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Abstract

We propose a new definition of the Neyman chi-square divergence between distributions. Based on con-
vexity properties and duality, this version of the !2 is well suited both for the classical applications of the
!2 for the analysis of contingency tables and for the statistical tests in parametric models, for which it is
advocated to be robust against outliers.

We present two applications in testing. In the first one, we deal with goodness-of-fit tests for finite and
infinite numbers of linear constraints; in the second one, we apply !2-methodology to parametric testing
against contamination.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The scope of this paper is to introduce new insights on a !2-type criterion and to promote it
as a tool for testing. In contrast with the classical approach (see e.g. [12]), the definition of the
!2 criterion to be adopted here is the so-called Neyman !2 in the terminology of [9]. It will be
argued that this !2 is adequate for various types of models, discrete or continuous, parametric or
not. Based on convexity arguments a new form for the !2 distance between two distributions on
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Rd is derived. It allows for a direct plug-in technique which defines good test statistics avoiding
the bias inherent either to grouping or to smoothing. Also, the optimization of the Neyman !2

distance between a given distribution and any set of distributions ! reduces to the optimization
of a linear functional on !; this property is not shared by other criterions such as the Kullback–
Leibler, Hellinger, likelihood, the standard !2 or others, and plays in favor of this !2 for numerical
simplicity. Some statistical difficult problems can be solved using this !2. We will consider a
classical example, namely a test for contamination, which can be stated as follows. Given an
observed data set, can we claim for homogeneity, or do we have to consider that some proportion
of the data is generated by some exogeneous contamination mechanism? This is a two components
mixture problem with two nonhomogeneous components, and the focus is on the test for the weight
of the contaminating distribution at the border 0 of the domain [0, 1]. More classical problems
will also be handled, such as goodness of fit, comparing the empirical distribution with the set of
distributions satisfying a number of linear constraints; in this respect we will provide information
for the maximal number of such constraints (with respect to the sample size) that will allow for
such test based on this !2-statistics. Also, in these examples the advantage of using this version of
the !2 is clear: the test statistics always exists, in contrast with empirical likelihood approaches
for the same problems, and its calculation is simple; further its limit distribution is classical.

For categorized distributions p := (p1, . . . , pk) and q := (q1, . . . , qk) sharing the same
support the Neyman !2-distance writes !2(q, p) := ∑k

i=1
(qi−pi)

2

pi
, the averaged square relative

error committed when substituting p by q. Note that the classical !2 is just !2(p, q) in our
definition. From now on we will simply call !2 what is usually intended as the Neyman !2. In
order to handle general models an adequate formula is given by

!2(Q, P ) =
{ ∫ (

dQ−dP
dP

)2
dP, Q is a.c. w.r.t. P,

∞ otherwise,
(1)

where P is a probability measure, and Q is an element of M, the vector space of all finite
signed measures on Rd . This definition may seem strange, but consider the above-mentioned
contamination problem: P is the unknown distribution of the data, and Q runs in the whole family
of contaminated (or uncontaminated) distributions, hence with density (1−")f#(x)+"r$(x); here
f is the density of the “good” data, r is the contaminating density and " is the rate of contamination.
Both # and $ are unknown. In order to get a properly defined test for " = 0 it is necessary to
make this null hypothesis an interior point in the set of all contaminated densities; this forces the
model to include negative values for ", which turns to justify definition (1) with Q in M. Note
also, as will be advocated further on (see Section 5), that this example is in favor of a Neyman !2

approach instead of the likelihood ratio one.
Some robustness argument plays in favor of the Neyman !2. A notion of robustness against

model contamination is found in Lindsay [14] and in Jimenez and Shao [10] which provide an
instrument to compare estimators associated to different divergences. Although their argument
deals with finite support models and is related to estimation procedures, it can be invoqued for
testing. A test statistic should bear some robustness properties with respect to outliers (excedances
of data in or outside the range of the variable) or inliers (missing data or subsampling in the range of
the variable). For finitely supported models a family of minimum divergence test statistics writes
"(!, Pn) = infQ∈!

∑
i∈S Q(i)"

(
Pn(i)
Q(i)

)
, where S is the common support of all distributions in

!, and " is a strictly convex function from (0, +∞) onto R with "(1) = 0. In the case of the
Neyman !2, "(x) = (x − 1)2/2x. The robustness properties of a statistical estimate are captured
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by the Residual Adjustment Function A! (RAF). In the case of the Neyman !2, A(x) = x
1+x .

The robustness of the test statistics against outliers or inliers is a consequence of the behavior of
the RAF at +∞ or at −1. The smallest its variations at +∞ and −1, the most robust the test
statistics. Minimum Hellinger distance test provides a good compromise since both variations are
small (see the discussion in [2,10]). When the model might be subject to outlier contaminations
only, as will be advocated in the present paper for contamination models, then minimum Neyman
!2-divergence test behaves better than all classical minimum divergence estimates (Hellinger,
Kullback–Leibler, Likelihood, Pearson !2, etc.), as easily seen through the calculation of RAF
functions following [10].

This paper is organized as follows. Section 2 presents what is needed for the definition of the dual
form of the Neyman !2. We adapt general results obtained in [8] for differentiable divergences,
and state explicit results for sake of completeness. Section 3 presents the estimates together with
general convergence results. Section 4 presents specific examples in the range of tests of fit, and
also includes some results on Neyman !2 goodness-of-fit tests based on sieves. In Section 5, we
handle the aforementioned test for contamination. Most proofs are postponed to Section 6.

2. A new definition of the !2 statistics

2.1. The dual form of the !2

Denote M1 the set of all probability measures on
(
Rd , B

)
. The !2 distance defined on M

for fixed P in M1 through (1) is a convex function. As such it is the upper envelope of its
support hyperplanes, a statement which we now develop, adapting [8]. Let F be some class of
B-measurable real valued functions f (bounded or unbounded) defined on Rd . Denote Bb the set
of all bounded B-measurable real-valued functions defined on Rd , and 〈F ∪ Bb〉 the linear span
of F ∪ Bb. Consider the real vector space

MF :=
{
Q ∈ M such that

∫
|f | d|Q| < ∞, for all f in F

}
,

in which |Q| denotes the total variation of the signed finite measure Q. When F = Bb, then
MF = M. On MF the "F topology is the coarsest which makes all mappings Q ∈ MF '→∫

f dQ continuous when f belongs to F ∪ Bb.
The hyperplanes in MF are described through

Proposition 1. Equipped with the "F -topology, MF is a Hausdorff locally convex topological
vector spaces. Its topological dual space is the set of all mappings Q '→

∫
f dQ when f belongs

to 〈F ∪ Bb〉.

The function Q ∈ [MF ; "F ] '→ !2(Q, P ) is lower semi-continuous (l.s.c.); see [8], Propo-
sition 2.2. This allows to use the Legendre Fenchel theory in order to represent the mapping
Q '−→ !2(Q, P ) as the upper envelope of its support hyperplanes.

On 〈F ∪ Bb〉 define the Fenchel–Legendre transform of !2(·, P )

T (f, P ) := sup
Q∈MF

∫
f dQ − !2(Q, P ) =

∫
f dP + 1

4

∫
f 2 dP (2)

for all f ∈ 〈F ∪ Bb〉, see e.g. [1, Chapter 4].
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Lemma 1. It holds

!2(Q, P ) = sup
f ∈〈F∪Bb〉

∫
f dQ − T (f, P ). (3)

The function f ∗ = 2
(

dQ
dP − 1

)
is the supremum in (3) as a consequence of Theorem 3.4 in

[8]. When f ∗ belongs to F then

!2(Q, P ) = sup
f ∈F

∫
mf (x) dP (x), (4)

where

mf (x) :=
∫

f dQ −
(

f (x) + 1
4
f 2(x)

)
.

Call (4) the dual representation of the !2.

2.2. !2 projections

Let ! be a set of measures in M. A statistic for the test H0 : P ∈ ! against H1 : P /∈ ! is
an estimate of infQ∈! !2(Q, P ). First say that a measure Q∗ in ! is a !2-projection of P on ! if
!2(Q∗, P ) < ∞ and for all measure Q in !, !2(Q∗, P )!!2(Q, P ).

Using the dual form of the !2 it holds

!2(!, P ) = inf
Q∈!

!2(Q, P ) = inf
Q∈!

sup
f ∈F

∫
mf (x) dP (x). (5)

Specifying Theorem 3.3 in [8] to the modified !2 divergence the existence and characterization
of the !2 projection of P on a general set ! in MF are captured in the following statement.

Proposition 2. If there exists some Q∗ in ! such that !2(Q∗, P ) < ∞ and for all Q in !

q∗ ∈ L1(Q) and

∫
q∗ dQ∗ !

∫
q∗dQ,

where q∗ = dQ∗
dP , then Q∗ is the !2-projection of P on !.

Conversely, if ! is convex and P has projection Q∗ on !, then, for all Q in !, q∗ belongs to
L1(P ) and

∫
q∗ dQ∗ !

∫
q∗ dQ.

Theorem 2.6 in [8] adapted to the Neyman !2 divergence assets that any p.m. P which satisfies∫ |f | dP < ∞ for all f in F has a projection on any closed set in MF equipped with the "F
topology.

