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Proposals should be accompanied by solutions. An asterisk (*) indicates that nei-
ther the proposer nor the editors have supplied a solution. The editors encourage
undergraduate and pre-college students to submit solutions. Teachers can help by
assisting their students in submitting solutions. Student solutions should include
the class and school name. Solutions will be evaluated for publication by a com-
mittee of professors according to a combination of criteria. Questions concerning
proposals and/or solutions can be sent by e-mail to: mathproblems-ks@hotmail.com

Solutions to the problems stated in this issue should arrive before
2 January 2012

Problems

22. Proposed by Paolo Perfetti, Department of Mathematics, Tor Vergata Univer-
sity, Rome, Italy.
Let x, y, z be positive real numbers. Prove that∑

cyc

4x(x + 2y + 2z)
(x + 3y + 3z)2

≥
∑
cyc

(x + y)(3x + 3y + 4z)
(2x + 2y + 3z)2

23. Proposed by Paolo Perfetti, Department of Mathematics, Tor Vergata Univer-
sity, Rome, Italy. Let f be a real, continuous integrable function defined on [0, 1]
such that

∫ 1

0
f(x)dx = 0, and let m = min

0≤x≤1
f(x) and M = max

0≤x≤1
f(x). Let us

define F (x) =
∫ x

0
f(y)dy. Prove that

1
6

Mm2(5M − 3m)
(M −m)2

≤
∫ 1

0

F 2(x)dx ≤ 1
6

mM2(5m− 3M)
(M −m)2
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24. Proposed by D.M. Bǎtinetu - Giurgiu, Bucharest and Neculai Stanciu, Buzǎu,
Romania. Let (an)n≥1, (bn)n≥1 be sequences of positive real numbers such that
lim

n→∞
an+1
n2·an

= lim
n→∞

bn+1
n3·bn

= a > 0. Compute

lim
n→∞

(
n+1

√
bn+1

an+1
− n

√
bn

an

)
25. Proposed by José Luis Dı́az-Barrero, BARCELONA TECH, Barcelona, Spain.
Let D,E, F be three points lying on the sides BC, AB, CA of 4ABC. Let M be a
point lying on cevian AD. If E,M,F are collinear then show that(

BC ·MD

MA

)(
EA

DC · EB
+

FA

BD · FC

)
≥ 4

26. Proposed by Enkel Hysnelaj, University of Technology, Sydney, Australia.
Determine all functions f : R− {0, 1} → R, which satisfy the relation

f

(
x− 1

x

)
+ f

(
1

1− x

)
= ax2 + bx + c,

where a, b, c ∈ R.

27. Proposed by David R. Stone, Georgia Southern University, Statesboro, GA
USA. With π(x) = the number of primes ≤ x, show that there exist constants a
and b such that

eax < xπ(x) < ebx

for x sufficiently large.

28. Proposed by Florin Stanescu, School Cioculescu Serban, Gaesti, jud. Dambovita,
Romania. Let ABC be a triangle with semi-perimeter p. Prove that

a√
p− a

+
b√

p− b
+

c√
p− c

≥ 2
√

3p,

where [AB] = c, [AC] = b, [BC] = a.
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Solutions
No problem is ever permanently closed. We will be very pleased considering for
publication new solutions or comments on the past problems.

15. Proposed by Valmir Bucaj, Texas Lutheran University, Seguin, TX. Consider
the set given by

La,r = {arn|n ∈ Z+}, where r =
1
q
, q ∈ Z+, and gcd(a, q) = 1.

Show that

Bq = {La,r|r =
1
q
, q ∈ Z+, q ≥ 2 and gcd(a, q) = 1},

forms a basis for a topology on Q+.

Solution by the proposer. Hereafter, we present some results more or less well-
known that will be used later on. We begin with

Lemma 1. If gcd(a, b) = 1 and a|bc then a|c.

Proof. Since gcd(a, b) = 1 then ah + bk = 1 with h, k ∈ Z. From the hypothesis
a|bc it follows that bc = na, with n ∈ Z+. Then

c = c(ah + bk) = a(ch) + (bc)k = a(ch) + a(nk) = a(ch + nk).

This shows that a|c, as we wanted to show. �

Lemma 2. If a1 6= a2 and gcd(a1, q1) = gcd(a2, q2) = 1 then
a1

q1
6= a2

q2
.

