
Digital Object Identifier (DOI) 10.1007/s00220-004-1255-8
Commun. Math. Phys. 256, 437–490 (2005) Communications in

Mathematical
Physics

Periodic Solutions for Completely Resonant Nonlinear
Wave Equations with Dirichlet Boundary Conditions

Guido Gentile1, Vieri Mastropietro2, Michela Procesi3

1 Dipartimento di Matematica, Università di Roma Tre, 00146 Roma, Italy
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Abstract: We consider the nonlinear string equation with Dirichlet boundary conditions
utt −uxx = ϕ(u), with ϕ(u) = �u3 +O(u5) odd and analytic, � �= 0, and we construct
small amplitude periodic solutions with frequency ω for a large Lebesgue measure set of
ω close to 1. This extends previous results where only a zero-measure set of frequencies
could be treated (the ones for which no small divisors appear). The proof is based on
combining the Lyapunov-Schmidt decomposition, which leads to two separate sets of
equations dealing with the resonant and non-resonant Fourier components, respectively
the Q and the P equations, with resummation techniques of divergent powers series,
allowing us to control the small divisors problem. The main difficulty with respect to
the nonlinear wave equations utt − uxx + Mu = ϕ(u), M �= 0, is that not only the P
equation but also the Q equation is infinite-dimensional.

1. Introduction

We consider the nonlinear wave equation in d = 1 given by
{

utt − uxx = ϕ(u),

u(0, t) = u(π, t) = 0,
(1.1)

where Dirichlet boundary conditions allow us to use as a basis in L2([0, π ]) the set of
functions {sin mx, m ∈ N}, and ϕ(u) is any odd analytic function ϕ(u) = �u3 +O(u5)

with � �= 0. We shall consider the problem of existence of periodic solutions for (1.1),
which represents a completely resonant case for the nonlinear wave equation as in the
absence of nonlinearities all the frequencies are resonant.

In the finite dimensional case the problem has its analogue in the study of periodic
orbits close to elliptic equilibrium points: results of existence have been obtained in such
a case by Lyapunov [31] in the non-resonant case, by Birkhoff and Lewis [6] in the case
of resonances of order greater than four, and by Weinstein [37] in the case of any kind
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of resonances. Systems with infinitely many degrees of freedom (as the nonlinear wave
equation, the nonlinear Schrödinger equation and other PDE systems) have been studied
much more recently; the problem is much more difficult because of the presence of a
small divisors problem, which is absent in the finite dimensional case. For the nonlinear
wave equations utt −uxx +Mu = ϕ(u), with mass M strictly positive, existence of peri-
odic solutions has been proved by Craig and Wayne [14], by Pöschel [33] (by adapting
the analogous result found by Kuksin and Pöschel [29] for the nonlinear Schrödinger
equation) and by Bourgain [8] (see also the review [13]). In order to solve the small divi-
sors problem one has to require that the amplitude and frequency of the solution must
belong to a Cantor set, and the main difficulty is to prove that such a set can be chosen
with non-zero Lebesgue measure. We recall that for such systems also quasi-periodic
solutions have been proved to exist in [29, 33, 9] (in many other papers the case in which
the coefficient M of the linear term is replaced by a function depending on parameters
is considered; see for instance [36, 7] and the reviews [27, 28]).

In all the quoted papers only non-resonant cases are considered. Some cases with
some low-order resonances between the frequencies have been studied by Craig and
Wayne [15]. The completely resonant case (1.1) has been originally studied with varia-
tional methods starting from Rabinowitz [34, 35, 12, 11, 17], where periodic solutions
with a period which is a rational multiple of π have been obtained; such solutions corre-
spond to a zero-measure set of values of the amplitudes. The case of irrational periods,
which in principle could provide a large measure of values, has been mostly studied only
under strong Diophantine conditions (as the ones introduced in [2]) which essentially
remove the small divisors problem, leaving in fact again a zero-measure set of values
[30, 3, 4]. It is however conjectured that also for M = 0 periodic solutions of (1.1)
should exist for a large measure set of values of the amplitudes, see for instance [28],
and indeed we prove in this paper that this is actually the case: the unperturbed periodic
solutions with periods Tj = 2π/j can be continued into periodic solutions with periods
Tε,j = 2π/j

√
1 − ε, where ε is a small parameter of the order of the squared amplitude

of the periodic solution.
In [10] existence of periodic solutions is proved for the equation utt − uxx = u3 +

F(x, u), with periodic boundary conditions, and with F(x, u) a polynomial in u with
coefficients which are trigonometric polynomials in x. Such a problem becomes triv-
ial when F does not depend explicitly on x (in [10] Wayne is credited with such an
observation), for instance if F(x, u) ≡ 0. On the other hand, when a function F(x, u)

depending on x is considered, the perturbation of the exactly solvable problem appears
to order higher than 1 (in ε), and this produces a small divisor problem which is solved
by imposing a Diophantine condition with an ε-dependent constant (see (5.35) in [10]).

On the contrary in the case of Dirichlet boundary conditions to find a periodic solu-
tion just for the cubic equation, utt − uxx = u3, is non-trivial, and, as will be apparent
later on, it is essentially the core of the problem. It already requires the solution of a
small divisor problem: one considers the term u3 as a perturbation and the problem is
complicated by the fact that utt − uxx can be of the same order of u3; in particular we
must impose a Diophantine condition with an ε-independent constant, and this requires
careful control of the small divisors.

Of course the techniques used in our and Bourgain’s papers are quite different. Bour-
gain uses the Craig-Wayne approach based on the method of Fröhlich and Spencer [18],
while we rely on the Renormalization Group approach proposed in [23], which consists
of a Lyapunov-Schmidt decomposition followed by a tree expansion of the solution (with
a graphic formalism originally introduced by Gallavotti [19], inspired by Eliasson’s work
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[16], for investigating the persistence of maximal KAM tori), which allows us to control
the small divisors problem. As in [3] and [5] we also consider the problem of finding
how many solutions can be obtained with a given period, and we study their minimal
period. As a further minor difference between the present paper and [10], we mention
that our solutions are analytic in space and time, while the ones found by Bourgain are
C∞.

If ϕ = 0 every real solution of (1.1) can be written as

u(x, t) =
∞∑

n=1

Un sin nx cos(ωnt + θn), (1.2)

where ωn = n and Un ∈ R for all n ∈ N.
For ε > 0 we set � = σF , with σ = sgn� and F > 0, and rescale u → √

ε/Fu in
(1.1), thus obtaining {

utt − uxx = σεu3 + O(ε2),

u(0, t) = u(π, t) = 0,
(1.3)

where O(ε2) denotes an analytic function of u and ε of order at least 2 in ε, and we
define ωε = √

1 − λε, with λ ∈ R, so that ωε = 1 for ε = 0.
As the nonlinearity ϕ is odd the solution of (1.3) can be extended in the x variable to

an odd 2π -periodic function (even in the variable t). We shall consider ε small and we
shall show that there exists a solution of (1.3), which is 2π/ωε-periodic in t and ε-close
to the function

u0(x, ωεt) = a0(ωεt + x) − a0(ωεt − x), (1.4)

provided that ε is in an appropriate Cantor set and a0(ξ) is the odd 2π -periodic solution
of the integro-differential equation

σλä0 = −3
〈
a2

0

〉
a0 − a3

0, (1.5)

where the dot denotes the derivative with respect to ξ , and, given any periodic function
F(ξ) with period T , we denote by

〈F 〉 = 1

T

∫ T

0
dξ F (ξ) (1.6)

its average. Then a 2π/ωε-periodic solution of (1.1) is simply obtained by scaling back
the solution of (1.3).

Equation (1.5) has odd 2π -periodic solutions, provided that one sets σλ > 0; we
shall choose σλ = 1 in the following. An explicit computation gives [3]

a0(ξ) = Vm sn(
mξ, m) (1.7)

for m a suitable negative constant (m ≈ −0.2554), with 
m = 2K(m)/π and Vm =√−2m
m, where sn(
mξ, m) is the sine-amplitude function and K(m) is the elliptic
integral of the first kind, with modulus

√
m [25]; see Appendix A1 for further details.

Call 2κ the width of the analyticity strip of the function a0(ξ) and α the maximum value
it can assume in such a strip; then one has∣∣a0,n

∣∣ ≤ αe−2k|n|. (1.8)
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Our result (including also the cases of frequencies which are multiples of ωε) can be
more precisely stated as follows.

Theorem. Consider Eq. (1.1), where ϕ(u) = �u3 + O(u5) is an odd analytic func-
tion, with F = |�| �= 0. Define u0(x, t) = a0(t + x) − a0(t − x), with a0(ξ) the odd
2π -periodic solution of (1.5). There is a positive constant ε0 and for all j ∈ N a set
Ej ∈ [0, ε0/j

2] satisfying

lim
ε→0

meas(Ej ∩ [0, ε])

ε
= 1, (1.9)

such that for all ε ∈ Ej , by setting ωε = √
1 − ε and

‖f (x, t)‖r =
∑

(n,m)∈Z
2

fn,mer(|n|+|m|), (1.10)

for analytic 2π -periodic functions, there exist 2π/jωε-periodic solutions uε,j (x, t) of
(1.1), analytic in (t, x), with∥∥∥uε,j (x, t) − j

√
ε/Fu0(jx, jωεt)

∥∥∥
κ ′ ≤ C j ε

√
ε, (1.11)

for some constants C > 0 and 0 < κ ′ < κ .

Note that such a result provides a solution of the open problem 7.4 in [28], as far as
periodic solutions are concerned.

As we shall see for ϕ(u) = Fu3 for all j ∈ N one can take the set E = [0, ε0],
independently of j , so that for fixed ε ∈ E no restriction on j has to be imposed.

We look for a solution of (1.3) of the form

u(x, t) =
∑

(n,m)∈Z
2

einjωt+ijmxun,m = v(x, t) + w(x, t),

v(x, t) = a(ξ) − a(ξ ′), ξ = ωt + x, ξ ′ = ωt − x,

a(ξ) =
∑
n∈Z

einξ an, (1.12)

w(x, t) =
∑

(n,m)∈Z
2

|n|�=|m|

einjωt+ijmxwn,m,

with ω = ωε, such that one has w(x, t) = 0 and a(ξ) = a0(ξ) for ε = 0. Of course by
the symmetry of (1.1), hence of (1.4), we can look for solutions (if any) which verify

un,m = −un,−m = u−n,m (1.13)

for all n, m ∈ Z.
Inserting (1.12) into (1.3) gives two sets of equations, called the Q and P equations

[14], which are given, respectively, by

Q

{
n2an = [ϕ(v + w)]n,n ,

−n2an = [ϕ(v + w)]n,−n ,
(1.14)

P
(
−ω2n2 + m2

)
wn,m = ε [ϕ(v + w)]n,m , |m| �= |n|,
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where we denote by [F ]n,m the Fourier component of the function F(x, t) with labels
(n, m), so that

F(x, t) =
∑

(n,m)∈Z
2

einωt+mx[F ]n,m. (1.15)

In the same way we shall call [F ]n the Fourier component of the function F(ξ) with
label n; in particular one has [F ]0 = 〈F 〉. Note also that the two equations Q are in
fact the same, by the symmetry property [ϕ(v + w)]n,m = − [ϕ(v + w)]n,−m, which
follows from (1.13).

We start by considering the case ϕ(u) = u3 and j = 1, for simplicity. We shall
discuss at the end how the other cases can be dealt with, see Sect. 8.

2. Lindstedt Series Expansion

One could try to write a power series expansion in ε for u(x, t), using (1.14) to get recur-
sive equations for the coefficients. However by proceeding in this way one finds that the
coefficient of order k is given by a sum of terms some of which are of order O(k!α),
for some constant α. This is the same phenomenon occurring in the Lindstedt series for
invariant KAM tori in the case of quasi-integrable Hamiltonian systems; in such a case
however one can show that there are cancellations between the terms contributing to the
coefficient of order k, which at the end admits a bound Ck , for a suitable constant C. On
the contrary such cancellations are absent in the present case and we have to proceed
in a different way, equivalent to a resummation (see [23] where such a procedure was
applied to the same nonlinear wave equation with a mass term, utt −uxx +Mu = ϕ(u)).

Definition 1. Given a sequence {νm(ε)}|m|≥1, such that νm = ν−m, we define the ren-
ormalized frequencies as

ω̃2
m ≡ ω2

m + νm, ωm = |m|, (2.1)

and the quantities νm will be called the counterterms.

By the above definition and the parity properties (1.13) the P equation in (1.14) can
be rewritten as

wn,m

(
−ω2n2 + ω̃2

m

)
= νmwn,m + ε[ϕ(v + w)]n,m

= ν(a)
m wn,m + ν(b)

m wn,−m + ε[ϕ(v + w)]n,m, (2.2)

where

ν(a)
m − ν(b)

m = νm. (2.3)

With the notations of (1.15), and recalling that we are considering ϕ(u) = u3, we
can write [

(v + w)3
]
n,n

= [v3]n,n + [w3]n,n + 3[v2w]n,n + 3[w2v]n,n

≡ [v3]n,n + [g(v, w)]n,n, (2.4)
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where, again by using the parity properties (1.13),

[v3]n,n = [a3]n + 3
〈
a2
〉
an. (2.5)

Then the first Q equation in (1.13) can be rewritten as

n2an = [a3]n + 3
〈
a2
〉
an + [g(v, w)]n,n , (2.6)

so that an is the Fourier coefficient of the 2π -periodic solution of the equation

ä = −
(
a3 + 3

〈
a2
〉
a + G(v, w)

)
, (2.7)

where we have introduced the function

G(v, w) =
∑
n∈Z

einξ [g(v, w)]n,n . (2.8)

To study Eqs. (2.2) and (2.6) we introduce an auxiliary parameter µ, which at the end
will be set equal to 1, by writing (2.2) as

wn,m

(
−ω2n2 + ω̃2

m

)
= µν(a)

m wn,m + µν(b)
m wn,−m + µε[ϕ(v + w)]n,m, (2.9)

and we shall look for un,m in the form of a power series expansion in µ,

un,m =
∞∑

k=0

µku(k)
n,m, (2.10)

with u
(k)
n,m depending on ε and on the parameters ν

(c)

m′ , with c = a, b and |m′| ≥ 1.

In (2.10) k = 0 requires u
(0)
n,±n = ±a0,n and u

(0)
n,m = 0 for |n| �= |m|, for k ≥ 1, as

we shall see later on, the dependence on the parameters ν
(c′)
m′ will be polynomial, of the

form

∞∏
m′=2

∏
c′=a,b

(
ν

(c′)
m′
)k

(c′)
m′

, (2.11)

with |k| = k
(a)
1 + k

(b)
1 + k

(a)
2 + k

(b)
2 +· · · ≤ k − 1. Of course we are using the symmetry

property to restrict the dependence only on the positive labels m′.
We derive recursive equations for the coefficients u

(k)
n,m of the expansion. We start

from the coefficients with |n| = |m|.
By (1.12) and (2.10) we can write

a = a0 +
∞∑

k=1

µkA(k), (2.12)

and inserting this expression into (2.7) we obtain for A(k) the equation

Ä(k) = −3
(
a2

0A(k) +
〈
a2

0

〉
A(k) + 2

〈
a0A

(k)
〉
a0

)
+ f (k), (2.13)
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with

f (k) = −
∑

k1+k2+k3=k
ki=k→|ni |�=|mi |

∑
n1+n2+n3=n

m1+m2+m3=m

u(k1)
n1,m1

u(k2)
n2,m2

u(k3)
n3,m3

, (2.14)

where we have used the notations

u(k)
n,m =

{
v

(k)
n,m, if |n| = |m|,

w
(k)
n,m, if |n| �= |m|, (2.15)

with

v(k)
n,n =

{
A

(k)
n , if k �= 0,

a0,n, if k = 0,
v

(k)
n,−n =

{
−A

(k)
n , if k �= 0,

−a0,n, if k = 0.
(2.16)

Before studying how to find the solution of this equation we introduce some prelim-
inary definitions. To shorten notations we write

c(ξ) ≡ cn(
mξ, m), s(ξ) ≡ sn(
mξ, m), d(ξ) ≡ dn(
mξ, m), (2.17)

and set cd(ξ) = cn(
mξ, m) dn(
mξ, m). Moreover given an analytic periodic func-
tion F(ξ) we define

P[F ](ξ) = F(ξ) − 〈F 〉 , (2.18)

and we introduce a linear operator I acting on 2π -periodic zero-mean functions and
defined by its action on the basis en(ξ) = einξ , n ∈ Z \ {0},

I[en](ξ) = en(ξ)

in
. (2.19)

Note that if P[F ] = F then P[I[F ]] = I[F ] (is simply the zero-mean primitive of F );
moreover I switches parities.

In order to find an odd solution of (2.13) we replace first
〈
a0A

(k)
〉

with a parameter
C(k), and we study the modified equation

Ä(k) = −3
(
a2

0A(k) +
〈
a2

0

〉
A(k) + 2C(k)a0

)
+ f (k). (2.20)

Then we have the following result (proved in Appendix A2).

Lemma 1. Given an odd analytic 2π -periodic function h(ξ), the equation

ÿ = −3
(
a2

0 +
〈
a2

0

〉)
y + h (2.21)

admits one and only one odd analytic 2π -periodic solution y(ξ), given by

y =L[h] ≡ Bm

(

−2

m D2
ms 〈s h〉+
−1

m Dm (s I[cd h]−cd I[P[s h]])+cd I[I[cd h]]
)

(2.22)

with Bm = −m/(1 − m) and Dm = −1/m.
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As a0 is analytic and odd, we find immediately, by induction on k and using Lemma
1, that f (k) is analytic and odd, and that the solution of Eq. (2.20) is odd and given by

Ã(k) = L[−6C(k)a0 + f (k)]. (2.23)

The function Ã(k) thus found depends of course on the parameter C(k); in order to
obtain Ã(k) = A(k), we have to impose the constraint

C(k) =
〈
a0A

(k)
〉
, (2.24)

and by (2.23) this gives

C(k) = −6C(k) 〈a0L[a0]〉 +
〈
a0L[f (k)]

〉
, (2.25)

which can be rewritten as

(1 + 6 〈a0L[a0]〉) C(k) =
〈
a0L[f (k)]

〉
. (2.26)

An explicit computation (see Appendix A3) gives

〈a0L[a0]〉 = 1

2
V 2

m
−2
m Bm

((
2Dm − 1

2

)
〈s4〉 +

(
2Dm (Dm − 1) + 1

2

)
〈s2〉2

)
,

(2.27)

which yields r0 = (1 + 6〈a0L[a0]〉) �= 0. At the end we obtain the recursive definition


A(k) = L[f (k) − 6C(k)a0],

C(k) = r−1
0

〈
a0L[f (k)]

〉
.