The link with the dual representation stated above will now be established. Indeed, the set of
measures ! often bears enough information to specify F . We will consider two important cases.
In both cases, F will be defined as the smallest class of functions containing f ∗ := 2

(
dQ∗
dP − 1

)

when both Q∗ and P are unknown.
(a) Consider the case when both P and Q belong to a same parametric model indexed by some

class ", so that dP = p# d$ and dQ = p% d$ for some dominating measure $; then f ∗ belongs
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to the class of functions F :=
{

2
(

p!
p"

− 1
)

, ", ! ∈ !
}

a class of functions which is well defined.

Also, for dQ = p! d#, and when $2(Q, P ) is finite, then Q belongs to MF (see Lemma 3.2 in
[8]). The contamination problem is precisely of this kind: P is the unknown distribution of the
data (contaminated or not) and " is the set of uncontaminated distributions. Hence, f ∗ belongs
to F :=

{
2

(
f!

(1−%)f"+%r&
− 1

)
, ", ! ∈ !, & ∈ H, % ∈ #

}
.

(b) Consider the problems of existence and characterization of $2-projections of some p.m. P
on linear set " of measures in M defined by an arbitrary family of linear constraints. Let G denote
a collection (finite or infinite, countable or not) of real-valued functions defined on

(
Rd , B

)
. The

class G is assumed to contain the function 1Rd . The set " is defined by

" :=
{
Q ∈ M such that

∫

Rd
dQ = 1 and

∫

Rd
g dQ = 0, for all g in G\

{
1Rd

}}
. (6)

The following result states the explicit form of Q∗, the $2-projection of P on ", when it exists.
Adapting [8, Theorem 3.4] for the modified $2 divergence we have

Theorem 1. If there exists a measure Q∗ in " such that q∗ := dQ∗
dP belongs to 〈G〉 then Q∗ is

the $2-projection of P on ". Reciprocally, let Q∗ be the $2-projection of P on "; then q∗ belongs
to 〈G〉, the closure of 〈G〉 in L1(R

d , |Q∗|).

If G is a finite class of functions, then the vector space 〈G〉 is closed in L1(R
d , |Q∗|). Therefore,

it holds

Corollary 1. Let G :=
{
1Rd , g1, . . . , gl

}
be a collection of measurable functions on Rd . Let Q∗

in " such that $2(Q∗, P ) < ∞. Then Q∗ is the $2 projection of P on " iff there exists some vector
c := (c0, . . . , cl) ∈ Rl+1 such that

dQ∗

dP
(x) = c0 +

l∑

i=1

cigi(x) (|Q∗|-a.e.). (7)

The definition of the class F is deduced from the above corollary, setting

F := 〈G〉 =
{

c0 +
l∑

i=1

cigi(x), with c0, . . . , cl in R

}

(8)

which turns out to be a parametric class of functions.
Corollary 1 provides the form of the projection Q∗ of P on MF but does not give a description

of Q+, the projection of P on M1, if it exists. The following example shows that this is an
argument in favor of the definition of the $2 distance on subsets of M.

Example 1. Let P be the uniform distribution on [0, 1] and F :=
{
1[0,1], Id

}
, where Id is the

identity function. Consider

" :=
{
Q ∈ MF such that

∫
dQ = 1 and

∫
(x − 1/4) dQ(x) = 0

}
.
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The signed finite measure Q∗ defined by dQ∗(x) =
(

5
2 − 3x

)
dP (x) belongs to !; it has same

support as P and by Corollary 1 it is the !2-projection of P on !. The projection Q+ of P on
! ∩ M1 exists and is unique, since ! is closed in the relative topology on M1. Therefore, we
also have dQ+(x) =

(
5
2 − 3x

)
dP (x) on its support which proves that Q+ cannot have the

same support as P, since dQ+/dP (x) takes negative values for x between 5
6 and 1. Therefore, (7)

does not provide a definite description of the projection in this case. This example proves that a
properly defined !2 statistics defined in order to assert whether P lays in ! should be defined by
(1) with ! in M and not in M1.

2.3. A minimax result

We close this section by noting that in many cases the inf and sup operations in (5) commute,
namely

!2(!, P ) = inf
Q∈!

sup
f ∈F

∫
mf (x) dP (x) = sup

f ∈F
inf

Q∈!

∫
mf (x) dP (x). (9)

For example (9) holds when ! is defined through (6) and F through (8). We refer to Theorem 20
in [7] for a general version of this result. Also, the contamination model developed in Section 5
provides an example of the usefulness of (9) as well as a way to prove it in parametric models.

3. The definition of the estimator

3.1. The estimator !2
n

Formula (1) is not suitable for statistical purposes as such. Indeed, suppose that we are interested
in testing whether P is in some class ! of distributions with absolutely continuous component.
Let X = (X1, . . . , Xn) be an i.i.d. sample with unknown distribution P. Let Pn := 1

n

∑n
i=1 "Xi

be the empirical measure pertaining to X. Then, for all Q ∈ !, the !2 distance defined in (1)
between Q and Pn is infinite. Therefore, no plug-in technique can lead to a definite statistic in this
usual case; smoothing can be used in the spirit of [2,16], but our method uses the properties of !2

projections in full force.
Formula (4) is suitable for a plug-in estimate of !2(Q, P ) through

!2
n(Q, P ) := sup

f ∈F

∫
mf (x) dPn(x).

This estimate is defined also when Q is continuous. When both Q and P share the same finite
support then it clearly coincides with the classical estimate of the Neyman !2 for suitably chosen
classes F .

For example with ! :=
{
Q ∈ M such that

∫
1Ai (x) dQ(x) =

∫
1Ai (x) dQ0(x)

}
for some

p.m. Q0 and some partition (Ai)i of the common support of all measures Q and P, it holds, with
F :=

{
x → 1Ai (x), i

}
infQ∈! supf ∈F

∫
mf (x) dPn(x) = !2

n(Q, P ) := ∑k
i=1

(Q0(Ai)−Pn(Ai))
2

Pn(Ai)
,

where Pn(Ai) is the frequency of the cell i in the sample X.
Optimizing on ! yields a natural estimate of !2(!, P ) through

!2
n(!, P ) := inf

Q∈!
sup
f ∈F

∫
mf (x) dPn(x). (10)
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These estimates may seem cumbersome. However, in the case when we are able to reduce the
class F to a reasonable degree of complexity, they perform quite well and can be used for testing
P ∈ ! against P "∈ !. As seen in the preceding section this is indeed the case when ! is defined
through a finite number of linear constraints, as will be exemplified in the next section.

When (9) holds we may define an other test statistic through

!2
n(!, P ) = sup

f ∈F
inf

Q∈!

∫
f dQ − T (f, Pn). (11)

In many cases !2
n(!, P ) and !2

n(!, P ) share the same asymptotic behavior. Indeed they even
coincide when ! is defined through linear constraints. In parametric cases, their asymptotic
distribution under any alternative is the same, as proved in Section 5 for the contamination problem.
The limiting properties of !2

n under any alternative can be obtained following closely the proof of
Theorem 3.6 in [6]. Denote H :=

{(
f + 1

4f 2) , f ∈ F
}
. Note that compactness in sup norm of

the class H in the proof of this latest theorem is only required in order to ensure that the sup in
(11) is actually reached at some point in H. Since this fact may occur without this assumption,
typically when ! is defined through linear constraints, we state the limit distribution of the test
statistic under H1 as follows.

Theorem 2. When H is a Glivenko–Cantelli class of functions, then !2
n(!, P ) converges to

!2(!, P ) almost surely as n tends to infinity, whenever H0 or H1 holds. Assume now that H1
holds and P has a unique projection Q∗ in !, and that H is a functional Donsker class. Assume

that for each n, arg supf ∈F infQ∈!
∫

f dQ − T (f, Pn) exists. Denote f ∗ := 2
(

dQ∗
dP − 1

)
and

g∗ = f ∗ + 1
4f ∗2. Then

√
n

(
!2
n(!, P ) − !2(!, P )

)

is asymptotically a centered gaussian random variable with varianceEP

((
f ∗ + 1

4f ∗2
)2

(X)

)
−

EP

((
f ∗ + 1

4f ∗2
)

(X)
)2

, where X has law P .

Since !2
n(Q, P ) = !2

n(Q, P ) the above theorem also provides the asymptotic distribution of√
n

(
!2
n(Q, P ) − !2(Q, P )

)
.

The asymptotic distribution of !2
n or !2

n under H0, i.e. when P belongs to !, cannot be obtained
in a general frame and must be derived in accordance with the context; this will be the focus of
the next sections.

Let "n be the set of all measures in M with support (X1, . . . , Xn). When ! is as in (6)
with G a finite class of functions, then ! ∩ "n is nonvoid. An estimate of !2(!, P ) can be
defined through !2

n(!, P ) = infQ∈!∩"n
!2(Q, Pn) = !2(!, Pn). This device is the “Generalized

Empirical Likelihood” (GEL) paradigm (see [18] and references therein). Section 4 develops
duality approaches in the GEL setting. The estimation of Q∗ results as the unconstrained solution
of a linear system of equations, which argues in favor of the !2 approach for these problems. An
approach by sieves is adopted when ! is defined through an infinite number of linear constraints.
Similarly as in Theorem 2, we provide some information on the distribution of the test statistics
under H1 (when P does not belong to !), which is not addressed in the current literature on
Empirical Likelihood methods, and which proves the consistency of the proposed test procedure.
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We apply the above results to the case of a test of fit, where ! = {P0} is a fixed probability
measure.

