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Solutions to the problems stated in this issue should arrive before
2 August 2011

Problems

15. Proposed by Valmir Bucaj, Texas Lutheran University, Seguin, TX.
Consider the set given by

La,r = {arn|n ∈ Z+}, where r =
1
q
, q ∈ Z+, and gcd(a, q) = 1.

Show that
Bq = {La,r|r =

1
q
, q ∈ Z+, q ≥ 2 and gcd(a, q) = 1},

forms a basis for a topology on Q+.

16. Proposed by José Luis Dı́az-Barrero, Technical University of Catalonia (BAR-
CELONA TECH), Barcelona, Spain. Find all triplets (x, y, z) of real numbers
which are solutions of the following system of equations

x2(y + z)2 = (3x2 − x + 1)y2z2

y2(z + x)2 = (4y2 − y + 1)z2x2

z2(x + y)2 = (5z2 − z + 1)x2y2
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17. Proposed by José Luis Dı́az-Barrero, Technical University of Catalonia (BAR-
CELONA TECH), Barcelona, Spain. Let A(z) =

∑n
k=0 akzk (ak 6= 0) be a non-

constant polynomial with complex coefficients. Prove that all its zeros lie in the
ring shaped region C = {z ∈ C : r1 ≤ |z| ≤ r2}, where

r1 = min
1≤k≤n

{
4k
(
n
k

)
5n − 1

∣∣∣∣∣a0

ak

∣∣∣∣∣
}1/k

and r2 = max
1≤k≤n

{
5n − 1
4k
(
n
k

) ∣∣∣∣∣an−k

an

∣∣∣∣∣
}1/k

18. Proposed by Neculai Stanciu, George Emil Palade Secondary School, Buzău,
Romania. If, f(x) = 1−

√
1−2x
2 , and f−1

n = f−1 ◦ f−1 ◦ ... ◦ f−1︸ ︷︷ ︸
n

, then evaluate:

lim
n→∞

∫ 1

0

f−1
n (x)dx.

19. Proposed by Paolo Perfetti, Department of Mathematics, Tor Vergata Univer-
sity, Rome, Italy. Let {ak}k≥1 be a monotonic sequence of real positive numbers
such that

∑∞
n=1 an < ∞. Moreover, {ak}k≥1 fulfills the condition

ak − ak+1 ≥ 2−na2n+1 , for all k with 2n ≤ k ≤ 2n+1 − 1.

Let α be a quadratic irrational. Prove that the following series converges for any
δ > 0.

∞∑
n=1

an

n(lnn)δ

2n∑
k=n+1

1
| sin(kπα)|kak ln k

20. Proposed by Ovidiu Furdui, Cluj, Romania. Let p > 1/2 be a real number.
Calculate

lim
n→∞

(
n∑

k=1

1(
n
k

)p
)np

21. Proposed by Mihály Bencze, Braşov, Romania. Prove that

tan
( n∑

k=1

arctan
k2 + k − 1

(k2 + k + 1)(k2 + k + 2)

)
=

n2

2n2 + 5n + 5
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Solutions
No problem is ever permanently closed. We will be very pleased considering for
publication new solutions or comments on the past problems.

8. Proposed by Valmir Krasniqi and Armend Sh. Shabani, Department of Mathe-
matics, University of Prishtina, Republic of Kosova. If f is a nonnegative function
on [0, 1] and f ′(x) ≥ 1, then∫ 1

0

f3(x)dx ≥
(∫ 1

0

f(x)dx

)2

Solution by Ovidiu Furdui, Cluj, Romania. We prove that, under the hypo-
thesis of the problem, one has that for x ∈ [0, 1], the following stronger inequality
holds ∫ x

0

f3(t)dt−
(∫ x

0

f(t)dt

)2

≥ f2(0)
∫ x

0

f(t)dt

When x = 1 this implies that∫ 1

0

f3(x)dx−
(∫ 1

0

f(x)dx

)2

≥ f2(0)
∫ 1

0

f(x)dx

Let F : [0, 1] → R be the function defined by

F (x) =
∫ x

0

f3(t)dt−
(∫ x

0

f(t)dt

)2

Then F ′(x) = f(x)
(
f2(x)− 2

∫ x

0
f(t)dt

)
. Let g be the function defined on [0, 1] by

g(x) = f2(x)− 2
∫ x

0
f(t)dt. A calculation shows that g′(x) = 2f(x)(f ′(x)− 1) ≥ 0.