(2.28)

In Fourier space the first of (2.28) becomes

A(k)
n = Bm
−2

m D2
msn

∑
n1+n2=0

sn1

(
f (k)

n2
− 6C(k)a0,n2

)

+Bm

∑
n1+n2+n3=n

∗ 1

i2(n2 + n3)2 cdn1cdn2

(
f (k)

n3
− 6C(k)a0,n3

)

+Bm
−1
m Dm

∑
n1+n2+n3=n

∗ 1

i(n2 + n3)
sn1cdn2

(
f (k)

n3
− 6C(k)a0,n3

)
(2.29)

−Bm
−1
m Dm

∑
n1+n2+n3=n

∗ 1

i(n2 + n3)
cdn1sn2

(
f (k)

n3
− 6C(k)a0,n3

)

≡
∑
n′

Lnn′
(
f

(k)

n′ − 6C(k)a0,n′
)

,

where the constants Bm and Dm are defined after (2.22), and the ∗ in the sums means
that one has the constraint n2 + n3 �= 0, while the second of (2.28) can be written as

C(k) = r−1
0

∑
n,n′∈Z

a0,−nLn,n′f (k)

n′ . (2.30)
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Now we consider the coefficients u
(k)
n,m with |n| �= |m|. The coefficients w

(k)
n,m verify

the recursive equations

w(k)
n,m

[
−ω2n2 + ω̃2

m

]
= ν(a)

m w(k−1)
n,m + ν(b)

m w
(k−1)
n,−m + [(v + w)3](k−1)

n,m , (2.31)

where

[(v + w)3](k)
n,m =

∑
k1+k2+k3=k

∑
n1+n2+n3=n

m1+m2+m3=m

u(k1)
n1,m1

u(k2)
n2,m2

u(k3)
n3,m3

, (2.32)

if we use the same notations (2.15) and (2.16) as in (2.14).
Equations (2.29) and (2.31), together with (2.32), (2.14), (2.30) and (2.32), define

recursively the coefficients u
(k)
n,m.

To prove the theorem we shall proceed in two steps. The first step consists in looking
for the solution of Eqs. (2.29) and (2.31) by considering ω̃ = {ω̃m}|m|≥1 as a given set
of parameters satisfying the Diophantine conditions (called respectively the first and the
second Mel′nikov conditions)

|ωn ± ω̃m| ≥ C0|n|−τ ∀n ∈ Z \ {0} and ∀m ∈ Z \ {0} such that |m| �= |n|,
|ωn ± (ω̃m ± ω̃m′)| ≥ C0|n|−τ (2.33)

∀n ∈ Z \ {0} and ∀m, m′ ∈ Z \ {0} such that |n| �= |m ± m′|,
with positive constants C0, τ . We shall prove in Sect. 3 to 5 the following result.

Proposition 1. Consider a sequence ω̃ = {ω̃m}|m|≥1 verifying (2.33), with ω = ωε =√
1 − ε and such that |ω̃m − |m|| ≤ Cε/|m| for some constant C. For all µ0 > 0 there

exists ε0 > 0 such that for |µ| ≤ µ0 and 0 < ε < ε0 there is a sequence ν(ω̃, ε; µ) =
{νm(ω̃, ε; µ)}|m|≥1, where each νm(ω̃, ε; µ) is analytic in µ, such that the coefficients

u
(k)
n,m which solve (2.29) and (2.31) define via (2.10) a function u(x, t; ω̃, ε; µ) which is

analytic in µ, analytic in (x, t) and 2π -periodic in t and solves{
n2an = [a3

]
n,n

+ 3
〈
a2
〉
an + [g(v, w)]n,n ,

−n2an = [a3
]
n,−n

+ 3
〈
a2
〉
a−n + [g(v, w)]n,−n ,

(2.34)

(
−ω2n2 + ω̃2

m

)
wn,m = µνm(ω̃, ε; µ) wn,m + µε [ϕ(v + w)]n,m , |m| �= |n|,

with the same notations as in (1.14).

If τ ≤ 2 then one can require only the first Mel’nikov conditions in (2.33), as we
shall show in Sect. 7.

Then in Proposition 1 one can fix µ0 = 1, so that one can choose µ = 1 and set
u(x, t; ω̃, ε) = u(x, t; ω̃, ε; 1) and νm(ω̃, ε) = νm(ω̃, ε; 1).

The second step, to be proved in Sect. 6, consists in inverting (2.1), with νm =
νm(ω̃, ε) and ω̃ verifying (2.33). This requires some preliminary conditions on ε, given
by the Diophantine conditions

|ωn ± m| ≥ C1|n|−τ0 ∀n ∈ Z \ {0} and ∀m ∈ Z \ {0} such that |m| �= |n|,
(2.35)

with positive constants C1 and τ0 > 1.
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This allows to solve iteratively (2.1), by imposing further non-resonance conditions
besides (2.35), provided that one takes C1 = 2C0 and τ0 < τ −1, which requires τ > 2.
At each iterative step one has to exclude some further values of ε, and at the end the left
values fill a Cantor set E with large relative measure in [0, ε0] and ω̃ verify (2.35).

If 1 < τ ≤ 2 the first Mel’nikov conditions, which, as we said above, become suffi-
cient to prove Proposition 1, can be obtained by requiring (2.35) with τ0 = τ ; again this
leaves a large measure set of allowed values of ε. This is discussed in Sect. 7.

The result of this second step can be summarized as follows.

Proposition 2. There are δ > 0 and a set E ⊂ [0, ε0] with a complement of relative
Lebesgue measure of order εδ

0 such that for all ε ∈ E there exists ω̃ = ω̃(ε) which solves
(2.1) and satisfy the Diophantine conditions (2.33) with |ω̃m − |m|| ≤ Cε/|m| for some
constant C.

As we said, our approach is based on constructing the periodic solution of the string
equation by a perturbative expansion which is the analogue of the Lindstedt series
for (maximal) KAM invariant tori in finite-dimensional Hamiltonian systems. Such an
approach immediately encounters a difficulty; while the invariant KAM tori are analytic
in the perturbative parameter ε, the periodic solutions we are looking for are not analytic;
hence a power series construction seems at first sight hopeless. Nevertheless it turns out
that the Fourier coefficients of the periodic solution have the form un,m(ω̃(ω, ε), ε; µ);
while such functions are not analytic in ε, they turn out to be analytic in µ, provided
that ω̃ satisfies the condition (2.33) and ε is small enough; this is the content of Propo-
sition 1. The smoothness in ε at fixed ω̃ is what allows us to write as a series expansion
un,m(ω̃, ε; µ); this strategy was already applied in [23] in the massive case.

3. Tree Expansion: The Diagrammatic Rules

A (connected) graph G is a collection of points (vertices) and lines connecting all of
them. The points of a graph are most commonly known as graph vertices, but may also
be called nodes or points. Similarly, the lines connecting the vertices of a graph are most
commonly known as graph edges, but may also be called branches or simply lines, as
we shall do. We denote with P(G) and L(G) the set of vertices and the set of lines,
respectively. A path between two vertices is a subset of L(G) connecting the two verti-
ces. A graph is planar if it can be drawn in a plane without graph lines crossing (i.e. it
has graph crossing number 0).

Definition 2. A tree is a planar graph G containing no closed loops (cycles); in other
words, it is a connected acyclic graph. One can consider a tree G with a single special
vertex V0: this introduces a natural partial ordering on the set of lines and vertices, and
one can imagine that each line carries an arrow pointing toward the vertex V0. We can
add an extra (oriented) line �0 connecting the special vertex V0 to another point which
will be called the root of the tree; the added line will be called the root line. In this way
we obtain a rooted tree θ defined by P(θ) = P(G) and L(θ) = L(G) ∪ �0. A labeled
tree is a rooted tree θ together with a label function defined on the sets L(θ) and P(θ).

Note that the definition of rooted tree given above is slightly different from the one
which is usually adopted in literature [24, 26] according to which a rooted tree is just
a tree with a privileged vertex, without any extra line. However the modified definition
that we gave will be more convenient for our purposes. In the following we shall denote
with the symbol θ both rooted trees and labeled rooted trees, when no confusion arises.
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We shall call equivalent two rooted trees which can be transformed into each other
by continuously deforming the lines in the plane in such a way that the latter do not
cross each other (i.e. without destroying the graph structure). We can extend the notion
of equivalence also to labeled trees, simply by considering equivalent two labeled trees
if they can be transformed into each other in such a way that also the labels match.

Given two points V, W ∈ P(θ), we say that W ≺ V if V is on the path connecting W to
the root line. We can identify a line with the points it connects; given a line � = (V, W)

we say that � enters V and comes out of W.
In the following we shall deal mostly with labeled trees: for simplicity, where no con-

fusion can arise, we shall call them just trees. We consider the following diagrammatic
rules to construct the trees we have to deal with; this will implicitly define also the label
function.

(1) We call nodes the vertices such that there is at least one line entering them. We call
end-points the vertices which have no entering line. We denote with L(θ), V (θ)

and E(θ) the set of lines, nodes and end-points, respectively. Of course P(θ) =
V (θ) ∪ E(θ).

(2) There can be two types of lines, w-lines and v-lines, so we can associate with each
line � ∈ L(θ) a badge label γ� ∈ {v, w} and a momentum (n�, m�) ∈ Z

2, to be
defined in item (8) below. If γ� = v one has |n�| = |m�|, while if γ� = w one has
|n�| �= |m�|. One can have (n�, m�) = (0, 0) only if � is a v-line. With the v-lines �

with n� �= 0 we also associate a label δ� ∈ {1, 2}. All the lines coming out from the
end-points are v-lines with n� �= 0.

(3) With each line � coming out from a node we associate a propagator

g� = g(ωn�, m�) =




1
−ω2n2

�+ω̃2
m�

, if γ� = w,

1
(in�)

δ�
, if γ� = v, n� �= 0,

1, if γ� = v, n� = 0,

(3.1)

with momentum (n�, m�). We can associate also a propagator with the lines � coming
out from end-points, simply by setting g� = 1.

(4) Given any node V ∈ V (θ) denote with sV the number of entering lines (branching
number): one can have only either sV = 1 or sV = 3. Also the nodes V can be of
w-type and v-type: we say that a node is of v-type if the line � coming out from
it has label γ� = v; analogously the nodes of w-type are defined. We can write
V (θ) = Vv(θ) ∪ Vw(θ), with obvious meaning of the symbols; we also call V s

w(θ),
s = 1, 3, the set of nodes in Vw(θ) with s entering lines, and analogously we define
V s

v (θ), s = 1, 3. If V ∈ V 3
v (θ) and two entering lines come out of end points then

the remaining line entering V has to be a w-line. If V ∈ V 1
w(θ) then the line entering

V has to be a w-line. If V ∈ V 1
v (θ) then its entering line comes out of an end-node.

(5) With the nodes V of v-type we associate a label jV ∈ {1, 2, 3, 4} and, if sV = 1, an
order label kV, with kV ≥ 1. Moreover we associate with each node V of v-type two
mode labels (n′

V
, m′

V
), with m′

V
= ±n′

V
, and (nV, mV), with mV = ±nV, and such

that one has

m′
V

n′
V

= mV

nV

=

sV∑
i=1

m�i

sV∑
i=1

n�i

, (3.2)
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where �i are the lines entering V. We shall refer to them as the first mode label and
the second mode label, respectively. With a node V of v-type we associate also a
node factor ηV defined as

ηV =




−Bm
−2
m D2

msnn′
V
snnV

, if jV = 1 and sV = 3,

−6Bm
−2
m D2

msnn′
V
snnV

C(kV), if jV = 1 and sV = 1,

−Bmcdn′
V
cdnV

, if jV = 2 and sV = 3,

−6Bmcdn′
V
cdnV

C(kV), if jV = 2 and sV = 1,

−Bm
−1
m Dmsnn′

V
cdnV

, if jV = 3 and sV = 3,

−6Bm
−1
m Dmsnn′

V
cdnV

C(kV), if jV = 3 and sV = 1,

Bm
−1
m Dmcdn′

V
snnV

, if jV = 4 and sV = 3,

6Bm
−1
m Dmcdn′

V
snV

C(kV), if jV = 4 and sV = 1.

(3.3)

Note that the factors C(kV) = r−1
0

〈
a0L[f (kV)]

〉
depend on the coefficients u

(k′)
n,m, with

k′ < k, so that they have to be defined iteratively. The label δ� of the line � coming
out from a node V of v-type is related to the label jV of v: if jV = 1 then n� = 0,
while if jV > 1 then n� �= 0 and δ� = 1 + δjV,2, where δi,j denotes the Kronecker
delta (so that δ� = 2 if jV = 2 and δ� = 1 otherwise).

(6) With the nodes V ∈ V 1
w(θ), called ν-vertices, we associate a label cV ∈ {a, b}. With

the nodes V of w-type we simply associate a node factor ηV given by

ηV =
{

ε, if sV = 3,

ν
(cV)
m�

, if sV = 1.
(3.4)

In the latter case (n�, m�) is the momentum of the line coming out from V, and if
one has cV = a the momentum of the entering line is (n�, m�) while if cV = b the
momentum of the entering line is (n�, −m�). In order to unify notations we can asso-
ciate also with the nodes V of w-type two mode labels, by setting (n′

V
, m′

V
) = (0, 0)

and (nV, mV) = (0, 0).
(7) With the end-points V we associate only a first mode label (n′

V
, m′

V
), with |m′

V
| =

|n′
V
|, and an end-point factor

VV = (−1)
1+δn′

V
,m′

V a0,n′
V

= a0,mV
. (3.5)

The line coming out from an end-point has to be a v-line.
(8) The momentum (n�, m�) of a line � is related to the mode labels of the nodes pre-

ceding �; if a line � comes out from a node V one writes � = �V and sets

n� = nV +
∑

W∈V (θ)
W≺V

(
n′

W
+ nW

)+
∑

W∈E(θ)
W≺V

n′
W
,

m� = mV +
∑

W∈V (θ)
W≺V

(
m′

W
+ mW

)+
∑

W∈E(θ)
W≺V

m′
W

+
∑

W∈V 1
w(θ)

cW=b

(−2m�W

)
, (3.6)

where the sign in m� is plus if cV = a and minus if cV = b and some of the mode
labels can be vanishing according to the notations introduced above. If � comes out
from an end-point we set (n�, m�) = (0, 0).
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We define �
∗(k)
n,m as the set of inequivalent labeled trees, formed by following the

rules (1) to (8) given above, and with the further following constraints:
(i) if (n�0 , m�0) denotes the momentum flowing through the root line �0 and
(n′

V0
, m′

V0
) is the first mode label associated with the node V0 which �0 comes

out from (special vertex), then one has n = n�0 + n′
V0

and m = m�0 + m′
V0

;
(ii) one has

k = |Vw(θ)| +
∑

V∈V 1
v (θ)

kV, (3.7)

with k called the order of the tree.
An example of tree is given in Fig. 3.1, where only the labels v, w of the nodes have
been explicitly written.

Definition 3. For all θ ∈ �
∗(k)
n,m , we call

Val(θ) =
( ∏

�∈L(θ)

g�

)( ∏
V∈V (θ)

ηV

)( ∏
V∈E(θ)

VV

)
, (3.8)

the value of the tree θ .

Then the main result about the formal expansion of the solution is provided by the
following result.

Lemma 2. We can write

u(k)
n,m =

∑
θ∈�

∗(k)
n,m

Val(θ), (3.9)

and if the root line �0 is a v-line the tree value is a contribution to v
(k)
n,±n, while if �0 is

a w-line the tree value is a contribution to w
(k)
n,m. The factors C(k) are defined as

C(k) = r−1
0

∑
θ∈�

∗(k)
n,n

∗
a0,−nVal(θ), (3.10)

Fig. 3.1.
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Fig. 3.2.

Fig. 3.3.

where the ∗ in the sum means the extra constraint sV0 = 3 for the node immediately
preceding the root (which is the special vertex of the rooted tree).

Proof. The proof is done by induction in k. Imagine to represent graphically a0,n as a
(small) white bullet with a line coming out from it, as in Fig. 3.2a, and u

(k)
n,m, k ≥ 1, as

a (big) black bullet with a line coming out from it, as in Fig. 3.2b.
One should imagine that labels k, n, m are associated with the black bullet represent-

ing u
(k)
n,m, while a white bullet representing a0,n carries the labels n, m = ±n.

For k = 1 the proof of (3.9) and (3.10) is just a check from the diagrammatic rules
and the recursive definitions (2.27) and (2.29), and it can be performed as follows.

Consider first the case |n| �= |m|, so that u
(1)
n,m = w

(1)
n,m. By taking into account only

the badge labels of the lines, by item (4) there is only one tree whose root line is a
w-line, and it has one node V0 (the special vertex of the tree) with sV0 = 3, hence three
end-points V1, V2 and V3. By applying the rules listed above one obtains, for |n| �= |m|,

w(1)
n,m = 1

−ω2n2 + ω̃2
m

∑
n1+n2+n3=n

m1+m2+m3=m

v(0)
n1,m1

v(0)
n2,m2

v(0)
n3,m3

=
∑

θ∈�
∗(1)
n,m

Val(θ), (3.11)

where the sum is over all trees θ which can be obtained from the tree appearing in Fig. 3.3
by summing over all labels which are not explicitly written.

It is easy to realize that (3.11) corresponds to (2.31) for k = 1. Each end-point Vi is
graphically a white bullet with first mode labels (ni, mi) and second mode labels (0, 0),
and has associated an end-point factor (−1)1+δni ,mi a0,ni

(see 3.5) in item (7)). The node
V0 is represented as a (small) gray bullet, with mode labels (0, 0) and (0, 0), and the
factor associated with it is ηV0 = ε (see 3.4) in item (6)). We associate with the line
� coming out from the node V0 a momentum (n�, n�), with n� = n, and a propagator
g� = 1/(−ω2n2

� + ω̃2
m�

) (see (3.1) in item (3)).