When !∩"n is void some smoothing technique has been proposed, following [2], substituting
Pn by some regularized version; see [17]. The duality approach avoids smoothing. An example
is presented in Section 5, devoted to the test for contamination.

4. Test of a set of linear constraints

Let G be a countable family of real-valued functions gi defined on Rd , {ai}∞i=1 a real sequence
and

! :=
{
Q ∈ M such that

∫
gi dQ(x) = ai, i!1

}
. (12)

We assume that ! is not void. In accordance with (6) the function g0 := 1 belongs to G with
a0 = 1. Let X1, . . . , Xn be an i.i.d. sample with common distribution P.

We intend to propose a test for H0 : P ∈ ! vs. H1 : P $∈ !. In the entire section, the test
statistics is !2(! ∩ "n, Pn), following the GEL approach.

We first consider the case when G is a finite collection of functions, and next extend the results
to the infinite case. For notational convenience, we write Pf for

∫
f dP whenever defined.

4.1. Finite number of linear constraints

Consider the set ! defined in (12) with card{G} = k. Introduce the estimate of !2(!, P ),
namely

!2
n := inf

Q∈!∩"n

!2(Q, Pn). (13)

Embedding the projection device in M ∩ "n instead of M1 ∩ "n yields to a simple solution for
the optimum in (13), since no inequality constraints will be used. Also, the topological context is
simpler than as mentioned in the previous section since the projection of Pn belongs to Rn. Our
approach differs from the GEL through the use of the dual representation (10), which provides
consistency of the test procedure.

The set ! ∩ "n is a convex closed subset in Rn. The projection of Pn on ! ∩ "n exists and is
unique. This is in strong contrast with the usual empirical likelihood approach. Consider the case
when ! is the set of all probability measures with mean a. The empirical likelihood projection
of Pn on ! exists iff a is in the interior of the convex envelope of the Xi’s. Otherwise the pro-
jection should put negative masses on some Xi , a contradiction with the likelihood approach; see
[19, p. 106]. Such cases play in favor of the !2 approach on signed measures in order to perform
tests of hypotheses. The next subsections provide limit properties of !2

n(!, P ). Let F := 〈G〉.

4.1.1. Notation and basic properties
Let Q0 be any fixed measure in !. By (5)

!2 (!, P ) = sup
f ∈F

(Q0 − P) f − 1
4
Pf 2

= sup
a0,a1,...,ak

k∑

i=1

ai (Q0 − P) gi − 1
4
P

(
k∑

i=1

aigi + a0

)2

(14)
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since, for Q in ! and for all g in G, Qg = Q0g, and

!2
n = sup

a0,a1,...,ak

k∑

i=1

ai (Q0 − Pn) gi − 1
4
Pn

(
k∑

i=1

aigi + a0

)2

. (15)

The infinite dimensional optimization problem in (13) thus reduces to a (k + 1)-dimensional
one, much easier to handle. The statistic !2

n is the distance between Pn and Q∗
n, its projection on

!, and Q∗
n has same support as Pn.

Optimizing in (14) and (15), !2 (!, P ) and !2
n get written through a quadratic form.

Define the vectors "n and " by

"n
′ = "(G, Pn)

′ = {(Q0 − Pn) g1, . . . , (Q0 − Pn) gk} ,

"′ = "(G, P )′ = {(Q0 − P) g1, . . . , (Q0 − P) gk} ,

#
n

= #
n
(G) = √

n {(Pn − P) g1, . . . , (Pn − P) gk} = √
n

(
" − "n

)
. (16)

Let S be the covariance matrix of #
n
. Write Sn for the empirical version of S, obtained substituting

P by Pn in all entries of S.

Proposition 3. Let ! be as in (12) and let card {G} be finite. We then have

!2
n = "′

nS
−1
n "n,

!2 (!, P ) = "′S−1".

The statistics !2
n is a consistent estimate of !2 (!, P ). Indeed, we have

Proposition 4. Assume that !2 (!, P ) is finite. Let G be a finite class of functions as in (12) and
assume that maxg∈G Pg2 is finite. Then !2

n tends to !2 (!, P ) a.s.

4.1.2. Asymptotic distribution of the test statistic
Write

n!2
n = √

n"′
nS

−1√n"n + √
n"′

n

(
S−1

n − S−1
) √

n"n.

We then have

Theorem 3. Let ! be defined by (12) and G be a finite class of linearly independent functions
such that maxg∈G Pg2 is finite. Set k = card{G}. Then, under H0,

n!2
n

d−→ chi (k) ,

where chi (k) denotes a chi-square distribution with k degrees of freedom.

Proof. For P in !,
√

n"n = #
n
. Therefore n!2

n = #
n
′S−1#

n
+ #′

n

(
S−1

n − S−1) #
n
.

By continuity of the mapping h
(
y
)

= y′S−1y, #′
n
S−1#

n
has a limiting chi(k) distribution.
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It remains to prove that the second term is negligible. Indeed, again from
(
!
n

)′ (
S−1

n − S−1
) (

!
n

)
!const · k

∣∣∣
∣∣∣
∣∣∣S1/2S−1

n S1/2 − I
∣∣∣
∣∣∣
∣∣∣

it is enough to show that
∣∣∣∣∣∣S1/2S−1

n S1/2 − I
∣∣∣∣∣∣ is oP (1); see (38) in the proof of Proposition 4.

"

Turn now to the distribution of the statistics under H1. Suppose that all functions g in G are
bounded. Since the optimizing vector a(n) := (a

(n)
0 , . . . , a

(n)
k ) in (15) converges to the corre-

sponding maximizing vector in (14) we may assume that for n large we can identify a compact set
in Rk+1 that contains all the a(n)’s. The projection of Pn on ! exists and when all functions g in
G satisfy Pg2 < ∞, the conditions in Theorem 2 are fulfilled, providing the asymptotic power of
the test, as well as a way to infer the minimal sample size required in order to reach a given power
under some alternative. The procedure is asymptotically consistent as observed by the difference
of the normalizing factors in the asymptotic distributions of "2

n under H0 and H1.

4.2. Infinite number of linear constraints, an approach by sieves

In various cases ! is defined through a countable collection of linear constraints. An example
is presented in Section 4.3. Suppose that ! is defined as in (12), with G a countable class of
functions

G =
{
g# : Rd → R, # ∈ A

}
,

where card (A) = ∞. Thus ! = {Q ∈ M such that Qg = Q0g, g ∈ G}, for some Q0 in M.
Assume that the projection Q∗ of P on ! exists. Then, by Theorem 1 f ∗ ∈ 〈G〉.
We approximate G through a suitable increasing sequence of classes of functions Gn with finite

cardinality k = k(n) increasing with n. Each Gn induces a subset !n in ! as follows.
Let

Gn ⊆ Gn+1 ⊂ G for all n#1 (17)

and

G =
⋃

n#1

Gn

and let

!n = {Q : Qg = Q0g, g ∈ Gn} .

We thus have !n ⊇ !n+1, n#1 and ! = ⋂
n#1 !n.

The idea of determining the projection of a measure P on a set ! through an approximating
sequence of sets—or sieve—has been introduced in this setting in [22].

Theorem 4 (see Teboulle and Vajda [22]). With the above notation, define Q∗
n the projection of

P on !n. Then

lim
n→∞

∥∥f ∗ − f ∗
n

∥∥
L1(P )

= lim
n→∞

∥∥∥∥
dQ∗

dP
− dQ∗

n

dP

∥∥∥∥
L1(P )

= 0. (18)



M. Broniatowski, S. Leorato / Journal of Multivariate Analysis 97 (2006) 1409–1436 1419

When supg∈G supx g(x) < ∞ then (18) implies

lim
n→∞ !2 (!n, P ) = !2 (!, P ) . (19)

The above result suggests that we can build a sequence of estimators of !2 (!, P ) letting
k = k(n) = card Gn grow to infinity together with n. Define

!2
n,k = sup

f ∈〈Gn〉
(Q0 − Pn) f − 1

4
Pnf

2.

In the following subsection, we consider conditions on k(n) entailing the asymptotic normality
of the suitably normalized sequence of estimates !n,k when P belongs to !, i.e. under H0.

4.2.1. Convergence in distribution under H0
As a consequence of Theorem 3, n!2

n,k tends to infinity with probability 1 as n → ∞.
We consider the statistic

n!2
n,k − k
√

2k
(20)

which will be seen to have a nondegenerate distribution as k(n) tends to infinity together with n.
We assume from now on that G is a Donsker class of functions; see e.g. [24]. We need some

improved version on the rate of gaussian approximations for empirical processes indexed by G.
This leads to the following notion.

For some a > 0, let "n be a decreasing sequence with "n = o
(
n−a

)
. We assume that G is

Komlós–Major–Tusnády (KMT ) with respect to P, with rate "n (G ∈ KMT ("n; P)), which is to
say that there exists a version B0

n (.) of P -Brownian bridges such that for any t > 0 it holds

Pr

{

sup
g∈G

∣∣∣
√

n (Pn − P) g − B0
n (g)

∣∣∣ !"n (t + b log n)

}

"ce−#t , (21)

where the positive constants b, c and # depend on G only. We refer to [4,15,5,11] for examples of
classical KMT classes, together with calculations of rates.

