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Generalized Lévy Laplacians were introduced in [2]
under the name of exotic Lévy Laplacians in relation to
the construction from [1] describing a relationship
between the classical Lévy Laplacians (introduced by
Paul Lévy) and the Yang–Mills equations; the original
idea of the construction is due to I.A. Aref’eva.

According to the considerations of [2, 7], a second-
order homogeneous linear differential operator acting
on number-valued functions defined on a locally con-
vex space 

 

E

 

 is determined by a linear functional 

 

S

 

 on a
vector subspace of the space 

 

�

 

(

 

E

 

, 

 

E

 

*)

 

 (the notation is
given below). Moreover, the image of a function 

 

f

 

 under
such a differential operator 

 

D

 

S

 

 is a function 

 

D

 

S

 

f

 

(

 

·

 

)

 

 (not
necessarily everywhere defined), whose value at a point

 

x

 

 

 

∈ 

 

E

 

 is

 

 

 

D

 

S

 

f

 

(

 

x

 

) = 

 

S

 

(

 

f

 

''(

 

x

 

))

 

. The generalized Lévy Lapla-
cian is defined as follows. Suppose that an LCS 

 

E

 

 is a
dense vector subspace of a (real) separable Hilbert
space for which the embedding 

 

E

 

 

 

→

 

 

 

H

 

 is continuous
(so that 

 

E

 

 

 

⊂

 

 

 

H

 

 

 

⊂

 

 

 

E

 

*

 

 is a rigged Hilbert space) and a
functional 

 

S

 

 is determined by a functional 

 

�

 

 on a linear
subspace of the space 

 

�

 

∞

 

 and by an orthonormal basis

 

{

 

e

 

n

 

} 

 

⊂

 

 

 

E

 

 by means of the equality 

 

S

 

(

 

F

 

) = 

 

�

 

((

 

Fe

 

n

 

, 

 

e

 

n

 

))

 

where (·

 

, 

 

·) is an extension of inner product in 

 

H

 

. More-

over, 

 

�

 

(

 

g

 

) = (

 

n

 

)

 

, where 

 

p

 

 

 

≥

 

 0

 

; it is natural

to refer to such a functional as the generalized Cesàro
mean of order 

 

p

 

. For 

 

p

 

 = 0, this definition coincides
with that of the Volterra–Gross Laplacian and for 

 

p

 

 = 1,
of a the classical Lévy Laplacian.

In [6], for 

 

p

 

 = 1, these authors defined an auxiliary
Hilbert space with inner product generated by the func-
tional 

 

�

 

 so that the classical Lévy Laplacian reduced to
the Volterra–Gross Laplacian. In [4], these construc-
tions were generalized to arbitrary 

 

p

 

 by using white
noise analysis of T. Hida. In recent paper [5], a different

1

np
----- g

1

n

∑
n ∞→
lim

 

generalization of the Lévy Laplacian was used; the cor-
responding operator was called the nonclassical Lévy
Laplacian and defined as the composition of the classi-
cal Lévy Laplacian and a linear transformation of the
domain of the function to which this operator was
applied (for special cases, this definition was given in
[2, 3]). In the same paper [5], it was shown that all
results on the classical Lévy Laplacian, including its
relationship to the theory of quantum random processes
considered in [3], can be extended to the nonclassical
Lévy Laplacian thus defined.

In this paper, we show that the composition of the
generalized Lévy Laplacian of order 

 

p

 

 (which is gener-
ated by the corresponding Cesàro mean) and a certain
linear transformation of the domain of the function to
which it is applied is proportional to the generalized
Lévy Laplacian of smaller or larger order; this makes it
possible to transform the generalized Lévy Laplacian
of any order into the classical Lévy Laplacian. The con-
struction is based on an expression of generalized
Cesàro means in terms of ordinary ones, which is also
suggested in this paper. By virtue of results of [5], this
implies that all results on the classical Lévy Laplacian
have analogues for the generalized Lévy Laplacian. In
particular, we consider a relationship between the gen-
eralized Lévy Laplacian and quantum random pro-
cesses.