Proof. The case when q1 = q2 is trivial. So, assume that q1 6= q2. We suppose
the contrary. That is, assume that

a1

q1
=

a2

q2
. Then a1q2 = a2q1. This shows that

a1|a2q1 and also a2|a1q2. Now, since gcd(a1, q1) = 1, from Lemma 1 we have a1|a2.
Similarly, since gcd(a2, q2) = 1 from Lemma 1 follows that a2|a1. Therefore, a1|a2

and a2|a1 imply a1 = a2, contrary to the hypothesis of the lemma. �

From this lemma, immediately follows

Corollary 1. If a1 6= a2 and gcd(a1, q1) = gcd(a2, q2) = 1 then
a1

qn
1

6= a2

qm
2

, for any

n, m ∈ Z+.

Proof. The proof is similar to that of Lemma 2, therefore I will omit it here. �

Lemma 3. Let La1,r1 and La2,r2 be two sets as defined in the statement.
(i) If a1 6= a2 then La1,r1

⋂
La2,r2 = ∅

(ii) If q1 6= qk
2 ,∀k ∈ Z+, then La1,r1

⋂
La2,r2 = ∅
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Proof. (i) Let La1,r1 and La2,r2 be two sets as defined in the statement with a1 6= a2.
Let x be any element from La1,r1 and y be any element from La2,r2 . Then they are
of the form

x =
a1

qn
1

, and y =
a2

qm
2

,

where n, m ∈ Z+ and gcd(a1, q1) = gcd(a2, q2) = 1. Then from Corollary 1 follows
that x 6= y,∀m,n ∈ Z+. Therefore La1,r1

⋂
La2,r2 = ∅.

(ii) Let x ∈ La1,r1 and y ∈ La2,r2 . Then each of them is of the form

x =
a1

qn
1

, and y =
a2

qm
2

,

where n, m ∈ Z+. First consider the case when a1 = a2 = a. Then, since q1 6= qk
2

for any k ∈ Z+, it follows that qn
1 6= qm

2 for any n, m ∈ Z+. In turn, this implies
that x 6= y, as well. The case where a1 6= a2 was already considered in part (i).
This concludes the proof. �

Theorem 1. If a1 = a2 and q1 = qk
2 for some k ∈ Z+, then

La1,r1

⋂
La2,r2 = La1,r1

Proof. Assume that a1 = a2 = a and q1 = qk
2 for some k ∈ Z+. Let x ∈ La1,r1 , then

x = a
qn
1
, n ∈ Z+. Since, q1 = qk

2 , then x = a
qkn
2
∈ La2,r2 , kn ∈ Z+ ⇒ La1,r1 ⊂ La2,r2

Therefore La1,r1

⋂
La2,r2 = La1,r1 . This concludes the proof. �

Corollary 2. Let La1,r1 and La2,r2 be two sets as defined in the statement. Then
either La1,r1

⋂
La2,r2 = ∅ or La1,r1

⋂
La2,r2 = La1,r1 .

Proof. We will show that they cannot have any element in common. Let x ∈
La1,r1

⋂
La2,r2 . Then, clearly the intersection is not empty. By (i) and (ii) of

Lemma 3 then a1 = a2 and q1 = qk
2 , for some k ∈ Z+, otherwise the intersection

would be empty. Then, from Theorem 1 follows that La1,r1

⋂
La2,r2 = La1,r1 .

Which is what we wished to show. �

Now we are ready to construct a topology Tq on the set Q+ of positive rational
numbers. Let

Bq = {La,r | r =
1
q
, q ∈ Z+, q ≥ 2 and gcd(a, q) = 1},

where La,r is given in the statement, be a collection of subsets of Q+. In what
follows we show that Bq forms a basis for a topology on Q+. Indeed,
1. Let x be any element in Q+. Then x =

u

v
where u, v ∈ Z+. For simplicity assume

that gcd(u, v) = 1. Then, it is clear that x ∈ Lu,r, where r =
1
v
. So, Bq satisfies the

first condition for a basis.

2. If x belongs to the intersection of two elements of Bq, namely La1,r1 and La2,r2 ,
then from Corollary 2 follows that the intersection itself is an element of Bq. There-
fore the collection Bq satisfies the second condition for a basis.
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We conclude that the collection Bq of subsets of Q+ generates a topology on the
set Q+ of positive rational numbers.

16. Proposed by José Luis Dı́az-Barrero, Technical University of Catalonia (BAR-
CELONA TECH), Barcelona, Spain. Find all triplets (x, y, z) of real numbers
which are solutions of the following system of equations

x2(y + z)2 = (3x2 − x + 1)y2z2

y2(z + x)2 = (4y2 − y + 1)z2x2

z2(x + y)2 = (5z2 − z + 1)x2y2


Solution by the proposer. We observe that triplets (t, 0, 0), (0, t, 0), (0, 0, t), t ∈
R are solutions of the given system. To find other solutions we assume that xyz 6= 0.
Dividing each of the preceding equations by x2y2z2 yields(