From (21) it follows that

sup
g∈G

∣∣∣$n(g) − B0
n(g)

∣∣∣ = OP ("n log n) (22)

where, with the same notation as in the finite case (see (16)), i.e. $n(g) = √
n(Pn − P)g is the

empirical process indexed by g ∈ G.
For any n, set $

n,k
= $

n
(Gn) (resp., B0

n,k) the k-dimensional vector resulting from the projection

of the empirical process $n (resp., of the P -Brownian bridge B0
n) defined on G to the subset Gn.

Then, if Gn =
{
g

(n)
1 , . . . , g

(n)
k

}
, $

n,k
=

{
$n(g

(n)
1 ), . . . , $n(g

(n)
k )

}
and B0

n,k =
{
B0

n

(
g

(n)
1

)
, . . . ,

B0
n

(
g

(n)
k

)}
. Denote Sk the covariance matrix of the vector $

n,k
and Sn,k its empirical covariance

matrix. Let %1,k be the smallest eigenvalue of Sk . Call an envelope for G a function G such that
|g| "G for all g in G.

Theorem 5. Let G have an envelope G with PG < ∞ and be KMT ("n; P) for some se-
quence "n ↓ 0. Define further a sequence {Gn}n!1 of classes of linearly independent functions
satisfying (17).



1420 M. Broniatowski, S. Leorato / Journal of Multivariate Analysis 97 (2006) 1409–1436

Moreover, let k = k(n) = card Gn satisfy

lim
n→∞ k = ∞,

lim
n→∞ !−1/2

1,k k1/2"n log n = 0, (23)

lim
n→∞ !−1

1,k k3/2n−1/2 = 0. (24)

Then under H0

n#2
n,k − k
√

2k

d−→ N (0, 1) .

In both conditions (23) and (24) the value of !1,k appears, which cannot be estimated without
any further hypothesis on the structure of the class G. However, for concrete problems, once
defined G it is possible to give bounds for !1,k , depending on k. This will be shown in the next
subsection, for a particular class of goodness-of-fit tests.

4.3. Application: testing marginal distributions

Let P be an unknown distribution on Rd with density bounded by below. We consider goodness-
of-fit tests for the marginal distributions P1, . . . , Pd of P on the basis of an i.i.d. sample
(X1, . . . , Xn).

Let, thus, Q0
1, . . . , Q

0
d denote d distributions on R. The null hypothesis writes H0: Pj = Q0

j
for j = 1, . . . , d. That is to say that we simultaneously test goodness of fit of the marginal laws
P1, . . . , Pd to the laws Q0

1, . . . , Q
0
d . Through the transform P ′(y1, . . . , yd) = P

((
Q0

1

)−1
(y1) ,

. . . ,
(
Q0

d

)−1
(yd)

)
we can restrict the analysis to the case when all p.m’s have support [0, 1]d

and marginal laws uniform in [0, 1] under H0. So without loss of generality, we write Q0 for the
uniform distribution on [0, 1].

Bickel et al. [3] focused on the estimation of linear functionals of the probability measure
subject to the knowledge of the marginal laws in the case of r.v.’s with a.c. distribution, letting
the number of cells grow to infinity.

Under H0 all c.d.f’s of the margins of P are uniform on [0, 1]. Introduce the corresponding
class of functions, namely the characteristic functions of sets of the form [0, u) on each of the d
axes, namely

G :=
{

1u,j : [0, 1]d −→ {0, 1} , j = 1, . . . , d, u ∈ [0, 1]
}

,

where 1u,j (x1, . . . , xd) =
{

1, xj !u

0, xj > u
.

Let ! be the set of all p.m’s on [0, 1]d with uniform marginals, i.e.

! =
{
Q ∈ M1

(
[0, 1]d

)
such that Qg =

∫

[0,1]d
g(x) dx for all g in G

}
. (25)

The test writes H0 : P belongs to ! vs. H1 : P does not belong to !.
This set ! has the form (12), where G is the class of characteristic functions of intervals, a

KMT class with rate "n = n−1/2 (see [15]).
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We now build the family Gn satisfying (17). Let m = m(n) tend to +∞ with n. Let 0 = u0 <

u1 < · · · < um < um+1 = 1 and
{
U (n)

}
be the m · d points in [0, 1]d with coordinates in

{u1, . . . , um}.
Let Gn denote the class of characteristic functions of the d-dimensional rectangles [0, u] for

u ∈ U (n). Hence card{Gn} = k = m · d , and

Gn=
{

1ui ,j : [0, 1]d → {0, 1} , j=1, . . . , d, ui∈ (0, 1) , ui<ui+1 , i=0, . . ., m
}

, (26)

which satisfies (17).
In order to establish a lower bound for the smallest eigenvalue of Sk , say !1,k , the volumes

of the cells in the grid defined by the u
(n)
i should not shrink too rapidly to 0. Suppose that the

intervals (ui, ui+1] are such that

0 < lim
n→∞ inf min

i=0,...,m
k (ui+1 − ui) ! lim

n→∞ sup max
i=0,...,m

k (ui+1 − ui) < ∞. (27)

Remark 1. Condition for the sequence Gn to converge to G coincides with (F2) and (F3) in [3].

The order of magnitude of !1,k is obtained through a one-to-one transformation of the class Gn

which leaves invariant the smallest eigenvalue of Sk .We simply turn from the class of characteristic
functions of sets [0, ui) to characteristic functions of sets [ui, ui+1) on each of the axes. We order
these dm functions in a natural order, namely the m first ones for the grid of the first axis, and so
on.

Let P belong to !. Let us then write the matrix Sk . We have P 1ui ,j = Q01ui ,j = ui for i =
1, . . . , m and j = 1, . . . , d. Set P 1ui ,j 1ul,h = P

(
Xj !ui, Xh !ul

)
, for every h, j = 1, . . . , d

and l, i = 1, . . . , m. When j = h then P 1ui ,j 1ul,j = P
(
Xj !ui ∧ ul

)
= ui ∧ ul .

The generic term of Sk writes

sk (u, v) = sk ((j − 1)m + i, (h − 1)m + l) = P 1ui ,j 1ul,h − P 1ui ,jP 1ul,h

=






ui − u2
i if j = h, i = l,

P (Xj !ui ∧ ul) − uiul if j = h, i &= l,

P (Xj !ui, Xh !ul) − uiul if j &= h.

We make use of the class of functions

G"
n =

{
1ui ,j − 1ui−1,j , i = 1, . . . , m, 1u0,j = 0, j = 1 . . . , d

}

=
{

1
A

j
i
, i = 1 . . . , m, j = 1, . . . , d

}
.

Let S"
k be the covariance matrix of the vector #"

n
= #

n
(G"

n) and define the vectors $" and $"
n

similarly as in (16).
S"

k has ((j − 1)m + i, (h − 1)m + l)th component equal to P
A

j
i
Ah

l
− P

A
j
i
PAh

l
, which is






pi − p2
i if j = h, i = l,

−pipl if j = h, i &= l,

P (ui−1 !Xj < ui, ul−1 !Xh < ul) − pipl if j &= h,

where we have written pi = P(ui−1 !Xj < ui) = ui − ui−1, for all j = 1, . . . , d.
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Also, !2 (and !2
n) can be written using G"

n instead of Gn:

!2(!, P ) = #′S−1
k # =

(
#"

)′ (
S"

k

)−1 (
#"

)
.

Let M be the diagonal d-block matrix with all diagonal blocks equal to the unit inferior triangular
(m × m) matrix. Then # = M#" and Sk = MS"

k M ′.

Thus #"′
(S"

k )
−1

#" = #′(M ′)−1M ′S−1
k M(M)−1# = !2. Similar arguments yield !2

n =
#"
n

′
(S"

n,k)
−1#"

n.

Let $1," be the minimum eigenvalue of S"
k . Since M has all eigenvalues equal to one, the

following chain holds:

$1,k ! min
x

x′Skx

‖x‖2 ! min
y

y′S"
k y

‖y‖2 max
x

‖Mx‖2

‖x‖2 = $1," ! min
y

y′Sky

‖y‖2 max
x

‖M−1x‖2

‖x‖2 = $1,k

which is to say that the minimum eigenvalues of S"
k and Sk are equal. As a consequence we obtain

Lemma 2. Suppose that P ∈ ! has density on [0, 1]d bounded from below by % > 0. Then the
smallest eigenvalue of S"

k , and consequently $1,k , is bounded below by %pm+1 min1! i !m pi .

We will now consider the covariance matrix of &"
n

under H0, when the underlying distribution

is Qd
0 , the uniform distribution on [0, 1]d . Denote this matrix S0

k . We then have

Lemma 3. If P = Qd
0 , then

(i) S0
k = D1/2(I − V )D1/2, where D and V are both diagonal block matrices with diagonal

blocks equal to diag {pi}i=1,...,m and to U =
{√

pipl

}
i=1,...,m, l=1,...,m

, respectively.
(ii) The (m × m) matrix U has eigenvalues equal to

$U =
{

(1 − pm+1) = ∑m
i=1 pi with cardinality 1,

0 with cardinality m − 1.