Now we consider the case |n| = |m|, so that u
(1)
n,m = ±A

(1)
n (see (2.16)). By taking

into account only the badge labels of the lines, there are four trees contributing to A
(1)
n :

they are represented by the four trees in Fig. 3.4 (the tree b and c are simply obtained
from the tree by a different choice of the w-line entering the last node).
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Fig. 3.4.

In the trees of Figs. 3.4a, 3.4b and 3.4c the root line comes out from a node V0 (the
special vertex of the tree) with sV0 = 3, and two of the entering lines come out from
end-points: then the other line has to be a w-line (by item (4)), and (3.7) requires that
the subtree which has such a line as root line is exactly the tree represented in Fig. 3.2.
In the tree of Fig. 4.4d the root line comes out from a node V0 with sV0 = 1, hence the
line entering V0 is a v-line coming out from an end-point (again see item (4)).

By defining �
∗(1)
n,n as the set of all labeled trees which can be obtained by assigning

to the trees in Fig. 3.4 the labels which are not explicitly written, one finds

A(1)
n =

∑
θ∈�

∗(1)
n,n

Val(θ), (3.12)

which corresponds to the sum of two contributions. The first one arises from the trees
of Figs. 3.4a, 3.4b and 3.4c, and it is given by

3
∑
n′∈Z

Ln,n′
∑

n′
1+n′

2+n′
3=n′

m′
1+m′

2+m′
3=n′

v
(0)

n′
1,m

′
1
v

(0)

n′
2,m

′
2
w

(1)

n′
3,m

′
3
, (3.13)

where one has

Ln,n′ = Bm
−2
m D2

m

∑
n1+n2=n−n′

n2=−n′

∗
sn1sn2 + Bm

∑
n1+n2=n−n′

∗ 1

i2(n2 + n′)2 cdn1cdn2

+ Bm
−1
m Dm

∑
n1+n2=n−n′

∗ 1

i(n2 + n′)
sn1cdn2 (3.14)

− Bm
−1
m Dm

∑
n1+n2=n−n′

∗ 1

i(n2 + n′)
cdn1sn2 ,

with the ∗ denoting the constraint n2 + n′ �= 0. The first and second mode labels associ-
ated with the node V0 are, respectively, (m′

V0
, n′

V0
) = (n1, n1) and (mV0 , nV0) = (n2, n2),

while the momentum flowing through the root line is given by (n�, m�), with |m�| = |n�|
expressed according to the definition (3.6) in item (8): the corresponding propagator is
(n�)

δ� for n� �= 0 and 1 for n� = 0, as in (3.1) in item (3).
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Fig. 3.5.

The second contribution corresponds to the tree of Fig. 3.4d, and it is given by

∑
n′∈Z

Ln,n′C(1)a0,n′ , (3.15)

with the same expression (3.14) for Ln,n′ and C(1) still undetermined. The mode labels
of the node V0 and the momentum of the root line are as before.

Then one immediately realizes that the sum of (3.13) and (3.15) corresponds to (2.27)
for k = 1.

Finally that C(1) is given by (3.9) follows from (2.12). This completes the check of
the case k = 1.

In general from (2.31) one gets, for θ ∈ �
∗(k)
n,m contributing to w

(k)
n,m, that the tree

value Val(θ) is obtained by summing all contributions either of the form

1

−ω2n2 + ω̃2
m

ε
∑

n1+n2+n3=n
m1+m2+m3=m

∑
k1+k2+k3=k−1

∑
θ1∈�

∗(k1)
n1,m1

∑
θ2∈�

∗(k2)
n2,m2

∑
θ3∈�

∗(k3)
n3,m3

Val(θ1) Val(θ2) Val(θ3), (3.16)

or of the form

1

−ω2n2 + ω̃2
m

∑
c=a,b

ν(c)
m

∑
θ1∈�

∗(k,1)

n,m(c)

Val(θ1), (3.17)

with m(a) = m and m(b) = −m; the corresponding graphical representations are as in
Fig. 3.5.

Therefore, by simply applying the diagrammatic rules given above, we see that by
summing together the contribution (3.16) and (3.17) we obtain (3.9) for |n| �= |m|.
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Fig. 3.6.

A similar discussion applies to A
(k)
n , and one finds that A

(k)
n can be written as a sum

of contribution either of the form∑
n′∈Z

Ln,n′
∑

n′
1+n′

2+n′
3=n′

m′
1+m′

2+m′
3=n′

∑
k1+k2+k3=k

∑
θ1∈�

∗(k1)
n1,m1

∑
θ2∈�

∗(k2)
n2,m2

∑
θ3∈�

∗(k3)
n3,m3

Val(θ1) Val(θ2) Val(θ3), (3.18)

or of the form ∑
n′∈Z

Ln,n′C(k)a0,n′ , (3.19)

with C(k) still undetermined. Both (3.18) and (3.19) are of the form Val(θ), for θ ∈ �
∗(k)
n,m .

A graphical representation is in Fig. 3.6.
Analogously to the case k = 1 the coefficients C(k) are found to be expressed by

(3.10). Then the lemma is proved. ��
Lemma 3. For any rooted tree θ one has |V 3

v (θ)| ≤ 2|V 3
w(θ)| + 2|V 1

v (θ)| and |E(θ)| ≤
2(|V 3

v (θ)| + |V 3
w(θ)|) + 1.

Proof. First of all note that |V 3
w(θ)| = 0 requires |V 1

v (θ)| ≥ 1, so that one has |V 3
w(θ)|+

|V 1
v (θ)| ≥ 1 for all trees θ .
We prove by induction on the number N of nodes the bound

∣∣∣V 3
v (θ)

∣∣∣ ≤
{

2|V 3
w(θ)| + 2|V 1

v (θ)| − 1, if the root line is a v-line,
2|V 3

w(θ)| + 2|V 1
v (θ)| − 2 if the root line is a w-line,

(3.20)

which will immediately imply the first assertion.

For N = 1 the bound is trivially satisfied, as Figs. 3.3 and 3.4 show.
Then assume that (3.20) holds for the trees with N ′ nodes, for all N ′ < N , and

consider a tree θ with V (θ) = N .
If the special vertex V0 of θ is not in V 3

v (θ) (hence it is in Vw(θ)) the bound (3.20)
follows trivially by the inductive hypothesis.

If V0 ∈ V 3
v (θ) then we can write

|V 3
v (θ)| = 1 +

s∑
i=1

|V 3
v (θi)|, (3.21)
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where θ1, . . . , θs are the subtrees (not endpoints) whose root line is one of the lines
entering V0. One must have s ≥ 1, as s = 0 would correspond to having all the entering
lines of V0 coming out from end-points, hence to having N = 1.

If s ≥ 2 one has from (3.21) and from the inductive hypothesis

|V 3
v (θ)| ≤ 1 +

s∑
i=1

(
2|V 3

w(θi)| + 2|V 1
v (θi)| − 1

)
≤ 1 + 2|V 3

w(θ)| + 2|V 1
v (θ)| − 2,

(3.22)

and the bound (3.20) follows.
If s = 1 then the root line of θ1 has to be a w-line by item (4), so that one has

|V 3
v (θ)| ≤ 1 +

(
2|V 3

w(θ1)| + 2|V 1
v (θ)| − 2

)
(3.23)

which again yields (3.20).
Finally the second assertion follows from the standard (trivial) property of trees

∑
V∈V (θ)

(sV − 1) = |E(θ)| − 1, (3.24)

and the observation that in our case one has sV ≤ 3. ��

4. Tree Expansion: The Multiscale Decomposition

We assume the Diophantine conditions (2.33). We introduce a multiscale decomposition
of the propagators of the w-lines. Let χ(x) be a C∞ non-increasing function such that
χ(x) = 0 if |x| ≥ 2C0 and χ(x) = 1 if |x| ≤ C0 (C0 is the same constant appearing in
(2.33)), and let χh(x) = χ(2hx) − χ(2h+1x) for h ≥ 0, and χ−1(x) = 1 − χ(x); such
functions realize a smooth partition of the unity as

1 = χ−1(x) +
∞∑

h=0

χh(x) =
∞∑

h=−1

χh(x). (4.1)

If χh(x) �= 0 for h ≥ 0 one has 2−h−1C0 ≤ |x| ≤ 2−h+1C0, while if χ−1(x) �= 0 one
has |x| ≥ C0.

We write the propagator of any w-line as the sum of propagators on single scales in
the following way:

g(ωn, m) =
∞∑

h=−1

χh(|ωn| − ω̃m)

−ω2n2 + ω̃2
m

=
∞∑

h=−1

g(h)(ωn, m). (4.2)

Note that we can bound |g(h)(ωn, m)| ≤ 2h+1

C0
(notice that given n, m there are at

most two non-zero values of g(h)(ωn, m)).
This means that we can attach to each w-line � in L(θ) a scale label h� ≥ −1, which

is the scale of the propagator which is associated with �. We can denote with �
(k)
n,m the set

of trees which differ from the previous ones simply because the lines carry also the scale
labels. The set �

(k)
n,m is defined according to the rules (1) to (8) of Sect. 3, by changing

item (3) into the following one.
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(3′) With each line � coming out from nodes of w-type we associate a scale label h� ≥ −1.
For notational convenience we associate a scale label h = −1 with the lines coming
out from the nodes of v-type and with the lines coming out from the end-points. With
each line � we associate a propagator

g
(h�)
� ≡ g(h�)(ωn�, m�) =




χh�
(|ωn�|−ω̃m�

)

−ω2n2
�+ω̃2

m�

, if γ� = w,

1
(in�)

δ�
, if γ� = v, n� �= 0,

1, if γ� = v, n� = 0,

(4.3)

with momentum (n�, m�).

Definition 4. For all θ ∈ �
(k)
n,m, we define

Val(θ) =
( ∏

�∈L(θ)

g
(h�)
�

)( ∏
V∈V (θ)

ηV

)( ∏
V∈E(θ)

VV

)
, (4.4)

the value of the tree θ .

Then (3.9) and (3.10) are replaced, respectively, with

u(k)
n,m =

∑
θ∈�

(k)
n,m

Val(θ), (4.5)

and

C(k) = r−1
0

∑
θ∈�

(k)
n,n

∗
a0,−nVal(θ), (4.6)

with the new definition for the tree value Val(θ) and with ∗ meaning the same constraint
as in (3.10).

Definition 5. A cluster T is a connected set of nodes which are linked by a continuous
path of lines with the same scale label hT or a lower one and which are maximal; we
shall say that the cluster has scale hT . We shall denote with V (T ) and E(T ) the set of
nodes and the set of end-points, respectively, which are contained inside the cluster T ,
and with L(T ) the set of lines connecting them. As for trees we call Vv(T ) and Vw(T )

the sets of nodes V ∈ V (T ) which are of v-type and of w-type respectively. Analogously
one defines the sets V s

v (T ) and V s
w(T ).

We define the order kT of a cluster T as the order of a tree (see item (ii) before
Definition 3), with the sums restricted to the nodes internal to the cluster.

An inclusion relation is established between clusters, in such a way that the inner-
most clusters are the clusters with lowest scale, and so on. Each cluster T can have an
arbitrary number of lines entering it (incoming lines), but only one or zero line coming
from it (outcoming line); we shall denote the latter (when it exists) with �1

T . We shall call
external lines of the cluster T the lines which either enter or come out from T , and we
shall denote by h

(e)
T the minimum among the scales of the external lines of T . Define also

K(θ) =
∑

V∈V (θ)

(|n′
V
| + |nV|)+

∑
V∈E(θ)

|n′
V
|,

K(T ) =
∑

V∈V (T )

(|n′
V
| + |nV|)+

∑
V∈E(θ)

|n′
V
|, (4.7)
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Fig. 4.1.

where we recall that one has (n′
V
, m′

V
) = (nV, mV) = (0, 0) if V ∈ V (θ) is of w-type.

If a cluster has only one entering line �2
T and (n, m) is the momentum of such a line,

for any line � ∈ L(T ) one can write (n�, m�) = (n0
�, m

0
�) + η�(n, m), where η� = 1 if

the line � is along the path connecting the external lines of T and η� = 0 otherwise.

Definition 6. A cluster T with only one incoming line �2
T such that one has

n�1
T

= n�2
T

and m�1
T

= ±m�2
T

(4.8)

will be called a self-energy graph or a resonance. In such a case we shall call a res-
onant line the line �1

T , and we shall refer to its momentum as the momentum of the
self-energy graph.

Examples of self-energy graphs T with kT = 1 are represented in Fig. 4.1. The lines
crossing the encircling bubbles are the external lines, and they are on scales higher than
the lines internal to the bubbles. There are 9 self-energy graphs with kT = 1: they are
all obtained by the two which are drawn in Fig. 4.1, simply by considering all possible
inequivalent trees.

Definition 7. The value of the self-energy graph T with momentum (n, m) associated
with the line �2

T is defined as

Vh
T (ωn, m) =

(∏
�∈T

g
(h�)
�

)( ∏
V∈V (T )

ηV

)( ∏
V∈E(T )

VV

)
, (4.9)

where h = h
(e)
T is the minimum between the scales of the two external lines of T (they

can differ at most by a unit), and one has

n(T ) ≡
∑

V∈V (T )

(
n′

V
+ nV

)+
∑

V∈E(T )

n′
V

= 0,

m(T ) ≡
∑

V∈V (T )

(
m′

V
+mV

)+
∑

V∈E(T )

m′
V
+

∑
W∈V 1

w(T )
cW=b

(−2m�W

) ∈ {0, 2m}, (4.10)

by definition of self-energy graph; one says that T is a resonance of type c = a when
m(T ) = 0 and a resonance of type c = b when m(T ) = 2m.
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Definition 8. Given a tree θ , we shall denote by Nh(θ) the number of lines with scale
h, and by Ch(θ) the number of clusters with scale h.

Then the product of propagators appearing in (4.4) can be bounded as

∣∣∣ ∏
�∈L(θ)

g
(h�)
�

∣∣∣ ≤ (
∞∏

h=0

2hNh(θ)
)( ∏

�∈L(θ)
γ�=w

χh�
(|ωn�| − ω̃m�

)

|ωn�| + ω̃m�

)( ∏
�∈L(θ)

γ�=v, n� �=0

1

|ωn�|
)
,

(4.11)

and this will be used later.

Lemma 4. Assume 0 < C0 < 1/2 and that there is a constant C1 such that one has
|ω̃m − |m|| ≤ C1ε/|m|. If ε is small enough for any tree θ ∈ �

(k)
n,m and for any line � on

a scale h� ≥ 0 one has min{m�, n�} ≥ 1/2ε.

Proof. If a line � with momentum (n, m) is on scale h ≥ 0 then one has

1

2
> C0 ≥ ||ωn| − ω̃m| ≥

∣∣∣(√1 − ε − 1
)

|n| + (|n| − |m|) − C1ε/|m|
∣∣∣

≥
∣∣∣∣
∣∣∣∣ ε |n|
1 + √

1 − ε
− (|n| − |m|)

∣∣∣∣− C1ε/|m|
∣∣∣∣ , (4.12)

with |n| �= |m|, hence |n−m| ≥ 1, so that |n| ≥ 1/2ε. Moreover one has ||ωn|− ω̃m| ≤
1/2 and ω̃m − |m| = O(ε), and one obtains also |m| > 1/2ε. ��
Lemma 5. Define h0 such that 2h0 ≤ 16C0/ε < 2h0+1, and assume that there is a
constant C1 such that one has |ω̃m − |m|| ≤ C1ε/|m|. If ε is small enough for any tree
θ ∈ �

(k)
n,m and for all h ≥ h0 one has

Nh(θ) ≤ 4K(θ)2(2−h)/τ − Ch(θ) + Sh(θ) + Mν
h(θ), (4.13)

where K(θ) is defined in (4.7), while Sh(θ) is the number of self-energy graphs T in θ

with h
(e)
T = h and Mν

h(θ) is the number of ν-vertices in θ such that the maximum scale
of the two external lines is h.

Proof. We prove inductively the bound

N∗
h (θ) ≤ max{0, 2K(θ)2(2−h)/τ − 1}, (4.14)

where N∗
h (θ) is the number of non-resonant lines in L(θ) on scale h′ ≥ h.

First of all note that for a tree θ to have a line on scale h the condition K(θ) > 2(h−1)/τ

is necessary, by the first Diophantine conditions in (2.33). This means that one can have
N∗

h (θ) ≥ 1 only if K = K(θ) is such that K > k0 ≡ 2(h−1)/τ : therefore for values
K ≤ k0 the bound (4.14) is satisfied.

If K = K(θ) > k0, we assume that the bound holds for all trees θ ′ with K(θ ′) < K .
Define Eh = 2−1(2(2−h)/τ )−1: so we have to prove that N∗

h (θ) ≤ max{0, K(θ)E−1
h −1}.

Call � the root line of θ and �1, . . . , �m the m ≥ 0 lines on scale ≥ h which are the
closest to � (i.e. such that no other line along the paths connecting the lines �1, . . . , �m

to the root line is on scale ≥ h).
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If the root line � of θ is either on scale < h or on scale ≥ h and resonant, then

N∗
h (θ) =

m∑
i=1

N∗
h (θi), (4.15)

where θi is the subtree with �i as root line, hence the bound follows by the inductive
hypothesis.

If the root line � has scale ≥ h and is non-resonant, then �1, . . . , �m are the entering
line of a cluster T .