1. PRELIMINARIES 
AND GENERAL REMARKS

For real LCSs 

 

E

 

 and 

 

G

 

, 

 

�

 

(

 

E

 

, 

 

G

 

)

 

 denotes the space
of all continuous linear mappings from 

 

E

 

 to 

 

G

 

; 

 

�

 

(

 

E

 

) =

 

�

 

(

 

E

 

, 

 

E

 

)

 

. A mapping 

 

F

 

 from an open subset 

 

V

 

 of 

 

E

 

 to the
space 

 

G

 

 is said to be Hadamard differentiable at a point

 

x

 

 

 

∈

 

 

 

E

 

 if the space 

 

∈

 

�

 

(

 

E

 

, 

 

G

 

)

 

 contains an element 

 

F

 

'(

 

x

 

)

 

,
which is called the derivative of the mapping 

 

F

 

 at the
point 

 

x

 

, such that, for the mapping 

 

r

 

x

 

: 

 

E

 

 

 

→

 

 

 

G

 

 defined by

 

r

 

x

 

(

 

h

 

) = 

 

F

 

(

 

x

 

 + 

 

h

 

) – 

 

F

 

(

 

x

 

) – 

 

F

 

'(

 

x

 

)

 

h

 

, any convergent
sequence (hn) in E, and any number sequence (tn) ⊂
R1\{0,} converging to zero, we have rx(tnhn) → 0.tn
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A mapping F: E → G is said to be differentiable if it
is differentiable at each point of its domain; in this case,
F': E → �(E, G) x � F'(x) is the derivative of F.

Higher-order derivatives are defined by induction;
the spaces �(E, G) and �(E, �(E, G)) are assumed to
be endowed with the topology of convergence on
sequentially compact subsets; in particular, if G' = R1,
then F'(x) ∈ E* = �(E, R1) and F''(x) ∈ �(E, E*). For
g1, g2 ∈ E*, the symbol g1 ⊗ g2 denotes the element of
the space �(E, E*) defined by (g1 ⊗ g2)(x) = g1g2(x).

Let S be a linear functional on the vector subspace
domS of �(E, E*) nonnegative in the sense that, for
each g ∈ E*, S(g ⊗ g) ≥ 0.

Definition 1. The Laplacian determined by S or the
S-Laplacian, is the mapping ∆S from some subspace
dom∆S of the space of number- (real- or complex-) val-
ued functions on E to the space of all number-valued
functions on E defined as follows: F ∈ dom∆S if and
only if F''(x) ∈ domS for any x ∈ E, and, in this case,
(∆SF)(x) = S(F''(x)).

Certainly, the function ∆SF can be assumed to be
defined only on some subset of the space E.

Let H0 be a vector subspace of E* such that, for any
g1, g2 ∈ H0, we have g1 ⊗ g2 ∈ domS; then, the bilinear
functional b on H0 × H0 defined by bS(g1, g2) = S(g1 ⊗ g2)
is a semi-inner product; if b(g, g) > 0 for any nonzero
g ∈ H0, then b is an inner product (of course, H0 may be
incomplete with respect to the norm determined by this
inner product). In what follows, we use the symbol 〈·, ·〉S

instead of bS(·, ·).

Example 1. Suppose that E is a Hilbert space, C ∈
�(E), and SC is the functional defined as follows:
domSC is the set of those A ∈ �(E) for which the prod-
uct AC is a nuclear operator, and if A ∈ domSC, then
SC(A) = trAC.

For C ≥ 0,  is called the Volterra (–Gross) Lapla-

cian generated by C. Such operators were considered
by Volterra himself (under the assumption that E is a
function space); 60 years after that, L. Gross and Yu.
Daletskii considered the general case (however, they
assumed C to be a nuclear operator).

Proposition 1. If F''(x) ∈ H0 ⊗ H0, then ∆SF(x) =
trSF''(x), where tr is the trace on �(H0) generated by the
inner product 〈·, ·〉S.

This proposition follows from the definition of the
inner product 〈·, ·〉S.

This means that the operator ∆S can be reduced to
the Volterra Laplacian.

In the next section, we introduce the generalized
Cesàro means; then (in the third section), we apply
them to construct functionals on the operator space
which determine generalized Lévy Laplacians.