Moreover (I − U)−1 = (I + 1
pm+1

U).

(iii) For any eigenvalue $ of S0
k it holds

pm+1 min
1! i !m

pi !$! max
1! i !m

pi.

From Theorem 5 and using (27) in order to evaluate pm+1 min1! i !m pi , together with the
fact that the class G is KMT with rate "n = n−1/2 we obtain

Theorem 6. Let (27) hold. Assume that H0 holds with ! defined by (25). Assume that P has a
density bounded by below by some positive number. Let, further, k = d ·m(n) be a sequence such
that limn→∞ k = ∞ and limn→∞ k7/2n−1/2 = 0.

Then
n!2

n,k−k√
2k

= n&′
n,k

S−1
n,k&n,k

−k
√

2k
has limiting normal standard distribution.

Remark 2. A lower bound for the density of P also appears in [3] (see their condition (P3)).
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In the last part of this section, we show that conditions in Theorem 6 can be weakened for small
values of d. We consider the case when d = 2; for larger values of d, see Remark 3.

For clearness define pij := P(A1
i × A2

j ) and Nij := nPn(A
1
i × A2

j ), where the events Ah
i ,

h = 1, 2, i = 1, . . . , m are as above. The marginal distributions will be denoted pi,· = p·,i = pi

and the empirical marginal distributions by Ni,·/n and N·,i/n.
Turning back to the proof of Theorem 5 we see that condition (24) is used in order to ensure

that m−1/2!′
n,k

(S−1
n,k −S−1

k )!
n,k

goes to 0 in probability as n tends to infinity, while condition (23)

implies the convergence of
!′
n,k

S−1
k !

n,k
−2m

√
4m

to the standard normal distribution.
Sharp inequalities pertaining to the binomial probabilities yield the following improvement

upon Theorem 6.

Theorem 7. Let (27) hold. Assume that H0 holds and P is as in Lemma 2. Let m := m(n) with
limn→∞ m = ∞ and limn→∞ m3/2n−1/2 log n = 0. Then

n"2
n,2m − 2m
√

4m
−→ N(0, 1).

Remark 3. The preceding arguments carry over to the case d > 2 and yield to the condition
limn→∞ md+1/2n−1/2 log n = 0. However for d !6 this ultimate condition is stronger than (24).

5. A test for contamination

In this section, we address the contamination test problem sketched in Section 1. Such problems
have been considered in the recent literature; see [13] and references therein. A contamination
model can be written as

C+ :=
{
p(x) = (1 − #)f$(x) + #r%(x), 0"#"1, $ ∈ !, % ∈ H

}
, (28)

where f$ is the density of the uncontaminated data, r% is the contaminating density and # is
the rate of contamination, usually close to 0. All densities are considered with respect to some
common dominating measure &. The parameter $ belongs to a subset ! of Rd , and the set H is
finite dimensional. In contrast with [13] we do not assume that the parameter $ of the distribution
of the “true data” is known; further the kind of alternative which we consider seems somehow
more natural, since it writes simply # (= 0. The above model is clearly nonidentifiable when # = 0
since any value of % characterizes the same distribution. The identifiability condition which is
assumed here is

f'

(1 − #)f$ + #r%
= 1 iff # = 0 and ' = $. (29)

Lack of identifiability may lead to difficulties in estimation and in test, typically for mixture
models. Contamination does not enter in this class of problems, since the two components belong
to quite different families of distributions. The density r% models outliers. We assume that

sup
%∈H

∫
f$f$′

r%
d& is finite for all $ and $′ in ! (30)

which amounts to say that r% is heavy-tailed with respect to f$ for all % and $. Also usual inte-
grability conditions allowing the change of order of differentiation with respect to the parameters
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up to the third order and integration will be assumed. For a real values function g let mg,!(x) :=∫
gf! d" −

(
g(x) + 1

4g2(x)
)

whenever defined.
The hypotheses to be tested are H0: # = 0 vs. H1: # "= 0. Let

! := {f!, ! ∈ "} ,

so that H0 holds iff p belongs to !.
The test statistic is an estimate of the $2 distance from p to !. Likelihood ratio methods are not

valid in this case due to failure of the standard regularity conditions under which the asymptotic
theory is based; see [23], Section 5.4. We also advocate in favor of the $2 since it is robust against
outliers. Indeed, the choice of the class r% to model the “heavy tail” behavior of the data is usually
problematic and we cannot accept a test procedure which would be too sensitive with respect to
this choice.

Following our definition of the $2 divergence we extend the model (28) defining

C :=
{
p(x) = (1 − #)f&(x) + #r%(x), # ∈ #, & ∈ ", % ∈ H

}
,

where # = [a, 1] and a is a negative number. This makes C a subset of M and # = 0 is an interior
point in #.

Let

F! :=
{
g = 2

(
f!

(1 − #)f& + #rh
− 1

)
, & ∈ ", # ∈ #, h ∈ H

}
. (31)

By (30)
∫ |g| f! d" is finite for all g in F!. Following (4) the divergence $2(!, p) writes

$2(!, p) = inf
!∈"

$2
n(f!, p) = inf

!∈"
sup
g∈F!

∫
mg,!(x) dP (x). (32)

The estimate is defined analogously through

$2
n(!, p) = inf

!∈"
sup
g∈F!

∫
mg,!(x) dPn(x).

We consider now the asymptotic distribution of $2
n(!, p) under H0.

When p = f&0 belongs to ! then

$2(!, p) = $2(f&0 , f&0) = 0,

is estimated by

$2
n(!, f&0) = inf

!
sup
g∈F!

∫
mg,! dPn =: inf

!
sup

t

∫
m(t, !) dPn,

where ! = (!, 0, %)with ! in " and % runs in H; t := (&, #, h) defines a function g in F!;
see (31). Obviously, all possible values of % define the same function m(t, !). Define tn(!) :=
arg supt

∫
m(t, !) dPn so that $2

n(!, f&0) = inf!
∫

m(tn(!), !) dPn. Denote !n the optimizer of
this expression so that

$2
n(!, f&0) =

∫
m(tn(!n), !n) dPn.
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Accordingly, t(!) and ! are defined as above with P (with density f!0 ) substituting Pn. The vectors
of parameters tn(!n) and !n satisfy the set of equations

!
!t

∫
m(t, !)tn(!n),!n dPn = 0,

!
!!

∫
m(t(!), !)!n,!n dPn = 0, (33)

where the derivatives are considered with respect to " in the second line and with respect to !, # and
h in the first. The second line in (33) writes !

!!

∫
m(t, !)!n,!n dPn + !

!!
t(!)!n

!
!t

∫
m(t, !)tn(!n),!n

dPn = 0, which, together with the first line in (33) yields the somewhat simpler system of
equations

!
!!

∫
m(t, !)tn(!n),!n dPn = 0,

!
!t

∫
m(t, !)tn(!n),!n dPn = 0.

We now state the asymptotic distribution of the test statistics under H0. The following classical
hypotheses are needed for usual derivation under the integral sign. The proof of the theorem in
the spirit of Wilk’s Theorem. Denote (H) the set of hypotheses

(1) The supports of f! and r$ do not depend on the parameters.
(2) The sets ! and H are compact.
(3) The function m(t, !) is derivable at order 3.
(4) There exists a neighborhood of (t0, !0) := ((!0, 0, h) , (!0, 0, $)) such that all these deriva-

tives are bounded by f!0 d%-integrable functions uniformly upon h.

Note that $ plays no role in the above assumption (4).

Theorem 8. Under the above notation and assumption (H), under H0, the asymptotic distribution
of 2n&2

n is Chi(1), a chi-square distribution with 1 degree of freedom.

We now deduce the limit distribution of the test statistic under H1.
It can be obtained under two different sets of hypotheses pertaining to the class of functions

mg,". Assume (D)

p has a unique projection f"∗ on "
(33) has a solution for each large n.

Denote g∗ := 2
(

f"∗
p − 1

)
, where "∗ := arg min" supg∈F"

∫
mg,"p d%. The classical ap-

proach, using Taylor expansions and classical CLT in the same vein as in the proof of Theorem
8, yields

Theorem 9. When (H) and (D) hold then under (H1) the limit distribution of
√

n
(
&2
n(", p)−

&2(", p)
)

is normal with zero mean and variance
∫ (

g∗ + 1
4g∗2)2

p d%−
(∫ (

g∗ + 1
4g∗2) p d%

)2
.

The second approach uses the minimax property (9). First observe that, introducing F :=⋃
"∈! F", supg∈F"

∫
mg,"(x) dP (x) = supg∈F

∫
mg,"(x) dP (x) since the sup is indeed reached
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on F!. This allows to commute the sup and inf operations in (32), replacing F! by F , in accordance
with our claim in Section 1, (9).

Proposition 5. Assume that both ! and H are compact. Then

"2(", p) = inf
!∈!

sup
g∈F

∫
mg,!(x) dP (x) = sup

g∈F
inf
!∈!

∫
mg,!(x) dP (x). (34)

Proof. A generic function g in F writes g = 2
(

f#2
(1−$)f#1+$rh

− 1
)

for some #1, #2 in !, % in H

and $ in #.
On one hand it holds inf!∈! supg∈F

∫
mg,!(x) dP (x)! supg∈F inf!∈!

∫
mg,!(x) dP (x).