1
y

+
1
z

)2

= 3− 1
x

+
1
x2(

1
z

+
1
x

)2

= 4− 1
y

+
1
y2(

1
x

+
1
y

)2

= 5− 1
z

+
1
z2


Setting a = 1/x, b = 1/y and c = 1/z in the above system of equations, we obtain

(b + c)2 = 5− a + a2

(c + a)2 = 7− b + b2

(a + b)2 = 8− c + c2


Adding up the preceding equations yields (a + b + c)2 = 12− (a + b + c). Putting
a+b+c = t, we have t2 + t−12 = (t−3)(t+4) = 0 from which follows a+b+c = 3
and a + b + c = −4. If a + b + c = 3, then b + c = 3 − a. Substituting in the
equation (b + c)2 = 5− a + a2, yields a = 6/5. Likewise, we get b = 1 and c = 4/5.
If a + b + c = −4, then we obtain a = −13/9, b = −4/3 and c = −11/9. Hence,
(5/6, 1, 5/4) and (−9/13,−3/4,−9/11) are also solutions and we are done.

17. Proposed by José Luis Dı́az-Barrero, Technical University of Catalonia (BAR-
CELONA TECH), Barcelona, Spain. Let A(z) =

∑n
k=0 akzk (ak 6= 0) be a non-

constant polynomial with complex coefficients. Prove that all its zeros lie in the
ring shaped region C = {z ∈ C : r1 ≤ |z| ≤ r2}, where

r1 = min
1≤k≤n

{
4k
(
n
k

)
5n − 1

∣∣∣∣∣a0

ak

∣∣∣∣∣
}1/k

and r2 = max
1≤k≤n

{
5n − 1
4k
(
n
k

) ∣∣∣∣∣an−k

an

∣∣∣∣∣
}1/k

Solution by the proposer. If we assume |z| < r1 then from A(z) =
n∑

k=0

akzk, we

have

|A(z)| =

∣∣∣∣∣
n∑

k=0

akzk

∣∣∣∣∣ ≥ |a0| −
n∑

k=1

|ak||z|k > |a0| −
n∑

k=1

|ak|rk
1

= |a0|

(
1−

n∑
k=1

∣∣∣∣ak

a0

∣∣∣∣ rk
1

)
(1)
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From the expression of r1 and taking into account the identity
n∑

k=0

4k

(
n

k

)
= 5n,

immediately follows∣∣∣∣ak

a0

∣∣∣∣ rk
1 ≤

4k
(
n
k

)
5n − 1

, 1 ≤ k ≤ n (2)

Substituting (2) into (1), we have

|A(z)| > |a0|

(
1−

n∑
k=1

∣∣∣∣ak

a0

∣∣∣∣ rk
1

)
≥ |a0|

(
1−

n∑
k=1

4k
(
n
k

)
5n − 1

)
= 0

Consequently, A(z) does not have zeros in {z ∈ C : |z| < r1}.

To prove the second inequality we will use the well-known fact that all the ze-
ros of A(z) have modulus less than or equal to the unique positive root of the
equation

B(z) = |an|zn − |an−1|zn−1 − . . .− |a1|z − |a0| = 0

Therefore, the second part of our statement will be proved if we show that B(r2) ≥
0. In fact, from the expression of r2 immediately follows∣∣∣∣an−k

an

∣∣∣∣ ≤ 4k
(
n
k

)
5n − 1

rk
2 , 1 ≤ k ≤ n

and

B(r2) = |an|

[
rn
2 −

n∑
k=1

∣∣∣∣an−k

an

∣∣∣∣ rn−k
2

]
≥ |an|

[
rn
2 −

n∑
k=1

(
4k
(
n
k

)
5n − 1

rk
2

)
rn−k
2

]

= |an|rn
2

(
1−

n∑
k=1

4k
(
n
k

)
5n − 1

)
= 0,

as desired. This completes the proof.

18. Proposed by Neculai Stanciu, George Emil Palade Secondary School, Buzău,
Romania. If, f(x) = 1−

√
1−2x
2 , and f−1

n = f−1 ◦ f−1 ◦ . . . ◦ f−1︸ ︷︷ ︸
n

, then evaluate:

lim
n→∞

∫ 1/2

0

f−1
n (x) dx

Solution by Paolo Perfetti, Tor Vergata University, Rome, Italy. The
answer is 1/4. Indeed, let f : (−∞, 1/2] → (−∞, 1/2] defined by f(x) = 1−

√
1−2x
2 ,

then the inverse function f−1 : (−∞, 1/2] → (−∞, 1/2] is defined by f−1(x) =
1−(1−2x)2

2 , where x ≤ 1/2. Putting f−1
n (x) = (f−1 ◦ f−1 ◦ . . . ◦ f−1)(x) = y then

follows x = (f ◦ f ◦ . . . ◦ f)(y) and the integral becomes∫ 1/2

0

y
(
f ◦ f ◦ . . . ◦ f)(y)

)′
dy
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Integrating by parts, yields

y ·
(
f ◦ f ◦ . . . ◦ f

)
(y)
∣∣∣1/2

0
−
∫ 1/2

0

(f ◦ f ◦ . . . ◦ f)(y) dy

To compute the last integral we will use the following Lemma.