By denoting again with θi the subtree having �i as root line, one has

N∗
h (θ) = 1 +

m∑
i=1

N∗
h (θi), (4.16)

so that the bound becomes trivial if either m = 0 or m ≥ 2.
If m = 1 then one has a cluster T with two external lines � and �1, which are both

with scales ≥ h; then
∣∣|ωn�| − ω̃m�

∣∣ ≤ 2−h+1C0,

∣∣∣|ωn�1 | − ω̃m�1

∣∣∣ ≤ 2−h+1C0, (4.17)

and recall that T is not a self-energy graph.
Note that the validity of both inequalities in (4.17) for h ≥ h0 imply that one has

|n� − n�1 | �= |m� ± m�1 |, as we are going to show.
By Lemma 4 we know that one has min{m�, n�} ≥ 1/2ε. Then from (4.17) we have,

for some η�, η�1 ∈ {±1},
2−h+2C0 ≥ ∣∣ω(n� − n�1) + η�ω̃m�

+ η�1 ω̃m�1

∣∣, (4.18)

so that if one had |n� − n�1 | = |m� ± m�1 | we would obtain for ε small enough

2−h+2C0 ≥ ε

1 + √
1 − ε

∣∣n� − n�1

∣∣− C1ε

|m�| − C1ε

|m�1 |
≥ ε

2
− 4C1ε

2 >
ε

4
, (4.19)

which is contradictory with h ≤ h0; hence one has |n� − n�1 | �= |m� ± m�1 |.
Then, by (4.17) and for |n�−n�1 | �= |m�±m�1 |, one has, for suitable η�, η�1 ∈ {+, −},

2−h+2C0 ≥ ∣∣ω(n� − n�1) + η�ω̃m�
+ η�1 ω̃m�1

∣∣ ≥ C0|n� − n�1 |−τ , (4.20)

where the second Diophantine conditions in (2.33) have been used. Hence K(θ) −
K(θ1) > Eh, which, inserted into (4.16) with m = 1, gives, by using the inductive
hypothesis,

N∗
h (θ) = 1 + N∗

h (θ1) ≤ 1 + K(θ1)E
−1
h − 1

≤ 1 +
(
K(θ) − Eh

)
E−1

h − 1 ≤ K(θ)E−1
h − 1, (4.21)

hence the bound is proved also if the root line is on scale ≥ h.
In the same way one proves that, if we denote with Ch(θ) the number of clusters on

scale h, one has

Ch(θ) ≤ max{0, 2K(θ)2(2−h)/τ − 1}; (4.22)

see [23] for details. ��
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Note that the argument above is very close to [23]: this is due to the fact that the
external lines of any self-energy graph T are both w-lines, so that the only effect of the
presence of the v-lines and of the nodes of v-type is in the contribution to K(T ).

The following lemma deals with the lines on scale h < h0.

Lemma 6. Let h0 be defined as in Lemma 2 and C0 < 1/2, and assume that there is a
constant C1 such that one has |ω̃m − |m|| ≤ C1ε. If ε is small enough for h < h0 one
has |g(h)

� | ≤ 32.

Proof. Either if h �= h� or h = h� = −1 the bound is trivial. If h = h� ≥ 0 one has

g
(h)
� = χh(|ωn�| − ω̃m�

)

−|ωn�| + ω̃m

1

|ωn�| + ω̃m

, (4.23)

where |ωn�| + ω̃m ≥ 1/2ε by Lemma 4. Then one has

1

|ωn�| + ω̃m

≤ 2ε, (4.24)

which, inserted in (4.23), gives |g(h)
� | ≤ 2h+2ε/C0 ≤ 32, so that the lemma is proved.

��

5. The Renormalized Expansion

It is an immediate consequence of Lemma 5 and Lemma 6 that all the trees θ with no
self-energy graphs or ν-vertices admit a bound O(Ckεk), where C is a constant. However
the generic tree θ with Sh(θ) �= 0 admits a much worse bound, namely O(Ckεkk!α), for
some constant α, and the presence of factorials prevent us to prove the convergence of
the series; in KAM theory this is called accumulation of small divisors. It is convenient
then to consider another expansion for un,m, which is essentially a resummation of the
one introduced in Sects. 3 and 4.

We define the set �
(k)R
n,m of renormalized trees, which are defined as �

(k)
n,m except that

the following rules are added.

(9) To each self-energy graph (with |m| ≥ 1) the R = � − L operation is applied,
where L acts on the self-energy graphs in the following way, for h ≥ 0 and |m| ≥ 1,

LVh
T (ωn, m) = Vh

T (sgn(n) ω̃m, m), (5.1)

R is called a regularization operator; its action simply means that each self-energy
graph Vh

T (ωn, m) must be replaced by RVh
T (ωn, m).

(10) With the nodes V of w-type with sV = 1 (which we still call ν-vertices) and with
h ≥ 0 the minimal scale among the lines entering or exiting V, we associate a factor
2−hν

(c)
h,m, c = a, b, where (n, m) and (n, ±m), with |m| ≥ 1, are the momenta of

the lines and a corresponds to the sign + and b to the sign − in ±m.
(11) The set {h�} of the scales associated with the lines � ∈ L(θ) must satisfy the follow-

ing constraint (which we call compatibility): fixed (n�, m�) for any � ∈ L(θ) and
replaced R with � at each self-energy graph, one must have χh�

(|ωn�|− ω̃m�
) �= 0.

(12) The factors C(kV) in (3.3) are replaced with �, to be considered a parameter.
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The set �
(k)R
n,m is defined as �

(k)
n,m with the new rules and with the constraint that the

order k is given by k = |Vw(θ)| + |V 1
v (θ)|.

We consider the following expansion

ũn,m =
∞∑

k=1

µk
∑

θ∈�
(k)R
n,m

Val(θ), (5.2)

where, for |m| ≥ 1 and h ≥ 0, ν
(c)
h,m is given by

2−hµν
(c)
h,m = µν(c)

m + 1

2

∑
σ=±

∑
T ∈T (c)

<h

µkT Vh
T (σ ω̃m, m), (5.3)

with c = a, b, and T (c)
<h denoting the set of self-energy graphs T of type c (see item (6)

in Sect. 3) with hT < h, and � is determined by the self-consistence equation

� = r−1
0

∞∑
k=1

µk−1
∑

θ∈�
(k)R
n,n

∗
a0,−nVal(θ), (5.4)

with ∗ denoting the same constraint as in (3.10).
We shall set also ν

(c)
m = ν

(c)
−1,m. Note that Vh

T (σ ω̃m, m) is independent of σ .
Calling L0(θ), V0(θ), E0(θ) the set of lines, node and end-points not contained in

any self-energy graph, and S0(θ) the maximal self-energy graphs, i.e. the self-energy
graphs which are not contained in any self-energy graphs, we can write Val(θ) in (5.2)
as

Val(θ) =
( ∏

�∈L0(θ)

g
(h�)
�

)( ∏
V∈V0(θ)

ηV

)( ∏
V∈E0(θ)

VV

)( ∏
T ∈S0(θ)

RVhe
T

T (ωn�T
, m�T

)
)
,

(5.5)

and by definition

RVhe
T

T (ωn�T
, m�T

) = Vhe
T

T (ωn�T
, m�T

) − Vhe
T

T (sgn(n�T
) ω̃m�T

, m�T
), (5.6)

and Vhe
T

T (ωn�T
, m�T

) is given by

Vhe
T

T (ωn�T
, m�T

) =
( ∏

�∈L0(T )

g
(h�)

�

)( ∏
V∈V0(T )

ηV

)( ∏
V∈E0(T )

VV

)( ∏
T ′∈S0(T )

RVhe
T ′

T ′ (ωn�T ′ , m�T ′ )
)
.

(5.7)

First (Lemma 7) we will show that the expansion (5.2) is well defined, for νh,m, � =
O(ε); then (Lemmas 8 and 9) we show that under the same conditions also the r.h.s. of
(5.3) is well defined; moreover (Lemma 10) we prove by using (5.3) that it is indeed
possible to choose ν

(c)
m such that νh,m = O(ε) for any h; then (Lemmas 11 and 12) we

show that (5.2) admit a solution � = O(ε); finally (Lemma 13) we show that indeed
(5.2) solves the last of (1.14) and (2.2); this completes the proof of Proposition 1. In the
next section we will solve the implicit function problem of (2.1), thus completing the
proof of Theorem 1.

We start from the following lemma stating that, if the ν
(c)
h,m and � functions are

bounded, then the expansion (5.2) is well defined.
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Lemma 7. Assume that there exist a constant C such that one has |�| ≤ Cε and |ν(c)
h,m| ≤

Cε, with c = a, b, for all |m| ≥ 1 and all h ≥ 0. Then for all µ0 > 0 there exists ε0 > 0
such that for all |µ| ≤ µ0 and for all 0 < ε < ε0 and for all (n, m) ∈ Z

2 one has∣∣ũn,m

∣∣ ≤ D0εµ e−κ(|n|+|m|)/4, (5.8)

where D0 is a positive constant. Moreover un,m is analytic in µ and in the parameters

ν
(c)

m′,h′ , with c = a, b and |m′| ≥ 1.

Proof. In order to take into account the R operation we write (5.6) as

RVhe
T

T (ωn�T
, m�T

) =
(
ωn�T

− ω̃m�T

) ∫ 1

0
dt∂Vhe

T

T (ωn�T
+ t (ωn�T

− ω̃m�T
), m�T

),

(5.9)

where ∂ denotes the derivative with respect to the argument ωn�T
+ t (ωn�T

− ω̃m�T
).

By (5.7) we see that the derivatives can be applied either on the propagators in L0(T ),

or on the RV
he

T ′
T ′ . In the first case there is an extra factor 2−h

(e)
T +hT with respect to the

bound (4.11): 2−h
(e)
T is obtained from ωn�T

− ω̃m�T
while ∂g(hT ) is bounded proportion-

ally to 22hT ; in the second case note that ∂tRV
he

T ′
T ′ = ∂tV

he
T ′

T ′ as LV
h

(e)

T ′
T ′ is independent of

t ; if the derivative acts on the propagator of a line � ∈ L(T ), we get a gain factor

2−h
(e)
T +hT ′ ≤ 2−h

(e)
T +hT 2−h

(e)

T ′ +hT ′ , (5.10)

as h
(e)

T ′ ≤ hT . We can iterate this procedure until all the R operations are applied on
propagators; at the end (i) the propagators are derived at most one time; (ii) the number

of terms so generated is ≤ k; (iii) with each self-energy graph T a factor 2−h
(e)
T +hT is

associated.
Assuming that |ν(c)

h,m| ≤ Cε and |�| ≤ Cε, for any θ one obtains, for a suitable

constant D,

|Val(θ)| ≤ ε|Vw(θ)|+|V (1)
v (θ)|D|V (θ)|

( ∞∏
h=h0

exp
[
h log 2

(
4K(θ)2−(h−2)/τ − Ch(θ) + Sh(θ) + Mν

h(θ)
)])

( ∏
T ∈S(θ)

h
(e)
T

≥h0

2−h
(e)
T +hT

)( ∞∏
h=h0

2−hMν
h(θ)
)

(5.11)

( ∏
V∈V (θ)∪E(θ)

e−κ(|nV|+|n′
V
|)
)( ∏

V∈V (θ)∪E(θ)

e−κ(|mV|+|m′
V
|)
)
,

where the second line is a bound for
∏

h≥h0
2hNh(θ) and we have used that by item (12)

Nh(θ) can be bounded through Lemma 5, and Lemma 4 has been used for the lines
on scales h < h0; moreover

∏∞
h=h0

2−hMh
ν (θ) takes into account the factors 2−h arising

from the running coupling constants ν
(c)
h,m and the action of R produces, as discussed

above, the factor
∏

T ∈S(θ) 2−h
(e)
T +hT . Then one has
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( ∞∏
h=h0

2hSh(θ)
)( ∏

T ∈S(θ)

2−h
(e)
T

)
= 1,

( ∞∏
h=h0

2−hCh(θ)
)( ∏

T ∈S(θ)

2hT

)
≤ 1. (5.12)

We have to sum the values of all trees, so we have to worry about the sum of the labels.
Recall that a labeled tree is obtained from an unlabeled tree by assigning all the labels to
the points and the lines: so the sum over all possible labeled trees can be written as sum
over all unlabeled trees and of labels. For a fixed unlabeled tree θ with a given number of
nodes, say N , we can assign first the mode labels {(n′

V
, m′

V
), (nV, mV)}v∈V (θ)∪E(θ), and

we sum over all the other labels, which gives 4|Vv(θ)| (for the labels jV) times 2|L(θ)| (for
the scale labels): then all the other labels are uniquely fixed. Then we can perform the
sum over the mode labels by using the exponential decay arising from the node factors
(3.3) and end-point factors (3.4). Finally we have to sum over the unlabeled trees, and this
gives a factor 4N [26]. By Lemma 3, one has |V (θ)| = |Vw(θ)|+|V (1)

v (θ)|+|V (3)
v (θ)| ≤

3(|V (3)
w (θ)| + |V (1)

v (θ)|), hence N ≤ 3k, so that
∑

θ∈�
(k)R
n,m

|Val(θ)| ≤ Dkεk , for some

positive constant D.
Therefore, for fixed (n, m) one has

∞∑
k=1

∑
θ∈�

(k)
n,m

µk |Val(θ)| ≤ D0µε e−κ(|n|+|m|)/4, (5.13)

for some positive constant D0, so that (5.8) is proved. ��
From (5.3) we know that the quantities ν

(c)
h,m, for h ≥ 0 and |m| ≥ 1, verify the

recursive relations

µν
(c)
h+1,m = 2µν

(c)
h,m + β

(c)
h,m(ω̃, ε, {ν(c′)

h′,m′ }), (5.14)

where, by defining T (c)
h as the set of self-energy graphs in T (c)

<h+1 which are on scale h,
the beta function

β
(c)
h,m ≡ β

(c)
h,m(ω̃, ε, {ν(c′)

h′,m′ }) = 2h+1 1

2

∑
σ=±

∑
T ∈T (c)

h

µkT Vh+1
T (σ ω̃m, m), (5.15)

depends only on the scales h′ ≤ h.
In order to obtain a bound on the beta function, hence on the running coupling con-

stants, we need to bound Vh+1
T (±ω̃m, m) for T ∈ T (c)

h . We define �̃
(k)R
n,m as the set �(k)R

n,m

introduced before, but by changing item (7) into the following one:

(7′) We divide the set Ẽ(θ) of end-points into two sets E(θ) and E0(θ). With each end-
point V ∈ E(θ) we associate a first mode label (n′

V
, m′

V
), with |m′

V
| = |n′

V
|, a second

mode label (0, 0) and an end-point factor VV = (−1)
1+δn′

V
,m′

V a0,n′
V

, while E0(θ) is
either the empty set or a single end-point V0, and, in the latter case, with the end-point
V ∈ E0(θ) we associate a first mode label (ωmV

, nV), where ωmV
= ω̃mV

/ω, a second
mode label (0, 0) and an end-point factor VV = 1.

Then we have the following generalization of Lemma 4.
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Lemma 8. If ε is small enough for any tree θ ∈ �̃
(k)R
n,m one has

Nh(θ) ≤ 4K(θ)2(2−h)/τ − Ch(θ) + Sh(θ) + Mν
h(θ), (5.16)

where the notations are as in Lemma 4.

Proof. Lemma 4 holds for E0(θ) = 0; we mimic the proof of Lemma 4 proving that

N∗
h (θ) ≤ max{0, 2K(θ)2(2−h)/τ }, (5.17)

for all trees θ with E0(θ) �= ∅, again by induction on K(θ).
For any line � ∈ L(θ) set η� = 1 if the line is along the path connecting V0 to the

root and η� = 0 otherwise, and write

n� = n0
� + η�ωm, m� = m0

� + η�m, (5.18)

which implicitly defines n0
� and m0

� .
Define k0 = 2(h−1)/τ . One has N∗

h (θ) = 0 for K(θ) < k0, because if a line �̄ ∈ L(θ)

is indeed on scale h then |ωn�̄ − ω̃m�̄
| < C021−h, so that (5.18) and the Diophantine

conditions imply

K(θ) ≥
∣∣∣n0

�̄

∣∣∣ > 2(h−1)/τ ≡ k0. (5.19)

Then, for K ≥ k0, we assume that the bound (5.17) holds for all K(θ) = K ′ < K , and
we show that it follows also for K(θ) = K .

If the root line � of θ is either on scale < h or on scale ≥ h and resonant, the bound
(5.17) follows immediately from the bound (4.13) and from the inductive hypothesis.

The same occurs if the root line is on scale ≥ h and non-resonant, and, by calling
�1, . . . , �m the lines on scale ≥ h which are the closest to �, one has m ≥ 2: in fact in
such a case at least m − 1 among the subtrees θ1, . . . , θm having �1, . . . , �m, respec-
tively, as root lines have E0(θi) = ∅, so that we can write, by (4.13) and by the inductive
hypothesis,

N∗
h (θ) = 1 +

m∑
i=1

N∗
h (θi) ≤ 1 + E−1

h

m∑
i=1

K(θi) − (m − 1) ≤ EhK(θ), (5.20)

so that (5.17) follows.
If m = 0 then N∗

h (θ) = 1 and K(θ)2(2−h)/τ ≥ 1 because one must have K(θ) ≥ k0.
So the only non-trivial case is when one has m = 1. If this happens �1 is, by con-

struction, the root line of a tree θ1 such that K(θ) = K(T ) + K(θ1), where T is the
cluster which has � and �1 as external lines and K(T ), defined in (4.7), satisfies the
bound K(T ) ≥ |n�1 − n�|.

Moreover, if E0(θ1) �= ∅, one has
∣∣∣|ωn0

� + ω̃m| − ω̃m�

∣∣∣ ≤ 2−h+1C0,∣∣∣|ωn0
�1

+ ω̃m| − ω̃m�1

∣∣∣ ≤ 2−h+1C0, (5.21)

so that, for suitable η�, η�1 ∈ {−, +}, we obtain
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2−h+2C0 ≥ ∣∣ω(n0
� − n0

�1
) + η�ω̃m�

+ η�1 ω̃m�1

∣∣ ≥ C0|n0
� − n0

�1
|−τ ≡ C0|n� − n�1 |−τ ,

(5.22)

by the second Diophantine conditions in (2.33), as the quantities ω̃m appearing in (5.21)
cancel out. Therefore one obtains by the inductive hypothesis

N∗
h (θ) ≤ 1 + K(θ1)E

−1
h ≤ 1 + K(θ)E−1

h − K(T )E−1
h ≤ K(θ)E−1

h , (5.23)

hence the first bound in (5.17) is proved.
If E0(θ1) = ∅, one has

N∗
h (θ) ≤ 1 + K(θ1)E

−1
h − 1 ≤ 1 + K(θ)E−1

h − 1 ≤ K(θ)E−1
h , (5.24)

and (5.17) follows also in such a case. ��
The following bound for Vh+1

T (±ω̃m, m), h ≥ h0, can then be obtained.

