponding to ϕ. Moreover,

the states ψ appearing in the extremal disintegration (5.2) of ϕ, are almost surely

{αt}-KMS states, where αt is the automorphisms group of A defined in (5.1).

Proof. By Theorem 3.2 of Ref. 2, the measure µ in (5.2), when it is

trivially extended to all of S(A), corresponds to the {πϕ(A), {eϕ
Λ′}}′-measure,

see Proposition 4.3.3 of Ref. 9. But, in our situation we have

Z⊥
ϕ = {πϕ(A), {eϕ

Λ′}}′ = Zϕ

as the inclusion Z⊥
ϕ ⊂ {πϕ(A), {eϕ

Λ′}}′ is trivial, and {πϕ(A), {eϕ
Λ′}}′ ⊂ Zϕ follows

by the calculations similar to those in Theorem 4.3.14 of Ref. 9.d

Since µ is the central measure, it is equal to the maximal measure corresponding

to the disintegration of ϕ considered as a {αt}-KMS state, see Theorem 5.3.30 of

Ref. 10.

Summarizing, we collect all the above results in a theorem describing the main

properties of a Markov state.

Theorem 5.4. Let ϕ ∈ S(A) be a Markov state.

(i) The state ϕ is an {αt}-KMS state, where αt is the automorphism group given

in (5.1);

(ii) the state ϕ admits a disintegration

ϕ =

∫

S(A)

ψµ(dψ) , (5.3)

where the measure µ is concentrated on the factor states of A;e

(iii) almost all ψ appearing in (5.3) are {αt}-KMS states, and Markov states in the

sense of Definition 3.1.

Proof. It is immediate by the above results, taking into account that a KMS state

on A is automatically faithful.

Consider a Markov state ϕ ∈ S(A). Then almost all ψ appearing in the

disintegration (5.3), are equilibrium states w.r.t. the same automorphism group

given in (5.1). Thus, almost all ψ are faithful.

dThe fact that {πϕ(A), {eϕ

Λ′}}
′ = Z⊥

ϕ can be directly checked by {EΛ′}-asymptotic abelianess.
Indeed, if a ∈ Zϕ, and commute with all e

ϕ

Λ′ , then

eϕ
∞aeϕ

∞ = lim e
ϕ

Λ′ae
ϕ

Λ′ = limae
ϕ

Λ′ = aeϕ
∞ .

Hence, ε
ϕ
∞(a) = a as e

ϕ
∞ is cyclic for πϕ(A), i.e. a ∈ Z⊥

ϕ .
This computation, which seems not explicitly stated, applies to the more general situations

considered in Ref. 2.
eThe measure µ is precisely the measure in (5.2), trivially extended to all of S(A).
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We conclude the present section with a formula which could have certain interest

for physical applications.

Let ϕ be a Markov state on the spin algebra. Then we can write the restriction

ϕΛ in a nice way as follows. We obtain for A ∈ AΛ,

ϕ(ιΛ(A)) =
∑

ω∂Λ

(
∫

∂SE

ψ(ι∂Λ(P ∂Λ
ω∂Λ

))µ(dψ)

)

φΛ
ω∂Λ

(I ⊗A) , (5.4)

where the ψ are the states appearing in the extremal disintegration (5.2) of the

Markov state ϕ under consideration, and the φΛ
ω∂Λ

are the states associated to the

conditional expectation EΛ′ by (2.2).

Notice that, under the identification

Zϕ ∼ L∞(∂SE , µ) ,

the states ψ in (5.4) can be recovered as

ψ(a) = εϕ
∞(πϕ(a))(ψ) , α ∈ A .

6. Invariant Markov States

As the translations act in a natural way on the spin algebra, one can ask for Markov

states which are invariant w.r.t. the Z
d-action.

Let τx : A 7→ A be the shift generated in a natural way on the spin algebra by the

translation x ∈ Zd, and consider a Markov state ϕ ∈ S(A) invariant w.r.t. the τx.

In such a situation, one easily verifies that the generalized conditional expectations

associated to the restrictions of ϕ satisfy

E
ϕ

Λ̂

Λ̂\Λ
= τ−1

x ◦E
ϕ

Λ̂+x

Λ̂+x\Λ+x
◦ τx . (6.1)

Formula (6.1) directly yields for the corresponding Umegaki conditional

expectations,

EΛ′ = τ−1
x ◦EΛ′+x ◦ τx . (6.2)

Consider the dual action

ω ∈ S(A) 7→ Txω := ω ◦ τx ∈ S(A)

of Zd on the state space of A.

Proposition 6.1. In the above situation, Tx maps the set SE of all {EΛ′}-invariant

states of A into itself, leaving globally stable the set ∂SE of its extremal states.

Proof. If ψ is {EΛ′}-invariant, then by (6.2),

ψ ◦ τx ◦EΛ′ = ψ ◦EΛ′+x ◦ τx = ψ ◦ τx ,

i.e. ψ ◦ τx is {EΛ′}-invariant. Now let ψ be {EΛ′}-extremal, and consider a convex

decomposition

ψ ◦ τx = λψ1 + (1 − λ)ψ2
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with ψ1, ψ2 ∈ SE , and 0 < λ < 1. With b := τx(a) we get

ψ(b) = λψ1(τ
−1
x (b)) + (1 − λ)ψ2(τ

−1
x (b)) .

Namely, we have just obtained a convex decomposition of ψ by the

{EΛ′}-invariant states ψi ◦ τ−1
x , i = 1, 2. As ψ is {EΛ′}-extremal, we conclude

that ψ1 ◦ τ−1
x = ψ2 ◦ τ−1

x = ψ or equivalently ψ1 = ψ2 = ψ ◦ τx, i.e. Txψ is

{EΛ′}-extremal as well.

Consider the {EΛ′}-extremal disintegration (5.3) of the {τx}-invariant Markov

state ϕ. We obtain

ϕ = Txϕ =

∫

S(A)

Txψµ(dψ) =

∫

S(A)

ψµ ◦ T−1
x (dψ) ,

that is by Proposition 6.1,

µ ◦ Tx = µ

by the uniqueness of the maximal measure, see Theorem II.3.6. of Ref. 7. We then

have a measure-preserving Z
d-action x 7→ Tx on the state space S(A) of A.

Fix our attention on an ergodic component m of the ergodic disintegration

µ =

∫

mν(dm)

of the measure µ (see e.g. p. 153 of Ref. 27).f If the standard measure space

(S(A),m) is essentially transitive for the action of Zd (i.e. when m is concentrated

on a single orbit), then the Zd-space (S(A),m) is similar to the Zd-space (Zd/H, λ)

based on the homogeneous space Zd/H , see Theorem 4.12 of Ref. 20 (see Ref. 18 for

the original result). Here H ⊂ Zd is a (closed) subgroup of Zd, and λ is a probability

measure equivalent to the Haar measure on the Abelian group Zd/H .

In the {EΛ′}-extremal disintegration of a {τx}-invariant Markov state ϕ, states

with a smaller symmetry might occur. In our example, the surviving symmetry

group is precisely the subgroup H ⊂ Zd. This is an instance of the phenomenon of

symmetry breaking, see e.g. Refs. 10, 19 and 21 for quite similar situations and for

technical details.

Finally, we would like to remark that most of the last analysis can be repeated

mutatis mutandis when the symmetries of the model under consideration are de-

scribed by a general locally compact second countable group.
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