Lemma. Let {fn(x)}n≥1 be the sequence defined by fn(x) = (f ◦ f ◦ . . . ◦ f)(x)︸ ︷︷ ︸
nThen lim

n→∞
fn(x) = 0 for any 0 ≤ x < 1/2.

Proof. Observe that {fn(x)}n≥1 is decreasing because for all x ∈ [0, 1/2] is 1−2x ≤√
1− 2x which implies fn(x) < fn−1(x) ⇔ f(x) < x, as can be easily proven. Now

observe that {0, 1} are fixed points of the sequence {fn(x)}n≥1 yielding 0 ≤ fn(x) ≤
1/2 whenever 0 ≤ x ≤ 1/2. Since {fn(x)}n≥1 is decreasing, then

lim
n→∞

fn(x) = inf
0≤x≤1/2

fn(x) = L = 0

2

Since f is continuous, then exchanging the limit with the integral yields

lim
n→∞

∫ 1/2

0

(f ◦ f ◦ . . . ◦ f)(y) dy =
∫ 1/2

0

lim
n→∞

(f ◦ f ◦ . . . ◦ f)(y) dy = 0

and

y ·
(
f ◦ f ◦ . . . ◦ f

)
(y)
∣∣∣1/2

0
=

1
2
· 1
2

=
1
4

as claimed.

Also solved by Moubinool Omarjee, Paris France; and the proposer.

19. Proposed by Paolo Perfetti, Tor Vergata University, Rome, Italy. Let {ak}k≥1

be a monotonic sequence of real positive numbers such that
∑∞

n=1 an < +∞. More-
over, {ak}k≥1 fulfills the condition

ak − ak+1 ≥ 2−na2n+1 , for all k with 2n ≤ k ≤ 2n+1 − 1.

Let α be a quadratic irrational. Prove that the following series converges for any
δ > 0 :

∞∑
n=1

an

n(lnn)δ

2n∑
k=n+1

1
| sin(kπα)|kak ln k

Solution by the proposer. Let C and C1 be two positive real numbers. A well-
known property of all quadratic irrational α states that |qα − p| ≥ C/q for some
C > 0 and for any integers p, q. Let us denote by ||x|| the distance from x to the
nearest integer. Then | sin(πkα)| ≥ 2||kα|| ≥ 2C/k, and

2n∑
k=n+1

ak

sin(kπα)
≤

2n∑
k=n+1

ak

2||kα||

Since
∣∣∣ ||x|| − ||y|| ∣∣∣ = min

{
||x− y||, ||x + y||

}
, then

n+1 ≤ k < k′ ≤ 2n =⇒
∣∣∣ ||kα||−||k′α||

∣∣∣ ∈ {||α||, ||(n+1)α||, . . . , ||(4n−1)α||
}



39

from which follows∣∣∣||kα|| − ||k′α||
∣∣∣ ≥ 2C

4n− 1
≥ C

2n
∀ n ≤ k < k′ ≤ 2n

Thus, if we write
{
||nα||, ||(n+1)α||, . . . , ||2nα||

}
according to the increasing order,

the k–th member of the list verifies

||kα|| ≥ Ck

2n

Likewise for the sequence {ak} we write

a2k − a2k+1 =
2k+1−1∑
j=2k

(aj − aj+1) ≥ 2−ka2k+1(2k+1 − 2k) = a2k+1

That is,

a2k ≥ 2a2k+1 or 2k+1a2k+1 ≤ 2ka2k =⇒ {2ka2k} is monotonic.

Applying Cauchy’s condensation criteria to the sum
∑∞

k=1 ak immediately follows
nan lnn → 0 when n → +∞ or nan lnn < ε for all n > n′. Now for n > n′ we can
write

2n∑
k=n+1

| sin(kπα)|kak ln k ≤
2n∑

k=n+1

(
2n

Ck

)ε

≤
(

2n

C

)ε ∫ 2n

n

dx

xε
≤ C1n

Thus
∞∑

n=1

an

n(lnn)δ

2n∑
k=n+1

1
| sin(kπα)|kak ln k

=
n′∑

n=1

an

n(lnn)δ

2n∑
k=n+1

1
| sin(kπα)|kak ln k

+
∞∑

n=n′+1

an

n(lnn)δ

2n∑
k=n+1

1
| sin(kπα)|kak ln k

Now remains to prove that the last term in the above expression converges. Indeed,

∞∑
n=n′+1

an

n(lnn)δ

2n∑
k=n+1

1
| sin(kπα)|kak ln k

≤
∞∑

n=n′+1

C1an

(lnn)δ
≤ C1ε

∞∑
n=n′+1

C1

n(lnn)1+δ

which converges as can be easily proven.