Lemma 9. Assume that there exists a constant C such that one has |�| ≤ Cε and
|ν(c)

h,m| ≤ Cε, with c = a, b, for all |m| ≥ 1 and all h ≥ 0. Then if ε is small enough for

all h ≥ 0 and for all T ∈ T (c)
h one has

|Vh+1
T (±ω̃m, m)| ≤ B |V (T )|e−κ2(h−1)/τ /4e−κK(T )/4ε|V (1)

v (T )|+|Vw(T )|, (5.25)

where B is a constant and K(T ) is defined in (4.7).

Proof. By using Lemma 7 we obtain for all T ∈ T (c)
h and assuming h ≥ h0 we get the

bound ∣∣∣Vh+1
T (±ω̃m, m)

∣∣∣ ≤ B
|V (T )|

ε|V (1)
v (T )|+|Vw(T )|

h∏
h′=h0

exp
[
4K(T ) log 2h′2(2−h′)/τ − Ch′(T ) + Sh′(T ) + Mν

h′(T )
]

( ∏
T ′⊂T

h
(ε)
T

≥h0

2−h
(e)
T +hT

)( h∏
h′=h0

2−h′Mν
h′ (T )

)
e−κ|K(T )|/2, (5.26)

where B is a suitable constant. If h < h0 the bound trivializes as the r.h.s. reduces simply

to C|V (T )||ε||V (1)
v (T )|+|Vw(T )|e− κ

2 |K(T )|. The main difference with respect to Lemma 6 is
that, given a self-energy graph T ∈ T (c)

h , there is at least a line � ∈ L(T ) on scale h� = h

and with propagator

1

−ω2(n0
� + η�ωm)2 + ω̃2

m0
�+η�m

, (5.27)

where η� = 1 if the line � belongs to the path of lines connecting the entering line (car-
rying a momentum (n, m)) of T with the line coming out of T , and η� = 0 otherwise.
Then one has by the Mel’nikov conditions
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C0|n0
�|−τ ≤

∣∣∣ωn0
� + η�ω̃m ± ω̃m0

�+η�m

∣∣∣ ≤ C02−h+1, (5.28)

so that |n0
�| ≥ 2(h−1)/τ . On the other hand one has |n0

�| ≤ K(T ), hence K(T ) ≥ 2(h−1)/τ ;
so we get the bound (5.25). ��

It is an immediate consequence of the above lemma that for all µ0 > 0 there exists
ε0 > 0 such that for all |µ| ≤ µ0 and 0 < ε < ε0 one has |β(c)

h,m| ≤ B1ε|µ|, with B1 a
suitable constant.

We have then proved convergence assuming that the parameters νh,m and � are
bounded; we have to show that this is actually the case, if the ν

(c)
m in (2.34) are chosen

in a proper way.
We start proving that it is possible to choose ν(c) = {ν(c)

m }|m|≥1 such that, for a suitable

positive constant C, one has |ν(c)
h,m| ≤ Cε for all h ≥ 0 and for all |m| ≥ 1.

For any sequence a ≡ {am}|m|≥1 we introduce the norm

‖a‖∞ = sup
|m|≥1

|am|. (5.29)

Then we have the following result.

Lemma 10. Assume that there exists a constant C such that |�| ≤ Cε. Then for all
µ0 > 0 there exists ε0 > such that for all |µ| ≤ µ0 and for all 0 < ε < ε0 there

is a family of intervals I
(h̄)
c,m, h̄ ≥ 0, |m| ≥ 1, c = a, b, such that I

(h̄+1)
c,m ⊂ I

(h̄)
c,m,

|I h̄
c,m| ≤ 2ε(

√
2)−(h̄+1) and, if ν

(c)
m ∈ I

(h̄)
c,m, then

‖ν(c)
h ‖∞ ≤ Dε, h̄ ≥ h ≥ 0, (5.30)

for some positive constant D. Finally one has ν
(c)
h,−m = ν

(c)
h,m, c = a, b, for all h̄ ≥ h ≥ 0

and for all |m| ≥ 1. Therefore one has ‖νh‖∞ ≤ Cε for all h ≥ 0, for some positive
constant D; in particular |νm| ≤ Dε for all m ≥ 1.

Proof. The proof is done by induction on h̄. Let us define J
(h)
c,m = [−ε, ε] and call

J (h) =×|m|≥1,c=a,bJ
(h)
c,m and I (h) = ×|m|≥1,c=a,bI

(h)
c,m.

We suppose that there exists I (h̄) such that, if ν spans I (h̄) then νh̄ spans J (h̄) and

|ν(c)
h,m| ≤ Dε for h̄ ≥ h ≥ 0; we want to show that the same holds for h̄ + 1. Let us call

J̃ (h̄+1) the interval spanned by {ν(c)

h̄+1,m
}|m|≥1,c=a,b when {ν(c)

m }|m|≥1,c=a,b span I (h̄). For

any {ν(c)
m }|m|≥1,c=a,b ∈ I (h̄) one has {νh̄+1,m}|m|≥1,c=a,b ∈ [−2ε − Dε2, 2ε + Dε2],

where the bound (5.25) has been used. This means that J (h̄+1) is strictly contained in
J̃ (h̄+1). On the other hand it is obvious that there is a one-to-one correspondence between
{ν(c)

m }|m|>1,c=a,b and the sequence {ν(c)
h,m}|m|≥1,c=a,b, h̄ + 1 ≥ h ≥ 0. Hence there is a

set I (h̄+1) ⊂ I (h̄) such that, if {ν(c)
m }|m|≥1,c=a,b spans I (h̄+1), then {ν(c)

h̄+1,m
}|m|≥1,c=a,b

spans the interval J (h̄) and, for ε small enough, |νh|∞ ≤ Cε for h̄ + 1 ≥ h ≥ 0.
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The previous computations also show that the inductive hypothesis is verified also for
h̄ = 0 so that we have proved that there exists a decreasing sets of intervals I (h̄) such that
if {ν(c)

m }|m|>1,c=a,b ∈ I (h̄) then the sequence {ν(c)
h,m}|m|≥1,c=a,b is well defined for h ≤ h̄

and it verifies |ν(c)
h,m| ≤ C|ε|. In order to prove the bound on the size of I

(h̄)
c,m let us denote

by {ν(c)
h,m}|m|≥1,c=a,b and {ν′(c)

h,m}|m|≥1,c=a,b, 0 ≤ h ≤ h̄, the sequences corresponding to

{ν(c)
m }|m|≥1,c=a,b and {ν′(c)

m }|m|≥1,c=a,b in I (h̄). We have

µν
(c)
h+1,m − µν

′(c)
h+1,m = 2

(
µν

(c)
h,m − µν

′(c)
h,m

)
+ β

(c)
h,m − β

′(c)
h,m, (5.31)

where β
(c)
h,m and β

′(c)
h,m are shorthands for the beta functions. Then, as |νk − ν′

k|∞ ≤
|νh − ν′

h|∞ for all k ≤ h, we have

|νh − ν′
h|∞ ≤ 1

2
|νh+1 − ν′

h+1|∞ + Dε2|νh − ν′
h|∞. (5.32)

Hence if ε is small enough then one has

‖ν − ν′‖∞ ≤ (
√

2)−(h̄+1)‖νh̄ − ν′
h̄
‖∞. (5.33)

Since, by definition, if ν spans I (h̄), then νh̄ spans the interval J (h̄), of size 2|ε|, the

size of I (h̄) is bounded by 2|ε|(√2)(−h̄−1).
Finally note that one can choose ν

(c)
m = ν

(c)
−m and then ν

(c)
h,m = ν

(c)
h,−m for any |m| ≥ 1

and any h̄ ≥ h ≥ 0; this follows from the fact that the function β
(c)
k,m in (5.15) is even

under the exchange m → −m; it depends on m through ω̃m (which is an even function of
m), through the end-points v ∈ E(θ) (which are odd under the exchange m → −m; but
their number must be even) and finally through ν

(q−1)
k,m which are assumed inductively

to be even. ��
It will be useful to explicitly construct the ν

(c)
h,m by a contraction method. By iterating

(5.14) we find, for |m| ≥ 1,

µν
(c)
h,m = 2h+1

(
µν(c)

m +
h−1∑

k=−1

2−k−2β
(c)
k,m(ω̃, ε, {ν(c′)

k′,m′ })
)

, (5.34)

where β
(c)
k,m(ω̃, ε, {ν(c′)

k′,m′ }) depends on νk′,m′ with k′ ≤ k − 1. If we put h = h̄ in (5.34)
we get

µν(c)
m = −

h̄−1∑
k=−1

2−k−2β
(c)
k,m(ω̃, ε, {ν(c′)

k′,m′ }) + 2−h̄−1µν
(c)

h̄,m
(5.35)

and, combining (5.34) with (5.35), we find, for h̄ > h ≥ 0,

µν
(c)
h,m = −2h+1


h̄−1∑

k=h

2−k−2β
(c)
k,m(ω̃, ε, {ν(c′)

k′,m′ })

+ 2h−h̄µν

(c)

h̄,m
. (5.36)
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The sequences {ν(c)
h,m}|m|>1, h̄ > h ≥ h0, parameterized by {ν(c)

h̄,m
}|m|≥2 such that

‖ν(c)

h̄
‖∞ ≤ Cε, can be obtained as the limit as q → ∞ of the sequences {ν(c)(q)

h,m },
q ≥ 0, defined recursively as

µν
(c)(0)
h,m = 0,

µν
(c)(q)
h,m = −2h+1


h̄−1∑

k=h

2−k−2β
(c)
k,m(ω̃, ε, {ν(c′)(q−1)

k′,m′ })

+ 2h−h̄µν

(c)

h̄,m
. (5.37)

In fact, it is easy to show inductively that, if ε is small enough, ‖ν(q)
h ‖∞ ≤ Cε, so

that (5.25) is meaningful, and

max
0≤h≤h̄

‖ν(q)
h − ν

(q−1)
h ‖∞ ≤ (Cε)q . (5.38)

For q = 1 this is true as ν
(c)(0)
h = 0; for q > 1 it follows by the fact that

β
(c)
k (ω̃, ε, {ν(c′)(q−1)

k′,m′ })−β
(c)
k (ω̃, ε, {ν(c′)(q−2)

k′,m′ }) can be written as a sum of terms in which

there are at least one ν-vertex, with a difference ν
(c′)(q−1)

h′ − ν
(c′)(q−2)

h′ , with h′ ≥ k, in

place of the corresponding ν
(c′)
h′ , and one node carrying an ε. Then ν

(q)
h converges as

q → ∞, for h̄ < h ≤ 1, to a limit νh, satisfying the bound ‖νh‖∞ ≤ Cε. Since the
solution is unique, it must coincide with one in Lemma 10.

We have then constructed a sequence of ν
(c)
h,m solving (5.36) for any h̄ > 1 and any

ν
(c)

h̄,m
; we shall call ν

(c)
h,m(�) the solution of (5.36) with h̄ = ∞ and ν

(c)
∞,m = 0, to stress

the dependence on �.
We will prove the following lemma.

Lemma 11. Under the the same conditions of Lemma 10 it holds that for any h ≥ 0,

‖νh(�
1) − νh(�

2)‖∞ ≤ Dε|�1 − �2|, (5.39)

for a suitable constant D.

Proof. Calling ν
(q)
h (�) the l.h.s. of (5.25) with h̄ = ∞ and ν∞,m = 0, we can show by

induction on q that

‖ν(q)
h (�1) − ν

(q)
h (�2)‖∞ ≤ Dε|�1 − �2|. (5.40)

We find convenient to write explicitly the dependence of the function β
(c)
h,m from the

parameter �, so that we rewrite β
(c)
k,m(ω̃, ε, {ν(c′)(q−1)

k′,m′ } in the r.h.s. of (5.37) as

β
(c)
k,m(ω̃, ε, �, {ν(c′)(q−1)

k′,m′ (�)}. Then from (5.37) we get

µν
(c)(q)
m (�1) − µν

(c)(q)
m (�2) =

∞∑
k=h

2h−k−1[β(c)
k,m(ω̃, ε, �1, {ν(c′)(q−1)

k′,m′ (�1)})

−β
(c)
k,m(ω̃, ε, �2, {ν(c′)(q−1)

k′,m′ (�2)})]. (5.41)
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When q = 1 we have that β
(c)
k,m(ω̃, ε, �1, {ν(c′)(q−1)

k′,m′ (�1)}) − β
(c)
k,m(ω̃, ε, �2,

{ν(c′)(q−1)

k′,m′ (�2)}) is given by a sum of self energy graphs with one node V with a factor

ηV with � replaced by �1 −�2; as there is at least a vertex V of w-type by the definition
of the self energy graphs we obtain

‖ν(1)
h (�1) − ν

(1)
h (�2)‖∞ ≤

(
D1ε + D̃1ε

2
)

|�1 − �2|, (5.42)

for positive constants D1 < 2D and D̃2, where D1ε|�1 − �2| is a bound for the self-
energy first order contribution.

For q > 1 we can write the difference in (5.41) as(
β

(c)
k,m(ω̃, ε, �1, {ν(c′)(q−1)

k′,m′ (�1)}) − β
(c)
k,m(ω̃, ε, �2, {ν(c)(q−1)

k′,m′ (�1)})
)

+
(
β

(c)
k,m(ω̃, ε, �2, {ν(c)(q−1)

k′,m′ (�1)}) − β
(c)
k,m(ω̃, ε, �2, {ν(c)(q−1)

k′,m′ (�2)})
)

. (5.43)

The first factor is given by a sum over self-energy graphs with one node V with a factor
ηV with � replaced by �1 − �2; the other difference is given by a sum over self energy
graphs with a ν-vertex with which is associated a factor ν

(c)(q−1)

k′,m′ (�1) − ν
(c)(q−1)

k′,m′ (�2);
hence we find

‖ν(q)
h (�1) − ν

(q)
h (�2)‖∞ ≤

(
D1ε + D3ε

2
)

|�1 − �2|
+εD2 sup

h≥0
‖ν(q−1)

h (�1) − ν
(q−1)
h (�2)‖∞, (5.44)

where D1ε|�1 −�2| is a bound for the first order contribution coming from the first line
in (5.43), while the last summand in (5.44) is a bound from the terms from the last line
of (5.43). Then (5.40) follows with D = 2D1, for ε small enough. ��

By using Lemma 11 we can show that the self consistence equation for � (5.4) has
a unique solution � = O(ε).

Lemma 12. For all µ0 > 0 there exists ε0 > 0 such that, for all |µ| ≤ µ0 and for all
0 < ε < ε0, given ν

(c)
m (�) chosen as in Lemma 9 (with h̄ = ∞ and ν

(c)
∞,m = 0) it holds

that (5.4) has a solution |�| ≤ Cε where C is a suitable constant.

Proof. The solution of (5.4) can be obtained as the limit as q → ∞ of the sequence
�(q), q ≥ 0, defined recursively as

�(0) = 0,

�(q) = r−1
0

∞∑
k=1

∑
θ∈�

(k)(q−1))R
n,n

∗
a0,−nVal(θ), (5.45)

where we define �
(k)(q)R
n,m as the set of trees identical to �

(k)R
n,m except that � in ηV is

replaced by �(q) and each νh,m is replaced by νh,m(�(q)), for all h ≥ 0, |m| ≥ 1.Equation
(5.45) is a contraction defined on the set |�| ≤ Cε, for ε small. In fact if |�(q−1)| ≤ Cε,
then by (5.45) |�(q)| ≤ C1ε + C2Cε2, where we have used that the first order contribu-
tion to the r.h.s. of (5.45) is �-independent (see Sect. 3), and C1ε < εC/ is a bound for
it; hence for ε small enough (5.45) send the interval |�| ≤ Cε to itself.
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Moreover we can show inductively that

‖�(q) − �(q−1)‖∞ ≤ (Cε)q . (5.46)

For q = 1 this is true; for q > 1 �(q) − �(q−1) can be written as sum of trees in which
a) either with a node V

′ is associated a factor proportional to �(q−1) − �(q−2); or b)
with a ν vertex is associated νh′,m′(�(q−1)) − νh′,m′(�(q−2)) for some h′, m′. In the first
case we note that the constraint in the sum in the r.h.s. of (5.45) implies that sv0 = 3
for the special vertex of θ ; hence, item (4) in Sect. 3, says that V

′ �= v0 so that such
terms are bounded by D1ε|�(1) − �(2)| (a term order O(�1 − �2) should have three v

lines entering v0 and two of them coming from end points, which is impossible). In the
second case we use (5.39), and we bound such terms by D2ε|�(1) − �(2)| . Hence by
induction (5.46) is found, if C ≥ D1/4, D2/4, C1/4). ��

We have finally to prove that ũn,m solves the last of (1.14) and (2.2).

Lemma 13. For all µ0 > 0 there exists ε0 > such that, for all |µ| ≤ µ0 and for all
0 < ε < ε0, given ν

(c)
m (�) chosen as in Lemma 9 and � chosen as in Lemma 12 then

ũn,m solves the last of (1.14) and (2.2).