∆
S

C

2. GENERALIZED CESÀRO MEANS

In this section, we define generalized Cesàro means
and show how to reduce calculating them to calculating
usual Cesàro means. Generalized Cesàro means are lin-
ear functionals on vector subspaces of the space �∞.
The elements of �∞ are identified with functions of
positive integer argument taking values in �.

For each p ≥ 0, consider the functional Ap defined by

if a ∈ domAp, then

Definition 2. The functional Ap is called the gener-
alized Cesàro mean of order p  (for p = 1, this is the
usual Cesàro mean).

Let N be the operator on �∞ defined as follows: if a
∈ �∞, then (Na)(n) = na(n) (so that (Npa)(n) = npa(n)
for each p ∈ �).

Lemma 1. Suppose that p ≥ 0 and a ∈ �∞. If

 → 0 as n → ∞, then  → 0 as n → ∞;

if  → 0 as n → ∞, then  → 0 as n → ∞.

Proof. Suppose that  → 0 as n → ∞. Then, for

any ε > 0, there exists a positive integer n0 such that if

n > n0, then  < ε, or, equivalently, |a(n)| < np · ε.

But

Hence, there exists an n1 > n0 such that if n > n1, then

 < ε. This proves the first assertion of the

lemma; the proof of the second is similar.

domAp a �
∞

; 
1

np
----- a k( )

k 1=

n

∑
n ∞→
lim∃∈

 
 
 

;=

Ap a( ) 1

np
----- a k( ).

k 1=

n

∑
n ∞→
lim=

a n( )
np

----------- 1

np 1+
----------- a k( )

1

n

∑
a n( )
np 1+
----------- 1

np
----- a k( )

k2
----------

1

n

∑
a n( )
np

-----------

a n( )
np

-----------

a k( )
1

n

∑ a k( )
1

n0

∑ a k( )
n0

n

∑+ a k( )
1

n0

∑≤ ≤

+ a k( )
n0

n

∑ a k( )
1

n0

∑ a n( )
n n0>
max n⋅+≤

< a k( )
1

n0

∑ np 1+ ε.⋅+

1

np 1+
----------- a k( )

1

n

∑
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Theorem 1. Let p > 0. If a ∈ domAp, then Na ∈
domAp + 1 and

Theorem 2. Let p > 0. If c ∈ domAp + 1, then N–1c ∈
domAp and

Proof of Theorem 1. Suppose that g ∈ domAp,
where p > 0. This implies the existence of

(n)(= Ap(g)). Applying the Abel transform

[9], we obtain

The existence of the limit (n) means that

(k) – np · Ap(g)  → 0 as t → ∞; therefore,

according to the first part of Lemma 1,

(we use the equality  = , which

can be proved by, e.g., passing to its integral counter-
part and taking into account the equality

 = ). This proves Theo-

rem 1.

Proof of Theorem 2. Suppose that f ∈ domAp + 1,
where p > 0. This implies the existence of

Ap 1+ Na( ) p
p 1+
------------Ap a( ).=

p 1+
p

------------Ap 1+ c( ) Ap N 1– c( ).=

1

np
----- g

1

n

∑
t ∞→
lim

1

np 1+
----------- ng n( )

1

n

∑ 1

np 1+
----------- g k( )

1

n

∑ 
 
 

n⋅




=

– g r( )
r 1=

k

∑
k 1=

n 1–

∑ 

 1

np
----- g k( ) 1

np 1+
----------- g r( ).

r 1=

k

∑
k 1=

n 1–

∑–
1

n

∑=

1

np
----- g

1

n

∑
t ∞→
lim

1

np
----- g

1

n

∑

1

np 1+
----------- jg k( )

1

n

∑
n ∞→
lim Ap 1+ Ng( ) 1

np
----- g k( )

1

n

∑
n ∞→
lim= =

–
1

np 1+
----------- kp

1

n 1–

∑
n ∞→
lim Ap g( )⋅ Ap g( ) 1

p 1+
------------Ap g( )–=

=  
p

p 1+
------------Ag p( )

1

np 1+
----------- kp

1

n

∑
n ∞→
lim

1
p 1+
------------

1

np 1+
----------- kp

1

n

∑
n ∞→
lim

1

t p 1+
---------- sp s.d

1

t

∫t ∞→
lim

(k) = Ap + 1( f ); i.e., (k) – np + 1 ·

Ap + 1( f )  → 0 as t → ∞. Again using the Abel trans-

form and applying the second assertion of Lemma 1,
we obtain

which completes the proof of the theorem.
Remark 1. Of course, to prove Theorem 2, it suf-

fices to show that N−1f ∈ Ap and apply Theorem 1.