20. Proposed by Ovidiu Furdui, Cluj, Romania. Let p > 1/2 be a real number.
Calculate

lim
n→∞

(
n∑

k=1

1(
n
k

)p
)np

Solution by the proposer. The limit equals e2. Let an =
n∑

k=1

1

(n
k)

p . Then, for

n ≥ 3, is

an ≥
1(
n
n

)p +
1(
n
1

)p +
1(
n

n−1

)p = 1 +
2
np
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Also, for n ≥ 6, we have

an =
1(
n
n

)p +

(
1(
n
1

)p +
1(
n

n−1

)p
)

+

(
1(
n
2

)p +
1(
n

n−2

)p
)

+

(
1(
n
3

)p + · · ·+ 1(
n

n−3

)p
)

≤ 1 +
2
np

+
2p+1

np(n− 1)p
+

n− 5(
n
3

)p ,

since
(
n
k

)
≥
(
n
3

)
for 3 ≤ k ≤ n− 3. Thus,

1 +
2
np

≤ an ≤ 1 +
2
np

+
2p+1

np(n− 1)p
+

6p(n− 5)
(n(n− 1)(n− 2))p

.

Hence,(
1 +

2
np

)np

≤ anp

n ≤
(

1 +
2
np

+
2p+1

np(n− 1)p
+

6p(n− 5)
(n(n− 1)(n− 2))p

)np

,

and the result follows taking limits when n → +∞ in the preceding inequality.

21. Proposed by Mihály Bencze, Braşov, Romania. Prove that

tg
( n∑

k=1

tg−1 k2 + k − 1
(k2 + k + 1)(k2 + k + 2)

)
=

n2

2n2 + 5n + 5

Solution by Joaqúın Rivero Rodŕıguez, I.E.S. Antonio de Nebrija, Za-
lamea de la Serena, Spain. We will argue by induction. For n = 1 the statement
trivially holds. So, assume that for any arbitrary positive integer n, the identity
holds. To prove it for n+1, we use the well-known addition tangent formulae. That
is,

tg

(
n+1∑
k=1

tg−1 k2 + k − 1
(k2 + k + 1)(k2 + k + 2)

)

= tg

(
n∑

k=1

tg−1 k2 + k − 1
(k2 + k + 1)(k2 + k + 2)

+ tg−1 (n + 1)2 + n

((n + 1)2 + n + 2)((n + 1)2 + n + 3)

)

=
(n + 1)2(n4 + 4n3 + 9n2 + 10n + 5)

(2n2 + 9n + 12)(n4 + 4n3 + 9n2 + 10n + 5)
=

(n + 1)2

2n2 + 9n + 12

=
(n + 1)2

2(n + 1)2 + 5(n + 1) + 5
and by the PMI the statement is proven.

Also solved by Neculai Stanciu, Buzău, Romania; Moubinool Omarjee,
Paris, France; Perfetti Paolo, Tor Vergata University, Roma, Italy; and
the proposer.
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————————————————————————————————
MATHCONTEST SECTION

————————————————————————————————

This section of the Journal offers readers an opportunity to solve interesting and ele-
gant mathematical problems mainly appeared in Math Contest around the world
and most appropriate for training Math Olympiads. Proposals are always wel-
comed. The source of the proposals will appear when the solutions be published.

Proposals
16. A number of three digits is written as xyz in base 7 and as zxy in base 9. Find
the number in base 10.

17. A regular convex polygon of L + M + N sides must be colored using three
colors: red, yellow and blue, in such a way that L sides must be red, M yellow and
N blue. Give the necessary and sufficient conditions, using inequalities, to obtain
a colored polygon with no two consecutive sides of the same color.

18. Let ABDC be a cyclic quadrilateral inscribed in a circle C. Let M and N be
the midpoints of the arcs AB and CD which do not contain C and A respectively.
If MN meets side AB at P, then show that

AP

BP
=

AC + AD

BC + BD

19. Place n points on a circle and draw in all possible chord joining these points.
If no three chord are concurrent, find (with proof) the number of disjoint regions
created.