For the reverse inequality, it holds, for all ! in !,
∫

mg,!p d& =
{∫

2
f#2

(1 − $)f#1 + $r%

f!

p
p d&

−
∫ (

f#2

(1 − $)f#1 + $r%

)2

p d& + 1

}

= −
∫ (

f#2

(1 − $)f#1 + $r%
− f!

p

)2

p d& +
∫ (

f!

p
− 1

)2

p d&

"
∫ (

f!

p
− 1

)2

p d& = "2(f!, p)

and supg

∫
mg,!p d& = "2(f!, p), and g∗ := arg supg

∫
mg,!p d& is defined through g∗ :=

2
(

f!
p − 1

)
. Therefore inf! supg

∫
mg,!p d& = inf! "2(f!, p) = "2(", p). Furthermore by con-

tinuity and compactness arguments, there exists !+ such that supg inf!
∫

mg,!p d& = "2(f!+ , p).
Hence "2(f!+ , p) = supg inf!

∫
mg,!p d&! inf! supg

∫
mg,!p d& = "2(", p), which con-

cludes the proof. Furthermore !+ = !∗ by identifiability. #

Following (11) introduce an auxiliary estimate

"2
n(", p) := sup

g∈F
inf
!∈!

∫
mg,!(x) dPn(x).

Both statistics "2
n(", p) and "2

n(", p) are close to each other; indeed it holds.

Lemma 4. Assume that H :=
{(

g + 1
4g2) , g ∈ F

}
is a Glivenko–Cantelli class of functions.

Then both "2
n(", p) and "2

n(", p) converge to "2(", p).

The asymptotic distribution of
√

n
(
"2
n(", p) − "2(", p)

)
follows from Theorem 2. This allows

to state the limit distribution of "2
n(", p).

Theorem 10. Assume (D).Assume further that both!and H are compact andH :=
{(

g+ 1
4g2),

g ∈ F} is a Donsker class of functions. Then
√

n
(
"2
n(", p) − "2(", p)

)
converges to a centered

normal distribution with variance
∫ (

g∗ + 1
4g∗2)2

p d& −
(∫ (

g∗ + 1
4g∗2) p d&

)2
.
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6. Proofs

6.1. Proof of Proposition 3

(i) Differentiating the function in (14) with respect to as , s = 0, 1, . . . , k yields

a0 = −
k∑

i=1

aiPngi (35)

for s = 0, while for s > 0

(Q0 − Pn) gs = 1
2

(

a0Pngs +
k∑

i=1

aiPngigs

)

. (36)

Substituting (35) in the last display, and setting a′ = {a1, a2, . . . , ak}, we get

(Q0 − Pn) gs = 1
2

k∑

i=1

ai (Pngigs − PngsPngi) ,

i.e.

2!n = Sna (37)

Set f ∗
n = arg maxF (Q0 − Pn)f − 1

4Pnf
2. For every h in 〈G〉, (Q0 − Pn) h − 1

2Pnhf
∗
n = 0.

Set h := f ∗
n to obtain (Q0 − Pn) f ∗

n = 1
2Pn(f

∗
n )2.

It then follows, using (35) and (37),

"2
n =

[
(Q0 − Pn) f ∗

n − 1
4
Pn(f

∗
n )2

]
= 1

4
Pn(f

∗
n )2

= 1
4
Pn

(
k∑

i=1

aigi −
k∑

i=1

aiPngi

)2

= 1
4
a′Sna = !′

nS
−1
n !n.

(ii) The proof is similar to the above one

6.2. Proof of Proposition 4

From Proposition 3,∣∣∣"2
n − "2 (!, P )

∣∣∣ =
∣∣∣!′

nS
−1
n !n − !S−1!

∣∣∣

=
∣∣∣!′

n

(
S−1

n − S−1
)

!n

∣∣∣ +
∣∣∣!′

nS
−1!n − !′S−1!

∣∣∣ .

For x in Rk denote
∥∥x

∥∥ the euclidean norm. Over the space of matrices k×k introduce the algebraic

norm |||A||| = sup‖x‖!1
‖Ax‖
‖x‖ = sup‖x‖=1

∥∥Ax
∥∥. All entries of A satisfy |a (i, j)| ! |||A|||. More-

over, if |#1| ! |#2| ! · · · ! |#k| are the eigenvalues of A, |||A||| = |#k|. Observe further that, if for

all (i, j), |a (i, j)| !$, then, for anyx ∈ Rk , such that
∥∥x

∥∥ = 1,
∥∥Ax

∥∥2 = ∑k
i=1

(∑
j a (i, j) xj

)2

! ∑
i

∑
j a (i, j)2

∥∥x
∥∥2 !k2$2, i.e. |||A||| !k$.
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For the first term in the RHS of the above display

A := !n
′
(
S−1

n − S−1
)

!n = !n
′S−1/2

(
S1/2S−1

n S1/2 − I
)

S−1/2!n

!
∥∥∥!n

′S−1/2
∥∥∥

∣∣∣
∣∣∣
∣∣∣S1/2S−1

n S1/2 − I
∣∣∣
∣∣∣
∣∣∣ !const.k

∣∣∣
∣∣∣
∣∣∣S1/2S−1

n S1/2 − I
∣∣∣
∣∣∣
∣∣∣ .

Hence, if B :=
∣∣∣∣∣∣S1/2S−1

n S1/2 − I
∣∣∣∣∣∣ tends to 0 a.s., so does A.

First note that

S−1
n = (S + Sn − S)−1 = S−1/2

(
I + S−1/2 (Sn − S) S−1/2

)−1
S−1/2

= S−1/2

[

I +
∞∑

h=1

(
S−1/2 (S − Sn) S−1/2

)h
]

S−1/2.

Hence

S1/2S−1
n S1/2 − I =

∞∑

h=1

(
S−1/2 (S − Sn) S−1/2

)h
,

which entails
∣∣∣
∣∣∣
∣∣∣S1/2S−1

n S1/2 − I
∣∣∣
∣∣∣
∣∣∣ =

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

∞∑

h=1

(
S−1/2 (S − Sn) S−1/2

)h
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣ !
∞∑

h=1

|||S − Sn|||h
∣∣∣
∣∣∣
∣∣∣S−1/2

∣∣∣
∣∣∣
∣∣∣
2h

= OP

(

"−1
1 k sup

i,j

|sn (i, j) − s (i, j)|
)

,

where "1 is the smallest eigenvalue of S.
Since

C:= sup
i,j

|sn (i, j) −s (i, j)| ! sup
i,j

∣∣(Pn−P) gigj

∣∣ + sup
i

|(Pn−P) gi | (Pn+P) max
g∈G

|g|

(38)

the LLN implies that C tends to 0 a.s. which in turn implies that B tends to 0.
For the second term,

∣∣!n
′S−1!n − !′S−1!

∣∣ =
∣∣∣
(
!n + !

)′
S−1

(
n−1/2#

n

)∣∣∣ tends to 0 by LLN.

6.3. Proof of Theorem 5

By Proposition 3

n$2
n,k − k
√

2k
=

(
B0

n,k

)′
S−1

k B0
n,k − k

√
2k

+ 2 (2k)−1/2
(
B0

n,k

)′
S−1

k

(
#
n,k

− B0
n,k

)

+ (2k)−1/2
(
#
n,k

− B0
n,k

)′
S−1

k

(
#
n,k

− B0
n,k

)

+ (2k)−1/2 #′
n,k

(
S−1

n,k − S−1
k

)
#
n,k

= A + B + C + D.
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The first term above can be written as

A =

(
B0

n,k

)′
S−1

k B0
n,k − k

√
2k

=
∑k

i=1
(
Z2

i − EZ2
i

)
√

kVarZ2
i

which converges to the standard normal distribution by the CLT applied to the i.i.d. standard
normal r.v’s Zi .

As to the term C it is straightforward that C = o(B). From the proof of Theorem 3, D goes to

zero if !−1
1,kk

1/2 (
supi,j

∣∣sn,k (i, j) − sk (i, j)
∣∣)

∥∥∥"′
n,k

S
−1/2
k

∥∥∥
2

= oP (1). Since, using (38) and (17),

supi,j

∣∣sn,k (i, j) − sk (i, j)
∣∣ ! supf,g∈F |(Pn − P) fg| + supf ∈F |(Pn − P) f | |(Pn + P) F | =

OP

(
n−1/2), and considering that

∥∥∥"′
n,k

S
−1/2
k

∥∥∥
2

= OP (k), (24) yields D = o(1).

For B,
∣∣∣∣
(
B0

n,k

)′
S−1

k

(
"
n,k

− B0
n,k

)∣∣∣∣ !
∥∥∥∥
(
B0

n,k

)′
S

−1/2
k

∥∥∥∥
∥∥∥S

−1/2
k

(
"
n,k

− B0
n,k

)∥∥∥ =
√∑k

i=1 Z2
i

∥∥∥S
−1/2
k

(
"
n,k

− B0
n,k

)∥∥∥ where, as used in A, Z2
i are i.i.d. with a chi-square distribution with 1

degree of freedom. Hence
√∑k

i=1 Z2
i = OP

(
k1/2). Further

∥∥∥S
−1/2
k

(
"
n,k

− B0
n,k

)∥∥∥ !
∣∣∣
∣∣∣
∣∣∣S−1/2

k

∣∣∣
∣∣∣
∣∣∣ ·

∥∥∥"
n,k

− B0
n,k

∥∥∥

! !−1/2
1,k k1/2

√√√√1
k

k∑

i=1

(
"
n,k

(fi) − B0
n,k(fi)

)2

! !−1/2
1,k k1/2 sup

f ∈F

∣∣∣"n(f ) − B0
n(f )

∣∣∣

from which B = OP

(
!−1/2

1,k k1/2#n log n
)

= oP (1) if (23) holds. We have used the fact that P
belongs to ! in the last evaluation of B.