Hence g increases and it follows that g(x) ≥ g(0) = f2(0). It follows that F ′(x) ≥
f2(0)f(x), and this implies that (F (x)− f2(0)

∫ x

0
f(t)dt)′ ≥ 0. Thus, the function

x → F (x) − f2(0)
∫ x

0
f(t)dt increases. It follows that F (x) − f2(0)

∫ x

0
f(t)dt ≥

F (0) = 0, and the problem is solved.

Comment by Henry Ricardo, USA: This problem is a special case of results
found in a paper by Mohamed Akkouchi ( Some integral inequalities, Divulgaciones
Matemticas 11 (2003), 121-125), which generalizes some results of Feng Qi (Several
integral inequalities, Journal of Inequalities in Pure and Applied Mathematics vol.
1, issue 2, Article 19, 2000).

Also solved by Henry Ricardo, USA; Arnau Massegué Buisan, Tech-
nical University of Barcelona, Spain, Paolo Perfetti, Department of
Mathematics, Tor Vergata University, Rome, Italy, Valmir Bucaj, Texas
Lutheran University, Seguin, TX and the proposers.

9. Proposed by Roberto Tauraso, Department of Mathematics, Tor Vergata Uni-
versity, Rome, Italy. Show that for any prime p and for any non-negative integer
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n, p |Lpn−Ln, where Ln is the n-th Lucas number defined by L0 = 2, L1 = 1 and
for n ≥ 2, Ln = Ln−1 + Ln−2.

Solution by the proposer. If p = 2 then L2 = 3 ≡ 1 = L1 (mod 2). Now we
assume that p is an odd prime. Since p divides

(
p
k

)
for k = 1, . . . , p−1, by Fermat’s

Little Theorem

Lp =

(
1 +

√
5

2

)p

+

(
1−

√
5

2

)p

=
1

2p−1

∑
0≤k≤p

k≡0 (mod 2)

(
p

k

)
5k/2

=
1

2p−1
+

1
2p−1

∑
1≤k≤p−1

k≡0 (mod 2)

(
p

k

)
5k/2 ≡ 1 = L1 (mod p)

Moreover, by the recurrence Ln+m = LmLn − (−1)mLn−m, we have that for any
prime p

L(n+1)p ≡ LpLnp + L(n−1)p ≡ Lnp + L(n−1)p (mod p)

Hence by letting an = Lnp − Ln, it follows that

a0 ≡ 0, a1 ≡ 0, and an+1 = an + an−1 (mod p) for n ≥ 1,

which means that an ≡ 0 (mod p) for all n ≥ 0.

10. Proposed by Roberto Tauraso, Department of Mathematics, Tor Vergata Uni-
versity, Rome, Italy. Let n = 2010100. Compute the cardinality of the set

Sn =
{
d : d ∈ [1, n] ∩ N, d|n2, d - n

}
Solution by Valmir Bucaj, Texas Lutheran University, Seguin, TX. We
will solve the more general problem instead: Let n be an integer given in the
standard prime factorization form: n = pe1pe2

2 · · · pev
v . Compute the cardinality of

Sm = {d : d ∈ [1,m] ∩ N, d|m2, d - m},

where m = nk for some positive integer k. Let φ(m) be the number of divisors of
m excluding m. Then, we have φ(m) = (ke1 + 1)(ke2 + 1) · · · (kev + 1) − 1 and
φ(m2) = (2ke1 + 1)(2ke2 + 1) · · · (2kev + 1) − 1, as it is well-known. Also, since
given an integer n, half of its divisors are less than

√
n and half greater than

√
n, in

our specific case follows that half of the divisors of m2 are less than m. Therefore,

|Sm| =
φ(m2)

2
− φ(m)

For the original problem we have: n = 2010, k = 100, and m = 2010100. So, since
2010 = 2 · 3 · 5 · 67, we have

φ(m) = 1014 − 1 and φ(m2) = 2014 − 1.