20. Let a, b, c be positive real numbers such that a + b + c = 1. Prove that

3

√(
1 + a

b + c

) 1−a
bc
(

1 + b

c + a

) 1−b
ca
(

1 + c

a + b

) 1−c
ab

≥ 64
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Solutions
11. Let n be a positive integer. Compute the following sum

n∑
k=0

k + 4
(k + 1)(k + 2)(k + 3)

(
n

k

)

(Longlist VJIMC Ostrava 2011)

Solution 1 by José Luis Dı́az-Barrero, BARCELONA TECH, Barcelona,
Spain. We have

n∑
k=0

k + 4
(k + 1)(k + 2)(k + 3)

(
n

k

)
=

n∑
k=0

1
(k + 1)(k + 2)

(
1 +

1
k + 3

) (
n

k

)

=
n∑

k=0

1
(k + 1)(k + 2)

(
n

k

)
+

n∑
k=0

1
(k + 1)(k + 2)(k + 3)

(
n

k

)

=
1

(n + 1)(n + 2)

n∑
k=0

(n + 1)(n + 2)
(k + 1)(k + 2)

(
n

k

)

+
1

(n + 1)(n + 2)(n + 3)

n∑
k=0

(n + 1)(n + 2)(n + 3)
(k + 1)(k + 2)(k + 3)

(
n

k

)

=
1

(n + 1)(n + 2)

n∑
k=0

(
n + 2
k + 2

)

+
1

(n + 1)(n + 2)(n + 3)

n∑
k=0

(
n + 3
k + 3

)
Taking into account the Binomial theorem, we have

n∑
k=0

(
n + 2
k + 2

)
= 2n+2 −

(
n + 2

0

)
−
(

n + 2
1

)
= 2n+2 − n− 3

and
n∑

k=0

(
n + 3
k + 3

)
= 2n+3 −

(
n + 3

0

)
−
(

n + 3
1

)
−
(

n + 3
2

)
=

1
2
(2n+4 − n(n + 7)− 14)

from which follows
n∑

k=0

k + 4
(k + 1)(k + 2)(k + 3)

(
n

k

)
=

2n+2 − n− 3
(n + 1)(n + 2)

+
2n+4 − n(n + 7)− 14
2(n + 1)(n + 2)(n + 3)

=
2n+3(n + 5)− 3n2 − 19n− 32

2(n + 1)(n + 2)(n + 3)
,

and we are done.

Solution 2 by Paolo Perfetti, Tor Vergata University, Rome, Italy. We
have,

k + 4
(k + 1)(k + 2)(k + 3)

=
3
2

1
k + 1

− 2
k + 2

+
1
2

1
k + 3
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Integrating in the interval [0, 1] both sides of the identity
n∑

k=0

(
n

k

)
xk = (1 + x)n,

we get
n∑

k=0

(
n

k

)
1

k + 1
=
∫ 1

0

n∑
k=0

(
n

k

)
xkdx =

∫ 1

0

(1 + x)ndx =
2n+1 − 1

n + 1
= I1

Likewise, from
n∑

k=0

(
n

k

)
xk+1 = x(1 + x)n, we obtain

∫ 1

0

x(1 + x)ndx =
∫ 1

0

n∑
k=0

(
n

k

)
xk+1dx =

n∑
k=0

(
n

k

)
1

k + 2

and∫ 1

0

x(1 + x)ndx =
∫ 1

0

(1 + x)n+1dx−
∫ 1

0

(1 + x)ndx =
2n+2 − 1

n + 2
− 2n+1 − 1

n + 1
= I2

Finally, from
n∑

k=0

(
n

k

)
xk+2 = x2(1 + x)n, we get

∫ 1

0

x2(1 + x)ndx =
∫ 1

0

n∑
k=0

(
n

k

)
xk+2dx =

n∑
k=0

(
n

k

)
1

k + 3

and∫ 1

0

x2(1 + x)ndx =
∫ 1

0

(1 + x)n+2dx− 2
∫ 1

0

x(1 + x)ndx−
∫ 1

0

(1 + x)ndx

=
2n+3 − 1

n + 3
− 2

2n+2 − 1
n + 2

+ 2
2n+1 − 1

n + 1
− 2n+1 − 1

n + 1
= I3

Taking into account the preceding, yields
n∑

k=0

k + 4
(k + 1)(k + 2)(k + 3)

(
n

k

)
=

3
2

I1−2 I2+
1
2

I3 =
2n+3(n + 5)− 3n2 − 19n− 32

2(n + 1)(n + 2)(n + 3)

Also solved by Henry Ricardo, New York, USA.