Remark 4. Under H1, using the relation $n = $ − n−1/2"
n,k

, we can write

n%2
n,k − k
√

2k
= (2k)−1/2

(
"′
n,k

S−1
n,k"n,k

− k
)

+ (2k)−1/2
(
n$′S−1

n,k$ − 2
√

n"′
n,k

S−1
n,k$

)

= (2k)−1/2
(
n$′S−1

n,k$ − 2
√

n"′
n,k

S−1
n,k$

)
+ OP (1),

where the OP (1) term captures (2k)−1/2
(
"′
n,k

S−1
n,k"n,k

− k
)

that coincides with the test statistic
n%2

n,k−k√
2k

under H0. We can bound the first term from below by

(2k)−1/2n$′S−1
k $

(
1 − OP

(∣∣∣
∣∣∣
∣∣∣S1/2

k S−1
n,kS

1/2
k − I

∣∣∣
∣∣∣
∣∣∣
))

−(2n/k)1/2
∥∥∥"′

n,k
S

−1/2
k

∥∥∥
∥∥∥$′S−1/2

k

∥∥∥
(

1 + OP

(∣∣∣
∣∣∣
∣∣∣S1/2

k S−1
n,kS

1/2
k − I

∣∣∣
∣∣∣
∣∣∣
))

= OP

(
nk−1/2

)
− OP (n1/2).

Hence, if (23) and (24) are satisfied then the test statistic is asymptotically consistent also for the
case of an infinite number of linear constraints.
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6.4. Proof of Lemma 2

Write s!
k (u, v) for the (u, v)th element of S!

k . We have, for P ∈ !, i.e. if Pg = Qd
0f , for every

g in G!
n

s!
k ((j − 1)m + i, (h − 1)m + l) = s!

k (u, v) = Pgugv − PguPgv

= P
(
gu − Qd

0gu

) (
gv − Qd

0gv

)
= P (gugv) ,

where gu = gu − Qd
0gu. For each vector a ∈ Rd·m it then holds

a′S!
k a =

dm∑

u=1

dm∑

v=1

auavP (gugv) = P

(
dm∑

u=1

augu

)2

=
∫

[0,1]d

(
dm∑

u=1

augu

)2

dP !"
∫

[0,1]d

(
dm∑

u=1

augu

)2

dQd
0

= " a′
{
Qd

0

(
gu − Qd

0gu

) (
gv − Qd

0gv

)}

u,v
a = " a′S0

k a.

On the other hand, the preceding inequality implies

#1,k = inf
a

a′S!
k a

∥∥a
∥∥2 !" inf

a

a′S0
k a

∥∥a
∥∥2 = " min

1" i "m
pi. (39)

6.5. Proof of Lemma 3

(i) This can be checked easily through some calculation.
(ii) First, notice that

U2 = (1 − pm+1)U. (40)

Formula (40) implies that at least one eigenvalue equals (1−pm+1). On the other hand, summing
up all diagonal entries in U we get trace(U) = ∑m

i=1 pi = 1 − pm+1. This allows to conclude
that there can be only one eigenvalue equal to 1 − pm+1 while the others must be zero.

For the second statement, use (I − U)−1 = I + ∑∞
h=1 Uh together with (40) to obtain

(I − U)−1 = I + U
∑∞

h=1 (1 − pm+1)
h = U + 1

pm+1
U .

(iii) For any eigenvalue # of S0
k we have

#"#k,k =
∣∣∣
∣∣∣
∣∣∣S0

k

∣∣∣
∣∣∣
∣∣∣ "

∣∣∣
∣∣∣
∣∣∣D1/2

∣∣∣
∣∣∣
∣∣∣
2
|||(I − V )||| = max

1" i "m
pi

(
1 − inf

‖x‖=1
x′V x

)
= max

1" i "m
pi

since the eigenvalues of V coincide with the eigenvalues of U with order multiplied by d.
For the opposite inequality consider

#−1 " #−1
1,k =

∣∣∣
∣∣∣
∣∣∣S0

k
−1

∣∣∣
∣∣∣
∣∣∣ "

∣∣∣
∣∣∣
∣∣∣D−1

∣∣∣
∣∣∣
∣∣∣
∣∣∣∣

∣∣∣∣

∣∣∣∣

(
I + 1

pm+1
V

)∣∣∣∣

∣∣∣∣

∣∣∣∣

=
(

max
1" i "m

p−1
i

) (
1 + 1

pm+1
(1 − pm+1)

)
=

(
min

1" i "m
pi

)−1

p−1
m+1.
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6.6. Proof of Theorem 7

Let

Q =
{

Q ∈ M1([0, 1]2) :
m+1∑

i=1

qi,j = p·,j = uj+1 − uj , : j = 1, . . . , m + 1;

m+1∑

j=1

qi,j = pi,· = ui+1 − ui, : i = 1, . . . , m + 1

}

.

Lemma 5. Under H0 it holds

n!2
n,k = min

Q∈Q

m+1∑

i=1

m+1∑

j=1

(nqi,j − Ni,j )
2

Ni,j
INi,j >0, (41)

"′
n,k

S−1
k "

n,k
= min

Q∈Q

m+1∑

i=1

m+1∑

j=1

(nqi,j − Ni,j )
2

npi,j
. (42)

Proof. We prove (41), since the proof of (42) is similar. Following [3] the RHS in (41) is

m+1∑

i=1

m+1∑

j=1

Ni,j (ai + bj )
2,

where the vectors a and b ∈ Rm+1 are solutions of the equations

ai
Ni,·
n

= pi − Ni,·
n

−
m+1∑

j=1

bj
Ni,j

n
, i = 1, . . . , m + 1,

bj
N·,j
n

= pj − N·,j
n

−
m+1∑

i=1

ai
Ni,j

n
, j = 1, . . . , m + 1.

Let a = (̃a1, . . . , ãm, b̃1, . . . , b̃m) be the coefficients in Eq. (37). Making use of Eqs. (35) and
(36) we obtain, using the class G in place of Gn in the definition of !2

n,k ,

ãi = 2 (ai − am+1) , i = 1, . . . , m,

b̃j = 2
(
bj − bm+1

)
, j = 1, . . . , m,

ã0 = 2 (am+1 + bm+1) .

From the proof of Proposition 3 we get, setting #i,j = 1 for i = j and 0 otherwise,

!2
n,k = 1

4
a′Sn,ka

= 1
4n

m∑

i=1

m∑

j=1

[
ãi ãj

(
Ni,·#i,j − Ni,·Nj,·/n

)
+ b̃i b̃j

(
N·,i#i,j − N·,iN·,j /n

)

+ 2ãi b̃j

(
Ni,j − Ni·N·,j /n

)]
,
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which, after some algebra yields

n!2
n,k =

m+1∑

i=1

m+1∑

j=1

Ni,j (ai + bj )
2. !

Let us turn to the proof of Theorem 7. Set k := 2m. It is enough to prove
n!2

n,k−"′
n,k

S−1
k "

n,k√
4m

=
oP (1).

Denote P̂ and P the minimizers of (41) and (42) in Q. Let p̂i,j and pi,j denote the respective
probabilities of cells.

We write

n!2
n,k − "′

n,k
S−1

k "
n,k

"
m+1∑

i=1

m+1∑

j=1

(
Ni,j − npi,j

)2
(

1
Ni,j

− 1
npi,j

)

" max
i,j

(
npi,j

Ni,j
− 1

)
"′
n,k

S−1
k "

n,k

and

n!2
n,k − "′

n,k
S−1

k "
n,k

# min
Q∈Q

m+1∑

i=1

m+1∑

j=1

(
Ni,j − nqi,j

)2

npi,j

(
npi,j

Ni,j
− 1

)

# − max
i,j

∣∣∣∣
npi,j

Ni,j
− 1

∣∣∣∣ "
′
n,k

S−1
k "

n,k
.

Whenever
√

m max
i,j

∣∣∣∣
npi,j

Ni,j
− 1

∣∣∣∣
P→ 0 (43)

holds, then the above inequalities yield
n!2

n,k−"′
n,k

S−1
k "

n,k√
4m

= oP

(
"′
n,k

S−1
k "

n,k

m

)
=

oP

(
"′
n,k

S−1
k "

n,k
−2m

√
4m

2√
m

+ 1
)

= oP (1), which proves the claim.