Proof. Let us consider first the case in which |n| �= |m| and we call �R
n,m =⋃k �

(k)R
n,m ;

assume also (what of course is not restrictive) that n, m is such that χh0(|ωn| − ω̃m) +
χh0+1(|ωn| − ω̃m) = 1. We call �R

n,m, the set of trees θ ∈ �R
n,m with root line at scale

h0, so that

ũn,m =
∑

θ∈�R
n,m

Val(θ) =
∑

θ∈�R
n,m,h0

Val(θ) +
∑

θ∈�R
n,m,h0+1

Val(θ), (5.47)

and we write �R
n,m,h0

= �
α,R
n,m,h0

⋃
�

β,R
n,m,h0

, where �
α,R
n,m,h0

are the trees with sV0 = 1,

while �
β,R
n,m,h̄

are the trees with sV0 = 3 and V0 is the special vertex (see Definition 2).
Then

∑
θ∈�

α,R
n,m,h0

Val(θ) =
∑

c=a,b

(
g(h̄)(n, m)2−h0ν

(c)
h0,m

∑
θ∈�R

n,mc,h0

Val(θ)

+g(h̄)(n, m)2−h̄ν
(c)
h0,m

∑
θ∈�R

n,mc,h0+1

Val(θ)

+g(h0+1)(n, m)2−h0ν
(c)
h0,m

∑
θ∈�R

n,m,h0

Val(θ) (5.48)

+g(h0+1)(n, m)2−h0−1ν
(c)
h0+1,m

∑
θ∈�R

n,mc,h0+1

Val(θ)
)
,

where mc is such that ma = m and mb = −m. On the other hand we can write
�

β,R
n,m,h0

= �
β1,R
n,m,h0

⋃
�

β2,R
n,m,h0

, where �
β1,R
n,m,h0

are the trees such that the root line �0 is
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the external line of a self-energy graph, and �
β2,R
n,m,h0

is the complement. Then we can
write

∑
θ∈�

β1,R
n,m,h0

Val(θ) =
∑

c=a,b

g(h0)(n, m)
∑

T ∈T̃ (c)
<h0

RV h̄
T (ωn, m)

∑
θ∈�R

n,mc,h0

Val(θ)

+g(h0)(n, m)
∑

T ∈T̃ (c)
<h0

RVh0
T (ωn, m)

∑
θ∈�R

n,mc,h0+1

Val(θ)

+g(h0+1)(n, m)
∑

T ∈T̃ (c)
<h0

RVh0
T (ωn, m)

∑
θ∈�R

n,mc,h0

Val(θ) (5.49)

+g(h0+1)(n, m)
∑

T ∈T̃ (c)
<h0+1

RVh0+1
T (ωn, m)

∑
θ∈�R

n,mc,h0+1

Val(θ),

where T̃ (c)
<h0

is the set of self-energy graphs such that if V is the vertex to which the
external line �0 is attached, then sV = 3. Note that if T belongs to the complementary
of T̃ (c)

<h̄
, then LVh

T = 0 by the compact support properties of g(h).
Summing (5.6) and (5.49) and using (5.1), (5.3) we get

∑
θ∈�

β1,R
n,m,h0

Val(θ) =
∑

c=a,b

g(h0)(n, m)
∑

T ∈T (c)
<h0

Vh0
T (ωn, m)

∑
θ∈�R

n,mc,h0

Val(θ)

+g(h0)(n, m)
∑

T ∈T (c)
<h0

Vh0
T (ωn, m)

∑
θ∈�R

n,m,h0+1

Val(θ)

+g(h0+1)(n, m)
∑

T ∈T (c)
<h0

Vh0
T (ωn, m)

∑
θ∈�R

n,mc,h0

Val(θ) (5.50)

+g(h0+1)(n, m)
∑

T ∈T (c)
<h0+1

Vh0+1
T (ωn, m)

∑
θ∈�R

n,mc,h0+1

Val(θ)

+ν
(c)
m

(
g(h0)(n, m) + g(h0+1)(n, m)

) ( ∑
θ∈�R

n,mc,h0

Val(θ) +
∑

θ∈�R
n,mc,h0+1

Val(θ)
)
.

The last line is equal to

1

−ω2n2 + ω̃2
m

[ν(a)
m ũn,m + ν(b)

m ũn,−m], (5.51)

while adding the first three lines in (5.49) to
∑

θ∈�
β1,R
n,m,h0

Val(θ) we get

ε
∑

n1+n2+n3=n
m1+m2+m3=m

ũn1,m1 ũn2,m2 ũn3,m3 , (5.52)

from which we get that
∑

θ∈�R
n,m

Val(θ), for µ = 1, is a formal solution of (2.2). A
similar result holds for |n| = |m|. ��
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6. Construction of the Perturbed Frequencies

In the following it will be convenient to set ω̃ = {ωm}|m|≥2. By the analysis of the
previous sections we have found the counterterms {νm(ω̃, ε)}|m|≥2 as functions of ε and
ω̃. We have now to invert the relations

ω̃2
m − νm(ω̃, ε) = m2, (6.1)

in order to prove Proposition 2.
We shall show that there exists a sequence of sets {E (p)}∞p=0 in [0, ε0], such that

E (p+1) ⊂ E (p), and a sequence of functions {ω̃(p)(ε)}∞p=0, with each ω̃(p) ≡ ω̃(p)(ε)

defined for ε ∈ E (p), such that for all ε ∈ E , with

E =
∞⋂

p=0

E (p) = lim
p→∞ E (p), (6.2)

there exists the limit

ω̃(∞)(ε) = lim
p→∞ ω̃(p)(ε), (6.3)

and it solves (6.1).
To fulfill the program above we shall define since the beginning ω = ωε = √

1 − ε,
and we shall follow an iterative scheme by setting, for |m| ≥ 1,

ω̃(0)2
m = m2,

ω̃
(p)2
m = ω̃

(p)2
m (ε) = m2 + νm(ω̃(p−1), ε), p ≥ 1, (6.4)

and reducing recursively the set of admissible values of ε.
We start by imposing on ε the Diophantine conditions

|ωn ± m| ≥ 2C0|n|−τ0 ∀n ∈ Z \ {0} and ∀m ∈ Z \ {0} such that |m| �= |n|,
(6.5)

where C0 and τ0 are two positive constants.
This will imply some restrictions on the admissible values of ε, as the following result

shows.

Lemma 14. For all 0 < C0 ≤ 1/2 there exist ε0 > 0 and γ0, δ0 > 0 such that
the set E (0) of values ε ∈ [0, ε0] for which (6.5) are satisfied has Lebesgue measure
meas(E (0)) ≥ ε0(1 − γ0ε

δ0
0 ) provided that one has τ0 > 1.

Proof. For (n, m) such that |ωn ± m| ≥ 2C0 the Diophantine conditions in (6.5) are
trivially satisfied. We consider then (n, m) such that |ωn ± m| < 2C0 and we write, if
0 < C0 ≤ 1/2,

1 > 2C0 > |ωn ± m| ≥
∣∣∣∣ εn

1 + √
1 − ε

− n ± m

∣∣∣∣ , (6.6)

and as |n ± m| ≥ 1 one gets |n| ≥ 1/2ε ≥ 1/2ε0. Moreover, for fixed n, the set M of
m’s such that |ωn ± m| < 1 contains at most 2 + ε0|n| values. By writing

f (ε(t)) = n
√

1 − ε(t) ± m = t
2C0

|n|τ0
, t ∈ [0, 1], (6.7)
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and, calling I(0) the set of ε such that |ωn±m| < 2C0|n|−τ0 is verified for some (n, m),
one finds for the Lebesgue measure of I(0),

meas(I(0)) =
∫

I(0)

dε =
∑

|n|≥1/2ε0

∑
|m|∈M

∫ 1

−1
dt

∣∣∣∣dε(t)

dt

∣∣∣∣ . (6.8)

We have from (6.7)

df

dt
= df

dε

dε

dt
= 2C0

|n|τ0
, (6.9)

so that, noting that one has |∂f/∂ε| ≥ |n|/4, we have to exclude a set of measure

∑
|n|≥N

8C0

|n|τ0+1 (2 + ε0|n|) ≤ const. ετ0
0 , (6.10)

and one has to impose τ0 = 1 + δ0, with δ0 > 0. ��
For p ≥ 1 the sets E (p) will be defined recursively as

E (p) =
{
ε ∈ E (p−1) : |ωn ± ω̃

(p)
m | > C0|n|−τ ∀|m| �= |n|,

|ωn ± (ω̃
(p)
m ± ω̃

(p)

m′ )| > C0|n|−τ |n| �= |m ± m′|
}
, p ≥ 1,(6.11)

for τ > τ0 to be fixed.
In Appendix A4 we prove the following result.

Lemma 15. For all p ≥ 1 one has
∥∥∥ω̃(p)(ε) − ω̃(p−1)(ε)

∥∥∥∞
≤ Cε

p
0 ∀ε ∈ E (p), (6.12)

for some constant C.

Therefore we can conclude that there exists a sequence {ω̃(p)(ε)}∞p=0 converging to

ω̃(∞)(ε) for ε ∈ E . We now have to show that the set E has positive (large) measure.
It is convenient to introduce a set of variables µ(ω̃, ε) such that

ω̃m + µm(ω̃, ε) = ωm ≡ |m|; (6.13)

the variables µ(ω̃, ε) and the counterterms are trivially related by

−νm(ω̃, ε) = µ2
m(ω̃, ε) + 2ω̃mµm(ω̃, ε). (6.14)

One can write ω̃
(p)
m = ωm − µm(ω̃(p−1), ε), according to (6.4). We shall impose the

Diophantine conditions

|ωn ± (ωm − µm(ω̃(p−1), ε))| > C0|n|−τ ,

|ωn ± ((ωm ± ωm′) − (µm(ω̃(p−1), ε) ± µm′(ω̃(p−1), ε)))| > C0|n|−τ . (6.15)
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Suppose that for ε ∈ E (p−1) the functions µm(ω̃(p−1), ε) are well defined; then define
I(p) = I(p)

1 ∪ I(p)
2 ∪ I(p)

3 , where I(p)
1 is the set of values ε ∈ E (p−1) verifying the

conditions ∣∣∣ωn ±
(
ωm − µm(ω̃(p−1), ε)

)∣∣∣ ≤ C0 |n|−τ , (6.16)

I(p)
2 is the set of values ε verifying the conditions

∣∣∣ωn ±
(
(ωm − ωm′) − (µm(ω̃(p−1), ε) − µm′(ω̃(p−1), ε))

)∣∣∣ ≤ C0|n|−τ , (6.17)

and I(p)
3 is the set of values ε verifying the conditions

∣∣∣ωn ±
(
(ωm + ωm′) − (µm(ω̃(p−1), ε) + µm′(ω̃(p−1), ε))

)∣∣∣ ≤ C0|n|−τ . (6.18)

For future convenience we shall call, for i = 1, 2, 3, I(p)
i (n) the subsets of I(p)

i which
verify the Diophantine conditions (6.16), (6.17) and (6.18), respectively, for fixed n.

We want to bound the measure of the set I(p). First we need to know a little better
the dependence on ε and ω̃ of the counterterms: this is provided by the following result.

Lemma 16. For all p ≥ 1 and for all ε ∈ E (p) there exists a positive constant C such
that

∣∣∣νm(ω̃(p), ε)

∣∣∣ ≤ Cε,

∣∣∣∣∂ω̃
(p)

m′
νm(ω̃(p), ε)

∣∣∣∣ ≤ Cε, m, m′ ≥ 1,

∣∣∣µm(ω̃(p), ε)

∣∣∣ ≤ Cε

m
,

∣∣∣∣∂ω̃
(p)

m′
µm(ω̃(p), ε)

∣∣∣∣ ≤ Cε

m
, m, m′ ≥ 1, (6.19)

∣∣∣∂εµ
(p)
m (ω, ε)

∣∣∣ ≤ C, m ≥ 1,

where the derivatives are in the sense of Whitney [38].

Proof. The bound for νm(ω̃(p), ε) is obvious by construction.
In order to prove the bound for ∂

ω
(p)

m′
νm(ω̃(p), ε) note that one has

∣∣∣∣g(h�j
)

�j
(ω̃′) − g

(h�j
)

�j
(ω̃) − (ω̃ − ω̃′) ∂ω̃g

(h�j
)

�j
(ω̃)

∣∣∣∣ ≤ C n2
�j

2−3h�j
∥∥ω̃′ − ω̃

∥∥2
∞ , (6.20)

from the compact support properties of the propagator.
Let us consider the quantity ν(ω̃′, ε)−ν(ω̃, ε)−(ω−ω′) ∂ω̃ν(ω̃, ε), where ∂ω̃ν(ω̃, ε)

denotes the derivative in the sense of Whitney, and note that it can be expressed as a

sum over trees each one containing a line with propagator g
(h�j

)

�j
(ω̃′)−g

(h�j
)

�j
(ω̃)− (ω̃−

ω̃′) ∂ω̃g
(h�j

)

�j
(ω̃), by proceeding as in the proof of Lemma 9 of [23]. Then we find

∥∥ν(ω̃′, ε) − ν(ω̃, ε) − (ω̃ − ω̃′) ∂ω̃ν(ω̃, ε)
∥∥∞ ≤ Cε

∥∥ω̃′ − ω̃
∥∥2

∞ , (6.21)

and the second bound in (6.19) follows.
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The bounds for µm(ω̃(p), ε) and ∂
ω

(p)

m′
µm(ω̃(p), ε) simply follow from (6.14) which

gives

µm(ω̃(p), ε) = νm(ω̃(p), ε)

|m|
−1

1 +
√

1 − νm(ω̃(p), ε)/m
. (6.22)

In order to prove the last bound in (6.19) we prove by induction the bound∣∣∣∂εω̃
(p)
m (ω, ε)

∣∣∣ ≤ C, m ≥ 1, (6.23)

by assuming that it holds for ω̃(p−1); then from (6.4) we have

2ω̃(p)∂εω̃
(p)
m (ε) = −∂ενm(ω̃(p−1)(ε), ε)

= −
∑
m′∈Z

∂
ω̃

(p−1)

m′
νm(ω̃(p−1)(ε), ε) ∂εω̃

(p−1)

m′ (ε) − ∂ηνm(ω̃
(p−1)
m (ε), η)

∣∣∣
η=ε

,

(6.24)

as it is easy to realize by noting that µm can depend on ω̃m′ when |m′| > |m| only if
the sum of the absolute values of the mode labels mv is greater than |m′ − m|, while we
can bound the sum of the contributions with |m′| < |m| by a constant times ε, simply
by using the second line in (6.19).

Hence from the inductive hypothesis and the proved bounds in (6.19), we obtain∥∥∥ω̃(p)(ε′) − ω̃(p)(ε) − (ε − ε′) ∂εω̃
(p)(ε)

∥∥∥∞
≤ C

∣∣ε′ − ε
∣∣ , (6.25)

so that also the bound (6.23) and hence the last bound in (6.16) follows. ��
Now we can bound the measure of the set we have to exclude: this will conclude the

proof of Proposition 2.
We start with the estimate of the measure of the set I(p)

1 . When (6.16) is satisfied one
must have

C2|m| ≤ |ωm − µm(ω̃(p−1), ε)| ≤ ω|n| + C0|n|−τ ≤ C′
2|n|,

C1|m| ≥ |ωm − µm(ω̃(p−1), ε)| ≥ ω|n| − C0|n|−τ ≥ C′
1|n|, (6.26)

which implies

M1|n| ≤ |m| ≤ M2|n|, M1 = C1

C′
1
, M2 = C′

2

C2
, (6.27)

and it is easy to see that, for fixed n, the set M0(n) of m’s such that (6.16) are satisfied
contains at most 2 + ε0|n| values.

Furthermore (by using also (6.5)) from (6.16) one obtains also

2C0|n|−τ0 ≤ |ω|n| − ωm| ≤ |ω|n| − ωm + µm(ω̃(p−1), ε)| + |µm(ω̃(p−1), ε)|
≤ C0|n|−τ + Cε0/|m|, (6.28)

which implies, together with (6.36), for τ ≥ τ0,

|n| ≥ N0 ≡
(

C0M1

Cε0

)1/(τ0−1)

. (6.29)
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Let us write ω(ε) = ωε = √
1 − ε and consider the function µ(ω̃(p−1), ε): we can

define a map t → ε(t) such that

f (ε(t)) ≡ ω(ε(t))|n| − ωm + µm(ω̃(p−1), ε(t)) = t
C0

|n|τ , t ∈ [−1, 1], (6.30)

describes the interval defined by (6.16); then the Lebesgue measure of I(p)
1 is

meas(I(p)
1 ) =

∫
I(p)

1

dε =
∑

|n|≥N0

∑
m∈M0(n)

∫ 1

−1
dt

∣∣∣∣dε(t)

dt

∣∣∣∣ . (6.31)

We have from (6.30),

df

dt
= df

dε

dε

dt
= C0

|n|τ , (6.32)

hence

meas(I(p)
1 ) =

∑
|n|≥N0

∑
m∈M0(n)

C0

|n|τ
∫ 1

−1
dt

∣∣∣∣df (ε(t))

dε(t)

∣∣∣∣
−1

. (6.33)

In order to perform the derivative in (6.30) we write

dµm

dε
= ∂εµm +

∑
|m′|≥1

∂
ω

(p−1)

m′
µm∂εω̃

(p−1)

m′ , (6.34)

where ∂εµm and ∂εω̃
(p−1)

m′ are bounded through Lemma 11. Moreover one has∣∣∣∣∂ω̃
(p−1)

m′
µm

∣∣∣∣ ≤ Cε e−κ|m′−m|/2, |m′| > |m|, (6.35)

and the sum over m′ can be dealt with as in (6.24).
At the end we get that the sum in (6.34) is O(ε), and from (6.29) and (6.30) we obtain,

if ε0 is small enough, ∣∣∣∣∂f (ε(t))

∂ε(t)

∣∣∣∣ ≥ |n|
4

, (6.36)

so that one has ∫
I(p)

1

dε ≤ const.
∑

|n|≥N0

C0

|n|τ+1 (2 + ε0|n|) (6.37)

≤ const. ε0

(
ε
(τ−1)/(τ0−1)
0 + ε

(τ−τ0+1)/(τ0−1)
0

)
.

Therefore for τ > max{1, τ0 − 1} the Lebesgue measure of the set I(p)
1 is bounded by

ε
1+δ1
0 , with δ1 > 0.