12. Let α > 0 be a real number and let f : [−α, α] → R be a continuous function
two times derivable in (−α, α) such that f(0) = 0 and f ′′ is bounded in (−α, α).
Show that the sequence {xn}n≥1 defined by

xn =


n∑

k=1

f

(
k

n2

)
, n > 1

α ;

0, n ≤ 1
α

is convergent and determine its limit.
(Training Spanish Team for IMC 2008)
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Solution by José Gibergans-Báguena, BARCELONA TECH, Barcelona,
Spain. First, we observe that if n > 1

α , then k
n2 ≤ 1

n < α for (1 ≤ k ≤ n), and
[0, k

n2 ] ⊂ (−α, α). Applying Taylor’s formula, we get

f

(
k

n2

)
= f(0) +

f ′(0)
1!

(
k

n2

)
+

f ′′(ck)
2!

(
k

n2

)2

,

(
0 < ck <

k

n2

)
and

xn =
n∑

k=1

f

(
k

n2

)
= f ′(0)

n∑
k=1

k

n2
+ f ′′(ck)

n∑
k=1

k2

2n4

From the above immediately follows∣∣∣∣∣xn − f ′(0)
n∑

k=1

k

n2

∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=1

k2

2n4
f ′′(ck)

∣∣∣∣∣ ≤
n∑

k=1

k2

2n4
|f ′′(ck)| ≤ M

n∑
k=1

k2

2n4
,

where (0 < M < +∞). Taking into account the well known close form of the sums
of the first and second powers of positive integers yields∣∣∣∣xn − f ′(0)

n(n + 1)
2n2

∣∣∣∣ ≤ Mn(n + 1)(2n + 1)
12n4

When n →∞, from the preceding we obtain

lim
n→∞

xn =
1
2
f ′(0)

This completes the proof and we are done.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; Paolo Perfetti,
Tor Vergata University, Rome, Italy; and José Luis Dı́az-Barrero, BAR-
CELONA TECH, Barcelona, Spain.

13. Let n be a positive integer. Compute
n∑

k=1

∑
1≤i1<...<ik≤n

2k

(i1 + 1)(i2 + 1) . . . (ik + 1)

(Longlist Mediterranean 2008)

Solution 1 by Paolo Perfetti, Tor Vergata University, Rome, Italy. Let

us denote by ak =
2

k + 1
, An =

n∑
k=1

∑
1≤i1<...<ik≤n

2k

(i1 + 1)(i2 + 1) . . . (ik + 1)
. Let

Pn(x) =
n∏

k=1

(x + ak) = xn +
n∑

k=1

bkxn−k

Then,

Pn(1) = 1 +
n∑

k=1

bk = 1 + An =
n∏

k=1

(
1 +

2
k + 1

)
=

(n + 2)(n + 3)
6

from which follows

An =
n∑

k=1

∑
1≤i1<...<ik≤n

2k

(i1 + 1)(i2 + 1) . . . (ik + 1)
=

n(n + 5)
6
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Solution 2 by José Luis Dı́az-Barrero, BARCELONA TECH, Barcelona,
Spain. For all function f for which f(k) 6= 0, (1 ≤ k ≤ n) we have

n∏
k=1

(
1 +

1
f(k)

)
= 1 +

n∑
k=1

1
f(k)

+
∑

1≤i1<i2≤n

1
f(i1)f(i2)

+ · · ·+ 1
f(1)f(2) . . . f(n)

= 1 +
n∑

k=1

∑
1≤i1<...<ik≤n

1
f(i1)f(i2) . . . f(ik)

Putting f(x) =
x + 1

2
into the preceding expression, we get

1 +
n∑

k=1

∑
1≤i1<...<ik≤n

2k

(i1 + 1)(i2 + 1) . . . (ik + 1)
=

n∏
k=1

(
1 +

2
k + 1

)

We claim that
n∏

k=1

(
1 +

2
k + 1

)
=

(n + 2)(n + 3)
6

. To prove our claim, we argue by

induction. The case when n = 1 trivially holds. Assume that the identity holds for
n. We have to prove

n+1∏
k=1

(
1 +

2
k + 1

)
=

(n + 3)(n + 4)
6

Indeed,
n+1∏
k=1

(
1 +

2
k + 1

)
=

n∏
k=1

(
1 +

2
k + 1

)(
1 +

2
n + 2

)

=
(

(n + 2)(n + 3)
6

)(
1 +

2
n + 2

)
=

(n + 3)(n + 4)
6

Therefore,
n∑

k=1

∑
1≤i1<...<ik≤n

2k

(i1 + 1)(i2 + 1) . . . (ik + 1)
=

n(n + 5)
6

and we are done.

Also solved by José Gibergans-Báguena, BARCELONA TECH, Barcelona,
Spain.