Corollary 1. If g ∈ domA1 and p > 0, then Npg ∈
domAp + 1 and

Corollary 2. If g ∈ domAp + 1 and p > 0, then N–pg ∈
domA1 and

3. GENERALIZED LÉVY LAPLACIANS

Let E be a locally convex subspace of a separable
Hilbert space H; this means that E is a dense linear sub-
space of H and the canonical embedding E ⊂ H is con-
tinuous; in this case, H* ⊂ E*, and H* is a dense vector
subspace in E*. We assume that H* is endowed with the
topology determined by its Hilbert norm and E* is
endowed with any topology compatible with the duality
between E* and E. We identify H with H*; for x ∈ E
and g ∈ E*, we set (g, x) = g(x). Let (en) ⊂ E be an
orthonormal basis in H.

Definition 3. The generalized Cesàro trace of order
p > 0 is the functional Cp on the space �(E, E*) defined
as follows: if D ∈ �(E, E*), then Cp(D) = Ap((Den, en)).

1

np 1+
-----------

n ∞→
lim f

1

n

∑ 1

np 1+
----------- f

1

n

∑

Ap N 1– f( ) 1

np
----- f k( )

k
-----------

1

n

∑ 1

np
----- f k( )

1

n
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  1

n
---⋅





= =

+ f s( )
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n 1–

∑ 1
k k 1+( )
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1

np
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× f k( )
1

n

∑ 1

np
----- kp 1+

k k 1+( )
--------------------Ap f( )dτ

1

n 1–

∑
n ∞→
lim+

=  Ap 1+ f( ) 1
p
---Ap 1+ f( )+

p 1+
p

------------Ap 1+ f( ),=

Ap 1+ N pg( ) 1
p 1+
------------A1 g( ).=

A1 N p– g( ) p 1+( )Ap g( )=
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Definition 4. The generalized Lévy Laplacian of
order p > 0 is the operator  (of course, this definition
depends on the choice of the basis).

In what follows, we write ∆p instead of . Let

� be an operator from �(E, E*) defined by �ek = kek.
For each number-valued function f on E, by f ° �–q we
denote the composition of the corresponding mappings.

Theorem 3. If p ≥ 1, then ∆pf = ∆1 f ° ° .

This theorem follows from Corollary 1. Thus, we
have expressed the generalized Lévy Laplacian in
terms of the classical Lévy Laplacian.

Remark 2. It can be shown (see [3, 5]) that the non-
classical Lévy Laplacians considered in [1] coincide
with compositions of the classical Lévy Laplacian and
operators of the form �q, where q < 0; thus, the preced-
ing theorem describes a relationship between them and
the generalized Lévy Laplacians (this relationship was
mentioned in [2]).

4. GENERALIZED LAPLACIANS 
AND QUANTUM RANDOM PROCESSES

A quantum random process is a function defined on
a part of the real line and taking values in an operator
space. In this section, the exposition is partly formal,
and we do not fix any particular space of this kind.

Let H = L2(0, π), and let E be the space of infinitely
differentiable functions on the interval [0, π] vanishing
at zero endowed with the topology of uniform conver-
gence of functions and their derivatives of any order;
take the orthonormal basis with elements determined

by the equalities en(t) = sint. For each h ∈ E*, by

b(h) we denote the operator of differentiation in the
direction h (see [5]), which acts on the function space
on E. Thus, for z ∈ C2(E) and x ∈ E*, we have b(h)(z)(x) =
z'(x)h. If h = δt, then we write b(t) instead of b(h). The

quantity (t)2dt2 ≡ (t)b(t)dt2 is defined by (cf. [6])

(the integral on the right-hand side is the integral of an
operator-valued function); the other notations are simi-
lar. For each negative integer n, we have b(n)(t) =

(τ)dτ.

Theorem 4. For any positive integer p,

This theorem follows from Theorem 3 and results
obtained in [3, 5].
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