Now we discuss how to bound the measure of the set I(p)
2 . We start by noting that

from (6.30) we obtain, if m, � > 0,∣∣∣ω̃(p)
m+� − ω̃

(p)
m − �

∣∣∣ ≤ Cε

m
+ Cε

m + �
, (6.38)

for all p ≥ 1.
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By the parity properties of ω̃m without loss of generality we can confine ourselves
to the case n > 0, m′ > m ≥ 2, and |ωn − (ω̃

(p)

m′ − ω̃
(p)
m )| < 1. Then the discussion

proceeds as follows.
When the conditions (6.17) are satisfied, one has

2C0|n|−τ0 ≤ |ωn − (ωm′ − ωm)|
≤ |ωn − (ωm′ − µ

(p−1)

m′ (ω̃(p−1), ε))

+(ωm − µ
(p−1)
m (ω̃(p−1), ε))| (6.39)

+|µm′(ω̃(p−1), ε) − µm(ω̃(p−1), ε)|
≤ C0|n|−τ + Cε

m
+ Cε

m′ ≤ C0|n|−τ + 2Cε0

m
,

which implies for τ ≥ τ0,

|n| ≥ N1 ≡
(

C0

2Cε0

)1/τ0

. (6.40)

We can bound the Lebesgue measure of the set I(p)
2 by distinguishing, for fixed (n, �),

with � = m′ − m > 0, the values m ≤ m0 and m > m0, where m0 is determined by the
request that one has for m > m0,

2Cε0

m
≤ C0

|n|τ0
, (6.41)

which gives

m0 = m0(n) =
(

2C|n|τ0ε0

C0

)
. (6.42)

Therefore for m > m0 and τ ≥ τ0 one has, from (6.5), (6.38) and (6.41),
∣∣∣ωn − (ω̃

(p)

m′ − ω̃
(p)
m )

∣∣∣ ≥ |ωn − �| − 2Cε

m
≥ 2C0

|n|τ0
− C0

|n|τ0
≥ C0

|n|τ0
≥ C0

|n|τ , (6.43)

so that one has to exclude no further value from E (p−1), provided one takes τ ≥ τ0.
For m < m0 define L0 such that

C3� ≤
∣∣∣ω̃(p)

m+� − ω̃
(p)
m

∣∣∣ < ωn + 1 < C′
3|n|, L0 = C′

3

C3
, (6.44)

where (6.26) has been used. Again, for fixed n, the set L0(n) of �’s such that (6.26) is
satisfied with m′ − m = � contains at most 2 + ε0|n| values.

Therefore, by reasoning as in obtaining (6.37), one finds that for m < m0 one has to
exclude from E (p−1) a set of measure bounded by a constant times

∑
|n|≥N1

∑
�∈L0(n)

∑
m<m0(n)

C0

|n|τ+1 ≤ const. ε0

(
ε
(τ−τ0)/τ0
0 + ε

1+(τ−τ0−1)/τ0
0

)
, (6.45)

provided that one has τ > τ0 + 1 > 2 the Lebesgue measure of the set I(p)
2 is bounded

by ε
1+δ2
0 , with δ2 > 0.
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Finally we study the measure of the set I(p)
3 . If n > 0, |m′| > |m| and |(ω̃(p)

m +
ω̃m′) − ωn| < 1 (which again is the only case we can confine ourselves to study), then
one has to sum over |n| ≤ N1, with N1 given by (6.40). For such values of n one has

∣∣∣ωn − (ω̃
(p)

m′ + ω̃
(p)
m )

∣∣∣ ≥ ∣∣ωn − (|m| + |m′|)∣∣− 2Cε

|m|
≥ 2C0

|n|τ0
− C0

|n|τ0
≥ C0

|n|τ0
≥ C0

|n|τ , (6.46)

as soon as |m| > m0, with m0 given by (6.42). Therefore we have to take into account
only the values of m such that |m| < m0, and we can also note that |m′| is uniquely
determined by the values of n and m. Then one can proceed as in the previous case and
in the end one excludes a further subset of E (p−1) whose Lebesgue measure is bounded
by a constant times

∑
|n|≥N1

∑
m<m0(n)

C0

|n|τ+1 ≤ const. ε1+(τ−τ0)/τ0
0 , (6.47)

so that the Lebesgue measure of the set I(p)
3 is bounded by ε

1+δ3
0 , with δ3 > 0, provided

that one takes τ > τ0.
By summing together the bounds for I(p)

1 , for I(p)
2 and for I(p)

3 , then the bound

meas(I(p)) ≤ b εδ+1
0 (6.48)

with δ > 0, follows for all p ≥ 1, if τ is chosen to be τ > τ0 + 1 > 2.
We can conclude the proof of Proposition 2 through the following result, which shows

that the bound (6.42) essentially extends to the union of all I(p) (at the cost of taking a
larger constant B instead of b).

Lemma 17. Define I(p) as the set of values in E (p) verifying (6.26) to (6.28) for τ > 1.
Then one has, for two suitable positive constants B and δ,

meas
(
∪∞

p=0I(p)
)

≤ Bεδ+1
0 , (6.49)

where meas denotes the Lebesgue measure.

Proof. First of all we check that, if we call ε
(p)
j (n) the centers of the intervals I(p)

j (n),
with j = 1, 2, 3, then one has∣∣∣ε(p+1)

j (n) − ε
(p)
j (n)

∣∣∣ ≤ Dε
p
0 , (6.50)

for a suitable constant D.

The center ε
(p)
1 (n) is defined by the condition

ωn ±
(
ωm − µm(ω̃(p−1)(ε

(p)
1 (n)), ε

(p)
1 (n))

)
= 0, (6.51)

where Whitney extensions are considered outside E (p−1); then, by subtracting (6.51)
from the analogous expression for p + 1, we have(

µm(ω̃(p)(ε
(p+1)
1 (n)), ε

(p+1)
1 (n)) − µm(ω̃(p−1)(ε

(p)
1 (n)), ε

(p)
1 (n))

)
= 0. (6.52)



478 G. Gentile, V. Mastropietro, M. Procesi

In (6.48) one has

µm(ω̃′(ε′), ε′) − µm(ω̃(ε), ε) = µm(ω̃′(ε′), ε′) − µm(ω̃(ε′), ε′)
+µm(ω̃(ε′), ε′) − µm(ω̃(ε), ε′) + (µm(ω̃(ε), ε′) − µm(ω̃(ε), ε)), (6.53)

and, from Lemma 13,

∣∣µm(ω̃′(ε′), ε′) − µm(ω̃(ε′), ε′)
∣∣ ≤ Cε

∥∥ω′ − ω
∥∥∞ ,∣∣µm(ω̃(ε′), ε′) − µm(ω̃(ε), ε′)

∣∣ ≤ Cε
∣∣ε′ − ε

∣∣ , (6.54)

so that we get, by Lemma 10,

∣∣∣ε(p+1)
1 (n) − ε

(p)
1 (n)

∣∣∣ ≤ Cε
p
0 , (6.55)

for a suitable positive constant C. This proves the bound (6.50) for j = 1. Analogously
one can consider the cases j = 2 and j = 3, and a similar result is found.

By (6.10), (6.51), (6.54) and (6.12) it follows for p > p0,

|ε(p)
j (n) − ε

(p0)
j (n)| ≤ C

∞∑
k=p0

εk
0 = C

ε
p0
0

1 − ε0
(6.56)

so that one can ensure that |ε(p)
j (n) − ε

(p0)
j (n)| ≤ C0|n|−τ for p ≥ p0 by choosing

p0 = p0(n, j) ≤ const. log |n|. (6.57)

For all p ≤ p0 define J (p)
j (n) as the set of values ε such that (6.16), (6.17) and (6.18)

are satisfied with C0 replaced with 2C0. By the definition of p0 all the intervals I(p)
j (n)

fall inside the union of the intervals J (0)
j (n), . . . , J (p0)

j (n) as soon as p > p0. This
means that, by (6.31) to (6.37),

meas
(
∪∞

p=0I
(p)
1

)
≤ meas

(
∪p0

p=0J
(p)
1

)
≤
∑

|n|≥N0

meas(I(p)
1 (n))

≤ const.
∑

|n|≥N0

p0(n,1)∑
p=0

2C0

|n|τ+1 ≤ const.
∞∑

n=N0

n−(τ+1) log n ≤ Bε1+δ
0 ,

(6.58)

with suitable B and δ, in order to take into account the logarithmic corrections due to
(6.55). Analogously one obtains the bounds meas(I2) ≤ Bε1+δ

0 and meas(I3) ≤ Bε1+δ
0

for the Lebesgue measures of the sets I2 and I3 (possibly redefining the constant B).
This completes the proof of the bound (6.48). ��
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7. The case τ ≤ 2

Proposition 1 was proved assuming that ω̃ verifies the first and the second Diophantine
conditions (2.33) with τ > 2. Here we want to prove that it is possible to obtain a result
similar to Proposition 1 assuming only the first Diophantine condition and 1 < τ ≤ 2,
and that also in such a case the set of allowed values of ε have large Lebesgue measure,
so that a result analogous to Proposition 2 holds.

The proof of the analogue of Proposition 1 is an immediate adaptation of the analysis
in Sect. 4 and 5. First we consider a slightly different multiscale decomposition of the
propagator; instead of (4.2) we write

1

−ω2n2
� + ω̃2

m�

=
χ(6
√

|ω2n2
� − ω̃2

m�
|)

−ω2n2
� + ω̃2

m�

+
χ−1(6

√
|ω2n2

� − ω̃2
m�

|)
−ω2n2

� + ω̃2
m�

, (7.1)

and the denominator in the first addend of the r.h.s. of (7.1aa) is smaller than C0/6; as in
Sect. 4 we assume C0 ≤ 1/2 without loss of generality. If |n| �= |m| and |ω2n2 − ω̃2

m| <

C0/6, then, by reasoning as in (4.12), we obtain

|n| > |m| >
3

4
|n|, min{|m|, |n|} >

1

2ε
, (7.2)

and

|ω|n| − ω̃m| <
C0

6(ω|n| + ω̃m)
<

C0

6|n| . (7.3)

We can decompose the first summand in (7.1), obtaining

χ(6
√

|ω2n2
� − ω̃2

m�
|)

∞∑
h=−1

χh(|ωn| − ω̃m)

−ω2n2 + ω̃2
m

≡
∞∑

h=−1

g(h)
a (ωn, m), (7.4)

and the scales from −1 to h0, with h0 given in the statement of Lemma 5, can be bounded
as in Lemma 6. We shall call the line of type a a line with which a propagator g

(h)
a (ωn, m)

is associated and the line of type b a line with which the second summand in (7.1) is
associated; the scale of the b lines is set equal to −1. If Nh(θ) is the number of lines on
scale h, the following result holds.

Lemma 18. Assume that there is a constant C1 such that one has |ω̃m −|m|| ≤ C1ε/|m|
and that ω̃ verifies the first Melnikov condition in (2.33) with τ > 1. If ε is small enough
for any tree θ ∈ �

(k)
n,m and for all h ≥ h0 one has

Nh(θ) ≤ 4K(θ)2(2−h)/τ 2 − Ch(θ) + Mν
h(θ) + Sh(θ), (7.5)

where Mν
h(θ) and Sh(θ) are defined as the number of ν-vertices in θ such that the max-

imum scale of the two external lines is h and, respectively, the number of self-energy
graphs in θ with he

T = h.
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Proof. We prove inductively the bound

N∗
h (θ) ≤ max{0, 2K(θ)2(1−h)/τ 2 − 1}, (7.6)

where N∗
h (θ) is the number of non-resonant lines in L(θ) on scale h′ ≥ h. We proceed

exactly as in the proof of Lemma 5. First of all note that for a tree θ to have a line on
scale h the condition K(θ) > 2(h−1)/τ > 2(h−1)/τ 2

is necessary, by the first Diophantine
conditions in (2.33). This means that one can have N∗

h (θ) ≥ 1 only if K = K(θ) is
such that K > k0 ≡ 2(h−1)/τ : therefore for values K ≤ k0 the bound (7.6) is satisfied.
If K = K(θ) > k0, we assume that the bound holds for all trees θ ′ with K(θ ′) < K .
Define Eh = 2−1(2(1−h)/τ 2

)−1, we have to prove that N∗
h (θ) ≤ max{0, K(θ)E−1

h − 1}.
The dangerous case is if m = 1 then one has a cluster T with two external lines �

and �1, which are both with scales ≥ h; then
∣∣|ωn�| − ω̃m�

∣∣ ≤ 2−h+1C0,

∣∣∣|ωn�1 | − ω̃m�1

∣∣∣ ≤ 2−h+1C0, (7.7)

and recall that T is not a self-energy graph, so that n� �= n�1 . Note that the validity of
both inequalities in (7.7) for h ≥ h0 imply, by Lemma 5, that one has

|n� − n�1 | �= |m� ± m�1 |. (7.8)

Moreover from (7.3), (7.8) and (7.2) one obtains

C0

|n� − n�1 |τ
≤ |ω|n� − n�1 | − |m�1 ± m�1 || <

C0

3 min{|n�|, |n�1 |}
, (7.9)

which implies ∣∣n� − n�1

∣∣ ≥ 31/τ min{|n�|, |n�1 |}1/τ , (7.10)

Finally if C0|n|−τ ≤ ||ωn| − ω̃m| < C02−h+1 we have |n| ≥ 2(h−1)/τ , so that from
(7.8) we obtain |n� − n�1 | ≥ 31/τ 2(h−1)/τ 2

. Then K(θ) − K(θ1) > Eh, which gives
(7.6), by using the inductive hypothesis. ��

The analysis in Sect. 5 can be repeated with the following modifications. The renor-
malized trees are defined as in Sect. 5, but the rule (9) is replaced with

(9′) To each self-energy graph T the L′ operation is applied, where

L′Vh
T (ωn, m) = Vh

T (ωn, m), (7.11)

if T is such that its two external lines are attached to the same node V0 of T (see as
an example the first graph of Fig. 4.1), and L′Vh

T (ωn, m) = 0 otherwise.

With this definition we have the expansion (5.2) to (5.4), with νh,m replaced with νh

(as L′Vh
T (ωn, m) is independent of n, m).

We have that the analogue of Lemma 7 still holds also with L′, R′ replacing L, R;
indeed by construction the dependence on (n, m) in R′VhT

T (ωn, m) is due to the propa-
gators of lines � along the path connecting the external lines of the self-energy graph. If
a line � in the path is a line of type a, the propagator has the form

χ(6
√

|ω2n2
� − ω̃2

m�
|) χh(|ωn�| − ω̃m�

)

− (|ωn�| + ω̃m�

) (|ωn�| − ω̃m�

) , (7.12)
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and the second factor in the denominator is bounded proportionally to 2−h� , while the
first is bounded proportionally to |m0

� + m�e
T
|. Then we get for he

T ≤ h0,

|R′VhT

T (ωn, m)g
(h�e

T
)
(ωn, m)| ≤ Cε2 e−κ|m0

� |

|m0
� + m�e

T
| |n�e

T
|τ−1, (7.13)

which means that propagator of the external line of the resonance T is compensated,
if 1 < τ ≤ 2, by the extra factor (m�e

T
)−1. Here we used that there are at least two

nodes, carrying a node factor proportional to ε, not contained in any inner internal self-
energy graphs, as otherwise the points to which the external lines are attached would
coincide.

The same happens if � is of type b, as we are going to show. In the following with C

we denote any constant. We can assume that |m�e
T
|/2 < |m�| < 2|m�e

T
|, otherwise one

has |m0
�| > |m�e

T
|/2 and we can use the factor e−κ|m0

� |/2 < C|m�e
T
|−1, to compensate

the propagator of one of the external lines of T . We can decompose the propagator of
the line � as

χ−1(6
√

|ω2n2
� − ω̃2

m�
|)

∞∑
h=−1

χh(|ωn| − ω̃m)

−ω2n2 + ω̃2
m

. (7.14)

If the line has scale h ≤ h0 then we can bound the propagator with O(|εm�e
T
|−1),

and we get

|R′VhT

T (ωn, m)g
(h�e

T
)
(ωn, m)| ≤ Cε

1

|m�e
T
| |n�e

T
|τ−1. (7.15)

Moreover if |m�e
T
| < 6ε−1 still (7.15) holds. We have then to consider the case in

which the line � is a line of type b with scale h > h0 and |m�e
T
| ≥ 6ε−1. We have

still two cases: either � is such that |ωn� − ω̃m�
| ≤ 2C0/|m�e

T
| or not. In the first case,

remembering that |ωn�e
T

− ω̃m�e
T
| ≤ 2C0/|m�e

T
| because �e

T is a line of type a, we find

C0

|n�1 − n�e
T
|τ ≤ |ω(n�1 − n�e

T
) ± m�1 ± m�e

T
| < 5C0|m�e

T
|−1, (7.16)

where we have used that ω̃m = |m| + O(εm−1). This implies |n�1 − n�e
T
| = |n0

�1 | >

51/τ |m�e
T
|1/τ , so that one has

|R′VhT

T (ωn, m)g
h�e

T (ωn, m)| ≤ Cε2e
−κC|m�e

T
| 1
τ |n�e

T
|τ−1. (7.17)

In the second case one has |ωn� − ω̃m�
| > 2C0/|m�e

T
|. If h1 is the scale of � we can

distinguish two subcases: either h1 < h�e
T

or h1 ≥ h�e
T

. If h1 < h�e
T

we sum find

C0

|n�1 − n�e
T
|τ ≤ |ω(n�1 − n�e

T
) ± m�1 ± m�e

T
| < 5C02−h1 , (7.18)

as ω̃m�e
T

= |m�e
T
| + O(ε|m�e

T
|−1) = |m�e

T
| + O(ε2−h1) and ω̃m�

= |m�| + O(ε2−h1).

Hence we find |n0
�| > 2(h1−2)/τ and by bounding the propagator corresponding to � by
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O(|m�|−1)2h1) and using the factor e−κ2(h1−2)/τ
we get also in this case R′VhT

T (ωn, m)

is O(|m−1
�e
T

|).
Finally if h1 ≥ h�e

T
we sum again the denominators of � and �e

T and we find

C0

|n�1 − n�e
T
|τ ≤ |ω(n�1 − n�e

T
) ± m�1 ± m�e

T
| < 5C02

−h�e
T , (7.19)

as ω̃m�e
T

= |m�e
T
| + O(ε|m�e

T
|−1) = |m�e

T
| + O(ε2−h1) and ω̃m�1

= |m�1 | + O(ε2−h1).