14. Let Fn be the nth Fibonacci number defined by F0 = 0, F1 = 1 and for all
n ≥ 2, Fn = Fn−1 + Fn−2. Prove that

1
n2

n∑
k=1

(
Tk

Fk

)2

≥
T 2

n+1

9FnFn+1
,

where Tk is the kth triangular number defined by Tk =
(
k+1
2

)
for all k ≥ 1.

(IMAC-2007)

Solution by José Luis Dı́az-Barrero, BARCELONA TECH, Barcelona,

Spain. From the trivial inequality (bx−ay)2 ≥ 0 or equivalently
bx2

a
+

ay2

b
≥ 2xy
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is easy to get
(

a + b

a

)
x2 +

(
a + b

b

)
y2 ≥ (x+ y)2 from which immediately follows

x2

a
+

y2

b
≥ (x + y)2

a + b

Applying the above recursively to the positive numbers a1, a2, · · · , an and the reals
x1, x2, · · · , xn, we have

x2
1

a1
+

x2
2

a2
+ . . . +

x2
n

an
≥ (x1 + x2)2

a1 + a2
+

x2
3

a3
+ . . . +

x2
n

an

≥ (x1 + x2 + x3)2

a1 + a2 + a3
+

x2
4

a4
+ . . . +

x2
n

an

≥ (x1 + x2 + · · ·+ xn)2

a1 + a2 + · · ·+ an

Setting xk = Tk and ak = F 2
k (1 ≤ k ≤ n) into the preceding inequality yields,

n∑
k=1

(
Tk

Fk

)2

≥ (T1 + T2 + . . . + Tk)2

F 2
1 + F 2

2 + . . . + F 2
n

Since T1 + T2 + . . . + Tk =
n(n + 1)(n + 2)

6
and F 2

1 + F 2
2 + . . . + F 2

n = FnFn+1, as
can be easily proved by induction, then the preceding inequality becomes

n∑
k=1

(
Tk

Fk

)2

≥ n2(n + 1)2(n + 2)2

36FnFn+1

from which the statement immediately follows. Notice that equality holds when
n = 1 and we are done.

Also solved by José Gibergans-Báguena, BARCELONA TECH, Barcelona,
Spain.

15. Prove that

1
2

+
∫ 1

0

3
√

x + ln(1 + x) dx

∫ 1

0

3
√

(x + ln(1 + x))2 dx < 2 ln 2

(József Wildt Competition 2006)

Solution 1 by José Luis Dı́az-Barrero, BARCELONA TECH, Barcelona,
Spain. We begin with a lemma.

Lema 1. Let f : [0, 1] → R+ be a continuous function. Then, the following in-
equality ∫ 1

0

f(x) dx

∫ 1

0

f2(x) dx ≤
∫ 1

0

f3(x) dx

holds.



47

Proof. First, we observe that f2(x) and f3(x) are also continuous (integrable).
Now, we set ak = f(k/n) and bk = f2(k/n), (1 ≤ k ≤ n), into Chebyshev’s
inequality, namely,

1
n

n∑
k=1

akbk −
1
n

n∑
k=1

ak
1
n

n∑
k=1

bk ≥ 0

and we get
1
n

n∑
k=1

f

(
k

n

)
1
n

n∑
k=1

f2

(
k

n

)
≤ 1

n

n∑
k=1

f3

(
k

n

)
and the proof follows taking limits when n goes to infinity. �

Finally, setting f(x) = 3
√

x + ln(1 + x) into the preceding lemma, we have∫ 1

0

3
√

x + ln(1 + x) dx

∫ 1

0

3
√

(x + ln(1 + x))2 dx

<

∫ 1

0

(x + ln(1 + x)) dx =
[x2

2
+ (1 + x)(ln(1 + x)− 1)

]1
0

= 2 ln 2− 1
2

and we are done.

Solution 2 by Paolo Perfetti, Tor Vergata University, Rome, Italy. The
inequality claimed immediately follows from Chebyshev’s inequality for integrals.
Namely, if f and g are defined on [a, b] and have the same monotonicity, then∫ b

a

f(x)dx

∫ b

a

g(x)dx ≤ (b− a)
∫ b

a

f(x)g(x)dx

Since f(x) = x + ln(1 + x) is increasing in [0, 1], then g(x) = 3
√

x + ln(1 + x) and
h(x) = 3

√
(x + ln(1 + x))2 are also increasing in [0, 1]. So, applying Chebyshev’s

inequality, yields∫ 1

0

3
√

x + ln(1 + x) dx

∫ 1

0

3
√

(x + ln(1 + x))2 dx ≤
∫ 1

0

(x+ln(1+x)) dx = 2 ln 2− 1
2

from which we obtain the inequality claimed.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; and José Gibergans-
Báguena, BARCELONA TECH, Barcelona, Spain.