We now prove (43). We proceed as in Lemma 2 in [3], using inequalities (10.3.2) in [21]. Let
Bn ∼ Bin(n, p). Then, for t > 1,

Pr
(

np

Bn
# t

)
" exp {−np h (1/t)} and Pr

(
Bn

np
# t

)
" exp {−np h (t)} , (44)

where h (t) = t log t − t + 1 is a positive function.
Since Ni,j ∼ Bin(n, pi,j ),

Pr
{

max
i,j

(
npi,j

Ni,j
− 1

)
# t√

m

}
"

m+1∑

i=1

m+1∑

j=1

Pr
{

npi,j

Ni,j
# t√

m
+ 1

}

"
m+1∑

i=1

m+1∑

j=1

exp
{
−npi,j h

(
1/

(
1 + t/

√
m

))}

(by (27) and by pi,j > #pi,·p·,j )"(m + 1)2 exp

{

− c#n

log n
(log n)

h
(
1/(1 + t/

√
m)

)

m2

}

.
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For x = 1+ !, h(x) = O(!2). Therefore, using (23) with k = 2m, for every M > 0 there exists
n large enough that

"c
n

log n
m−2 h

(
1 + −t/

√
m

1 + t/
√

m

)
!M

and consequently Pr
{

maxi,j

(
npi,j

Ni,j
− 1

)
! t√

m

}
goes to 0.

To get convergence to zero of Pr
{

maxi,j

(
1 − npi,j

Ni,j

)
! t√

m

}
= Pr

{
maxi,j

Ni,j

npi,j
! 1

1−t/
√

m

}
,

the second inequality in (44) is used in a similar way.

6.7. Proof of Lemma 4

It holds
∣∣∣#2

n(!, p) − #2(!, p)
∣∣∣ " supg | inf"

∫
mg,"(x) dPn(x) − inf"

∫
mg,"(x) dP (x) | =

supg

∣∣∫ (
g + 1

4g2) d(Pn − P)
∣∣ which converges to 0 under the condition of the lemma.

By the GC property, inf" supg∈F"

∫
mg,"(x) dPn(x)" supg∈F"

∫
mg,"(x) dPn(x) = supg∈F"∫

mg,"(x) dP (x)+Rn(") with limn→∞ Rn(") = 0, implying lim supn→∞ #2
n(!, p)"#2(!, p).

Further supg∈F"

∫
mg,"(x) dPn(x)!

∫
mg,"(x) dPn(x) + Rn(", g) for all " and g in F", and

limn→∞ supg∈F"
Rn(", g) = 0. Hence lim infn→∞ #2

n(!, p)!#2(!, p) + lim infn→∞ inf"

supg∈F"
Rn(", g). Since Rn(", g) =

∫
mg,"(x)d (Pn − P) = −

∫ (
g + 1

4g2) d (Pn − P) and{
g + 1

4g2, g ∈ F
}

is GC, lim infn→∞ #2
n(!, p)!#2(!, p), which concludes the proof.

6.8. Proof of Theorem 8

First note that the two first components of t($0) are $0 and 0, and its third component is arbitrary
in H (since

∫
m(t($0), $0)f$0 d% = 0 implies

∫
g2f$0 d% = 0, implying the claim).

Also for all & in H , the gradient vector
(

!
!t

m(t, "), !
!"

m(t, ")
)

at (t($0), $0) writes
(

!
!$

m(t($0), $0),
!
!'

m(t($0), $0), 0, !
!"

m(t($0), $0)
)

, which we write as a 2d + 1 nonnull en-
tries vector. Also, the hessian matrix of m(t, ") at (t($0), $0) has all entries in the row and column
& equal to 0. We consider it a 2d + 1 lines and 2d + 1 columns matrix H with nonnull entries.
Denote C :=

∫
Hf$0 d% and Cn the matrix

∫
H dPn. We need now to prove that the d + 1 first

entries of tn(!n) tend to ($0, 0) as n increases. This result together with compactness of the set H
and hypotheses (H) will entail that all remainder terms in the subsequent Taylor expansions go to
0. Let tn(!n) := ($n, 'n, hn).

Lemma 6. Under H0, limn→∞ 'n = 0 and limn→∞ $n = $0 a.s.

Proof. Denote p by f$0 . First note that for any ! there exists a unique tn(!) := arg supt
∫

m(t, !)

dPn. Indeed g → mg," :=
∫

gf" d% −
(
g − 1

4g2) is a strictly concave mapping and so is g →∫
mg," dPn. Hence there exists a (possibly nonunique) optimizer of

∫
mg," dPn on F", say g+.

Identifiability then implies existence of tn(!), the vector of parameters which defines g+. By
Lemma 4, #2

n(f$0 , f$0) → 0 a.s. Since " and H are compact sets there exists {nk} ⊂ {n} and t :=
($, ', h) such that limk→∞ tnk (!nk ) = t. Since supt

∣∣∫ m(t, !) dPn −
∫

m(t, !)f$0 d%
∣∣ → 0 and



1434 M. Broniatowski, S. Leorato / Journal of Multivariate Analysis 97 (2006) 1409–1436

since
∫

m(t, !)f!0 d" has a unique maximizer t(!) it follows that the first two components of t
and t(!) coincide. It therefore follows that

#2
nk

=
∫

m(tnk (!nk ), !nk ) dPnk

→
∫

m(t, !)f!0 d" = #2(f$, f!0) = 0 = #2(f!0 , f!0),

which implies $ = !0. Therefore
∫

m(t, f!0)f!0 d" = 0, implying g = 0, which in turn (due to
(29)) entails % = 0. Therefore, all limiting points of the sequence %n equal 0, which amounts to
say that %n tends to 0. Furthermore, the first component of t(!) equals $ = !0. !

As a first consequence of the above lemma and (H), Cn = C + op(1). By a Taylor expansion
we get

−
∫ (

!
!t

m(t, $),
!
!$

m(t, $)

)

(t(!0),!0)
dPn = Can + op(1), (45)

where an := (!n − !0, %n, $n − !0)
′. By the above display and the multidimensional CLT,

√
n

an = Op (1). We develop a simple expression for #2
n(!, f!0), through usual second-order Taylor

expansion, in the form

#2
n(!, f!0) =

∫
m(t("0), "0) dPn +

∫ ((
!
!t

m(t, $),
!
!$

m(t, $)

)

(t(!0),!0)

)′
an

+ 1
2
a′
nCan + op(1/n) = −1

2
(an)

′ C (an) + op(1/n)

from which 2n#2
n(!, f!0) = − 1

2

(√
nan

)′
C

(√
nan

)
+ op(1). The matrix C is block-diagonal,

since it can easily be seen that
∫ !2

!t!!
m(t, $)(t(!0),!0)f!0 d" = 0.Also

∫ !2

!!2 m(t, $)(t(!0),!0)f!0 d"

= −2E

[(
!
!$

log f$

)′

(t(!0),!0)

(
!
!$

log f$

)

(t(!0),!0)

]
and

∫ !2

!t2 m(t, $)(t(!0),!0)f!0 d" =

−2E

[(
!
!t

log gt

)′

(t(!0),!0)

(
!
!t

log gt

)

(t(!0),!0)

]
, with gt := (1 − %)f! + %r&. Let Un :=

√
n

∫ !
!$

m(t, $)(t(!0),!0) dPn, Vn := √
n

∫ !
!t

m(t, $)(t(!0),!0) dPn, A :=
∫ !2

!$2 m(t, $)(t(!0),!0)f!0 d" and

B :=
∫ !2

!t2 m(t, $)(t(!0),!0)f!0 d" where the entries pertaining to the derivatives with respect to &
have been canceled. It then holds, using (45)

2n#2
n(!, f!0) = −U ′

nAUn + V ′
nBVn + op(1).

Also, A is minus twice the Fisher information I!0 pertaining to $ in the uncontaminated model
at point !0, and B is minus twice the Fisher information matrix pertaining to t in the contami-
nated model at point t(!0) (irrelevantly upon &). Some classical evaluation will now provide the
asymptotic distribution of 2n#2

n(!, f!0), in the spirit of the proof of Wilk’s Theorem.
We express Vn in terms of Un as follows. For any ! it holds

!
!!

m(t(!), !) =: G(t(!))′
!
!t

m(t, !)t(!),! + !
!!

m(t, !)t(!),! = 0, (46)
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which yields Un = −G(!0)
′Vn. The multivariate CLT and Slutsky’s theorem yield A−1 =

G(!0)B
−1G(!0)

′. Hence

2n"2
n(!, f!0) = V ′

n

[
B − G(!0)

′AG(!0)
]
Vn + op(1).

LetS :=
[
B − G(!0)

′AG(!0)
]

andV := V ar Vn = −2B−1.ThenSV G(!0)
′ = −2

[
B − G(!0)

′

AG(!0)
]
B−1G(!0)

′ = 0.

Hence (SV ) (SV ) = SV
(
−2

[
B − G(!0)

′AG(!0)
]
B−1) = SV

[
Id+1 − G(!0)

′AG(!0)B
−1]

= SV , showing that SV is idempotent. Therefore, the asymptotic distribution of 2n"2
n(!, f!0) is "2

whose d.f. equals rank SV (see e.g. [20, Corollary 2.2, p. 58]). SetH :=
(
B−1G(!0)

′) (AG(!0)) =:
LM . Then MLM = L, which is to say that L is a pseudo-inverse of M . By Lemma 1, p. 12 in
[20], rank SV = rank (Id+1 − H) = q − r , where q is the number of columns of L and r its rank.
Hence q = d, and rank L = rank G(!0)

′ = d − 1, where the restriction on the rank stems from
(46). This concludes the proof.
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