Hence we find |n0
�e
T
| > 2

(h�e
T

−2)/τ
and this factor compensates the extra factor 2

h�e
T

arising from the entering line of T .
Then the bound (5.11) is replaced, using also Lemma 18, by

|Val(θ)| ≤ εk/2D
k
( ∞∏

h=h0

exp
[
h log 2

(
4K(θ)2−(h−2)/τ 2 − Ch(θ) + Mν

h(θ)
)])

( ∞∏
h=h0

2−hMν
h(θ)
)

(7.20)

( ∏
V∈V (θ)∪E(θ)

e−κ(|nv |+|n′
v |)
)( ∏

V∈V (θ)∪E(θ)

e−κ(|mv |+|m′
v |)
)
.

There is no need of Lemma 8, while the analogues of Lemma 9 and Lemma 10 can be
proved with some obvious changes. For instance in (5.28) one has η� = 0, which shows
that the first Mel’nikov is required, and νm is replaced with ν, i.e. one needs only one
counterterm.

Finally also the analogue of Proposition 2 can be proved by reasoning as in Sect. 6,
simply by observing that in order to impose the first Mel’nikov conditions (6.16) one
can take τ0 = τ ; note indeed that the condition τ > 2 was made necessary to obtain the
second Mel’nikov conditions (6.17) and (6.18).

8. Generalizations of the Results

So far we have considered only the case ϕ(u) = u3 in (1.1). Now we consider the case
in which the function ϕ(u) in (1.1) is replaced with any odd analytic function

ϕ(u) = �u3 + O(u5), � �= 0. (8.1)

Define ω = √
1 − λε as in Sect. 1. Then by choosing λ = σ we obtain, instead of (1.14),

Q

{
n2an = [(v + w)3 + O(ε)

]
n,n

,

−n2an = [(v + w)3 + O(ε)
]
n,−n

,

P
(
−ω2n2 + m2

)
wn,m = ε

[
(v + w)3 + O(ε)

]
n,m

, |m| �= |n|, (8.2)

where O(ε) denotes analytic functions in u and ε of order at least one in ε. Then we can
introduce an auxiliary parameter µ, by replacing ε with εµ in (8.2) (recall that at the end
one has to set µ = 1). Then we can proceed as in the previous sections. The equation
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for a0 is the same as before, and only the diagrammatic rules for the coefficients u
(k)
n,m

have to be slightly modified. The nodes can have any odd number of entering lines, that
is sV = 1, 3, 5, . . . . For nodes V of w-type with sV ≥ 3 the node factor is given by
ηV = ε(sV−1)/2, which has to be added to the list of node factors (3.3), while for nodes
V of v-type one has to add to the list in (3.2) other (obvious) contributions, arising from
the fact that the function f

(k)
n in (2.4) has to be replaced with

f (k)
n =

k∑
k′=1

f (k,k′)
n , (8.3)

where the function f
(k,1)
n is given by (2.12), while for k ≥ 2 and 1 < k′ ≤ k one has

f (k,k′)
n = −

∑
k1+...+k2k′+1=k−k′

∑
n1+...+n2k′+1=n

m1+...+m2k′+1=m

u(k1)
n1,m1

. . . u
(k2k′+1)
n2k′+1,m2k′+1

, (8.4)

where the symbols have to be interpreted according to (2.13) and (2.14); note that
s = 2k′ + 1 is the number of lines entering the node in the corresponding graphical
representation.

In the same way one has to modify (2.31) by replacing the last term in the r.h.s. with

[ϕ(v + w)](k)
n,m =

k∑
k′=1

[ϕ(v + w)](k,k′)
n,m , (8.5)

where [ϕ(v + w)](k,1)
n,m is given by the old (2.32), while all the other terms are given by

expressions analogous to (8.4).
The discussion then proceeds exactly as in the previous cases. Of course we have to

use that, by writing

ϕ(u) =
∞∑

k=1

�ku
2k+1, (8.6)

with �1 = �, the constants �k can be bounded for all k ≥ 1 by a constant to the power
k (which follows from the analyticity assumption).

By taking into account the new diagrammatic rules, one change in the proper way the
definition of the tree value, and a result analogous to Lemma 2 is easily obtained. The
second statement of Lemma 3 has to be changed into |E(θ)| ≤ ∑

V∈V (θ)(sV − 1) + 1
(see (3.24)), while the bound on |V 3

v (θ)| still holds. For V s
v (θ), with s ≥ 5, one has to

use the factors ε(s−1)/2.
Nothing changes in the following sections, except that the bound (5.12) has to be

suitably modified in order to take into account the presence of the new kinds of nodes
(that is the nodes with branching number more than three).

At the end we obtain the proof of Theorem 1 for general odd nonlinearities starting
from the third order. Until now we are still confining ourselves to the case j = 1.

If we choose j > 1 we have to perform a preliminary rescaling u(t, x) → ju(j t, jx),
and we write down the equation for U(t, x) = u(j t, jx). If ϕ(u) = Fu3 we see immedi-
ately that the function U solves the same equation as before, so that the same conditions
on ε has to be imposed in order to find a solution. In the general case (8.2) holds with
j2ε replacing ε. This completes the proof of Theorem 1 in all cases.



484 G. Gentile, V. Mastropietro, M. Procesi

Appendix A1. The Solution of (1.5)

The odd 2π -periodic solutions of (1.5) can be found in the following way [30, 32]. First
we consider (1.5), with 〈a2

0〉 replaced by a parameter c0, and we see that

a0(ξ) = V sn(
ξ, m), (A1.1)

where sn(
ξ, m) is the sine-amplitude function with modulus
√

m [25, 1], is an odd
solution of

ä0 = −3c0a0 − a3
0, (A1.2)

if the following relations are verified by V, 
, c0, m

V = √−2m
,
V 2

6c0 + V 2 = −m. (A1.3)

Of course both V and m can be written as a function of c0 and 
 as

m = 3c0


2 − 1, V =
√

2 − 6c0


2 
. (A1.4)

In particular one finds

∂
V = √−2m+ 1√−2m

6c0


2 =
√−2m

m

(
m− 3c0


2

)
=
√

2

−m
, (A1.5)

so that one has


∂
V

V
= 1

−m
. (A1.6)

If we impose also that the solution (A1.1) is 2π -periodic (and we recall that 4K(m) is
the natural period of the sine-amplitude sn(ξ, m), [1]), we obtain 
 = 
m = 2K(m)/π ,
and V is fixed to the value Vm = √−2m
m.

Finally imposing that c0 equals the average of a2
0 fixes m to be the solution of [32]

E(m) = K(m)
7 + m

6
, (A1.7)

where

K(m) =
∫ π/2

0
dθ

1√
1 − msin2 θ

, E(m) =
∫ π/2

0
dθ
√

1 − msin2 θ (A1.8)

are, respectively, the complete elliptic integral of the first kind and the complete elliptic
integral of the second kind [1], and we have used that the average of sn2(
ξ, m) is
(K(m) − E(m))/K(m). This gives m ≈ −0.2554.

One can find 2π/j -periodic solutions by noticing that Eqs. (1.5) are invariant by the
simmetry a0(ξ) → α a0(αξ), so that a complete set of odd 2π -periodic solutions is
provided by a0(ξ, j) = j a0(jξ).
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Appendix A2. Proof of Lemma 1

The solution of (2.21) is found by variation of constants. We write 〈a2
0〉 = c0, and con-

sider c0 as a parameter. Let a0(ξ) be the solution (A1.1) of Eq. (A1.2), and define the
Wronskian matrix

W(ξ) =
(

w11(ξ) w12(ξ)

w21(ξ) w22(ξ)

)
, (A2.1)

which solves the linearized equation

Ẇ = M(ξ)W, M(ξ) =
(

0 1
−3a2

0(ξ) − 3c0 0

)
, (A2.2)

and is such that W(0) = � and det W(ξ) = 1 ∀ξ . We need two independent solutions of
the linearized equation. We can take one as ȧ0, the other as ∂
a0 (we recall that m and
V are functions of 
 and c0 through (A1.3)); then one has

w11(ξ) = 1


V
ȧ0(ξ) = cn(
ξ, m) dn(
ξ, m),

w21(ξ) = ẇ11(ξ) = −sn(
ξ, m)
(

dn2(
ξ, m) + mcn2(
ξ, m)
)

,

w12(ξ) = 1

V (1 + Dm)
∂
a0(ξ) (A2.3)

= Bm

(
ξ cn(
ξ, m) dn(
ξ, m) + 
−1Dmsn(
ξ, m)

)
,

w22(ξ) = ẇ12(ξ)

= cn(
ξ, m) dn(
ξ, m)−
Bmξ sn(
ξ, m)
(

dn2(
ξ, m)+mcn2(
ξ, m)
)

,

where we have used (A1.3) to define the dimensionless constants

Dm = 
∂
V

V
= 1

−m
, Bm = 1

(1 + Dm)
= −m

1 − m
. (A2.4)

As we are interested in the case c0 = 〈a2
0〉 we set 
 = 
m = 2K(m)/π (in order to

have the period equal to 2π ) and we fix m as in Appendix A1.
Then, by defining X = (y, ẏ) and F = (0, h), we can write the solution of (2.21) as

the first component of

X(ξ) = W(ξ)X + W(ξ)

∫ ξ

0
dξ ′ W−1(ξ ′) F (ξ ′), (A2.5)

where X = (0, ẏ(0)) denote the corrections to the initial conditions (a0(0), ȧ0(0)), and
y(0) = 0 as we are looking for an odd solution.

Shorten c(ξ) ≡ cn(
mξ, m), s(ξ) ≡ sn(
mξ, m), and d(ξ) ≡ dn(
mξ, m), and
define cd(ξ) = cn(
mξ, m) dn(
mξ, m). One can write the first component of (A2.5)
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as

y(ξ) = w12(ξ) ẏ(0) +
∫ ξ

0
dξ ′ (w12(ξ) w11(ξ

′) − w11(ξ) w12(ξ
′)
)
h(ξ ′)

= Bm

(
ξ cd(ξ) + 
−1

m Dms(ξ)
)

ẏ(0)

+Bm

(
cd(ξ)

∫ ξ

0
dξ ′
∫ ξ ′

0
dξ ′′ cd(ξ ′′) h(ξ ′′) (A2.6)

+
−1
m Dm

(
s(ξ)

∫ ξ

0
dξ ′ cd(ξ ′) h(ξ ′) − cd(ξ)

∫ ξ

0
dξ ′ s(ξ ′) h(ξ ′)

))
,

as we have explictly written

w12(ξ) w11(ξ
′) − w11(ξ) w12(ξ

′)

= Bm

(
ξ cd(ξ) cd(ξ ′) + 
−1

m Dms(ξ) cd(ξ ′)

−cd(ξ) ξ ′ cd(ξ ′) − 
−1
m Dmcd(ξ) s(ξ ′)

)
, (A2.7)

and integrated by parts

∫ ξ

0
dξ ′ (ξ cd(ξ) cd(ξ ′) − cd(ξ) ξ ′ cd(ξ ′)

)
h(ξ ′)

= cd(ξ)

∫ ξ

0
dξ ′
∫ ξ ′

0
dξ ′′cd(ξ ′′) h(ξ ′′). (A2.8)

By using that if P[F ] = F then P[I[F ]] = I[F ] and that I switches parity we can
rewrite (A2.6) as

y(ξ) = Bm

(
ξ cd(ξ)

(
ẏ(0) − I[cd h](0) − 
−1

m Dm 〈s h〉
)

+
−1
m Dms(ξ)

(
ẏ(0) − I[cd h](0)

)

+
−1
m Dm

(
s(ξ) I[cd h](ξ) − cd(ξ) I[P[s h]](ξ)

)+ cd(ξ) I[I[cd h]](ξ)

)
.

(A2.9)

This is an odd 2π -periodic analytic function provided that we choose

ẏ(0) − I[cd h](0) − 
−1
m Dm 〈s h〉 = 0, (A2.10)

which fixes the parameter ẏ(0); hence (2.22) is found.
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Appendix A3. Proof of (2.27)

We have to compute 〈a0L[a0]〉, which is given by (recall that one has a0(ξ) = Vm s(ξ)

and cd(ξ) = 
−1
m ṡ(ξ ))

〈a0L[a0]〉 = Bm
−2
m V 2

m

(
D2

m

〈
s2
〉2 + Dm

〈
s2 I[sṡ]

〉

−Dm

〈
sṡ I[P[s2]]

〉
+ 〈sṡI[I[sṡ]]〉

)
. (A3.1)

Using that one has I[sṡ] = (s2 − 〈s2〉)/2, we obtain
〈
s2I[sṡ]

〉
= 1

2

(〈
s4
〉
−
〈
s2
〉2) ; (A3.2)

moreover, integrating by parts, we find
〈
sṡ I[P[s2]]

〉
= −1

2

〈
s4
〉
+ 1

2

〈
s2
〉2

,

〈
sṡI[I[sṡ]]

〉
= −1

4

〈
s4
〉
+ 1

4

〈
s2
〉2

, (A3.3)

so that we finally get

〈a0L[a0]〉 = 1

2
V 2

m
−2
m Bm

((
2Dm − 1

2

)
〈s4〉

+
(

2Dm (Dm − 1) + 1

2

)
〈s2〉2

)
, (A3.4)

which is strictly positive by (A2.4) and by the choice of m according to Appendix A1;
then (2.27) follows.

Appendix A4. Proof of Lemma 15

We shall prove inductively on p the bounds (6.12). From (6.4) we have

|ω̃(p)
m (ε) − ω̃

(p−1)
m (ε)| ≤ C|νm(ω̃(p−1)(ε), ε) − νm(ω̃(p−2)(ε), ε)|, (A4.1)

as we can bound |ω̃(p)
m (ε) + ω̃

(p−1)
m (ε)| ≥ 1 for ε ∈ E (p).

We set, for |m| ≥ 1,

�νh,m ≡ νh,m(ω̃(p−1)(ε), ε) − νh,m(ω̃(p−2)(ε), ε) = lim
q→∞ �ν

(q)
h,m, (A4.2)

where we have used the notations (5.37) to define

�ν
(q)
h,m = ν

(q)
h,m(ω̃(p−1)(ε), ε) − ν

(q)
h,m(ω̃(p−2)(ε), ε). (A4.3)

We want to prove inductively on q the bound∣∣∣�ν
(q)
h,m

∣∣∣ ≤ Cε‖ω̃(p−1)(ε) − ω̃(p−2)(ε)‖∞, (A4.4)

for some constant C, uniformly in q, h and m.
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For q = 0 the bound (A4.4) is trivially satisfied. Then assume that (A4.4) hold for
all q ′ < q.

For simplicity we set ω̃ = ω̃(p−1)(ε) and ω̃′ = ω̃(p−2)(ε). We can write, from (6.25),
for |m| ≥ 1 and for h ≥ 0,

�ν
(q)
h,m = −

h̄−1∑
k=h

2−k−2
(
β

(q)
k,m(ω̃, ε, {ν(q−1)

k′ (ω̃, ε)})

−β
(q)
k,m(ω̃′, ε, {ν(q−1)

k′ (ω̃′, ε)})
)
, (A4.5)

where we recall that β
(q)
k,m(ω̃, ε, {ν(q−1)

k′ (ω̃, ε)}) depend only on ν
(q−1)

k′ (ω̃, ε) with k′ ≤
k − 1, and we can set

β
(q)
k,m(ω̃, ε, {ν(q−1)

k′ (ω̃, ε)})
= β

(a)(q)
k,m (ω̃, ε, {ν(q−1)

k′ (ω̃, ε)}) − β
(b)(q)
k,m (ω̃, ε, {ν(q−1)

k′ (ω̃, ε)}), (A4.6)

according to the settings in (2.3). Then we can split the differences in (A4.6) into

β
(q)
k,m(ω̃, ε, {ν(q−1)

k′ (ω̃, ε)}) − β
(q)
k,m(ω̃′, ε, {ν(q−1)

k′ (ω̃′, ε)})
=
(
β

(q)
k,m(ω̃, ε, {ν(q−1)

k′ (ω̃, ε)}) − β
(q)
k,m(ω̃′, ε, {ν(q−1)

k′ (ω̃, ε)})
)

(A4.7)

+
(
β

(q)
k,m(ω̃′, ε, {ν(q−1)

k′ (ω̃, ε)}) − β
(q)
k,m(ω̃′, ε, {ν(q−1)

k′ (ω̃′, ε)})
)

,

and we bound separately the two terms.
The second term can be expressed as the sum of trees θ which differ from the

previously considered ones as, among the nodes v of w-type with only one entering
line, there are some with ν

(cV)(q−1)
kV

(ω̃, ε), some with ν
(cV)(q−1)
kV

(ω̃′, ε) and one with

ν
(cV)(q−1)
kV

(ω̃, ε) − ν
(cV)(q−1)
kV

(ω̃′, ε). Then we can bound
∣∣∣β(q)

k,m(ω̃′, {ν(q−1)

k′ (ω̃, ε)}) − β
(q)
k,m(ω̃′, {ν(q−1)

k′ (ω̃′, ε)})
∣∣∣

≤ D1ε sup
h′≥0

sup
|m′|≥2

�ν
(q−1)

h′,m′ ≤ D1Cε2
∥∥ω̃′ − ω̃

∥∥∞ , (A4.8)

by the inductive hypothesis.
We are left with the first term in (A4.8). We can reason as in [23] (which we refer to

for details), and at the end, instead of (A9.14) of [23], we obtain∣∣∣∣∣Val′(θ0)

(
g

(h�j
)

�j
(ω̃′) − g

(h�j
)

�j
(ω̃)

)
Val′(θ1)

( s∏
i=2

Val(θi)
)∣∣∣∣∣

≤ C|V (T )|e−κK(T )/2ε|Vw(T )|+|V 1
v (T )| ∥∥ω̃′ − ω̃

∥∥∞ (A4.9)

≤ C|V (T )|ε|Vw(T )|+|V 1
v (T )|e−κK(T )/4e−κ2(k−1)/τ /4

∥∥ω̃′ − ω̃
∥∥∞ ,

where K(T ) is defined in (4.7).
Therefore we can bound

∥∥ω̃(p)(ε) − ω̃(p−1)(ε)
∥∥∞ with a constant times ε times the

same expression with p replaced with p − 1, i.e.
∥∥ω̃(p−1)(ε) − ω̃(p−2)(ε)

∥∥∞, so that,
by the inductive hypothesis, the bound (6.12) follows.
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