Therefore,

|Sm| =
φ(m2)

2
− φ(m) =

2014 − 1
2

− 1014 + 1 = 712060000

Also solved by the proposer.
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11. Proposed by Roberto Tauraso, Department of Mathematics, Tor Vergata Uni-
versity, Rome, Italy. Find a closed formula for∑

A⊂{1,...,n}
A 6=∅

∑
B⊂{1,...,n}

B 6=∅

∑
x∈A∪B

x

Solution 1 by the proposer. We first note that for any x ∈ {1, . . . , n} the
number of subsets of {1, . . . , n} which contain the element x is 2n−1. Therefore

g(n) =
∑

A⊂{1,...,n}
A 6=∅

∑
x∈A

x =
∑

x∈{1,...,n}

x
∑

A⊂{1,...,n}
A 6=∅

[x ∈ A]

= 2n−1
∑

x∈{1,...,n}

x = 2n−1

(
n + 1

2

)
where [P ] is 1 if P is true and 0 otherwise. Similarly, for any x ∈ {1, . . . , n} the
number of couples of subsets of {1, . . . , n} whose union set contains the element x
is 3 · 2n−1 · 2n−1 ( 3 because x could belong to A \B, A ∩B or B \A). Hence

f(n) =
∑

A⊂{1,...,n}

∑
B⊂{1,...,n}

∑
x∈A∪B

x =
∑

x∈{1,...,n}

x
∑

A⊂{1,...,n}

∑
B⊂{1,...,n}

[x ∈ A ∪B]

= 3 · 4n−1
∑

x∈{1,...,n}

x = 3 · 4n−1

(
n + 1

2

)
Therefore∑
A⊂{1,...,n}

A 6=∅

∑
B⊂{1,...,n}

B 6=∅

∑
x∈A∪B

x = f(n)−
∑

A⊂{1,...,n}
A 6=∅

∑
B=∅

∑
x∈A∪B

x−
∑
A=∅

∑
B⊂{1,...,n}

B 6=∅

∑
x∈A∪B

x

= f(n)− 2g(n) =
(
3 · 4n−1 − 2n

)(n + 1
2

)
Solution 2 by the Joaqúın Rivero Rodŕıguez, I.E.S. Antonio de Nebrija,
Zalamea de la Serena, Spain. We have∑
A⊂{1,...,n}

A 6=Ø

∑
B⊂{1,...,n}

B 6=Ø

∑
x∈A∪B

x =
∑

A⊂{1,...,n}
A 6=Ø

∑
B⊂{1,...,n}

B 6=Ø

(∑
x∈A

x +
∑
x∈B

x−
∑

x∈A∩B

x

)

= 2 ·
∑

A⊂{1,...,n}
A 6=Ø

∑
B⊂{1,...,n}

B 6=Ø

∑
x∈A

x−
∑

A⊂{1,...,n}
A 6=Ø

∑
B⊂{1,...,n}

B 6=Ø

∑
x∈A∩B

x

= 2 · 2n−1 · (2n − 1) ·
n∑

k=1

k − 2n−1 · 2n−1 ·
n∑

k=1

k

=
[
2n · (2n − 1)− 22n−2

] n(n + 1)
2

=
(
22n−1 − 22n−3 − 2n−1

)
n(n + 1)

=
(
3 · 4n−1 − 2n

)(n + 1
2

)
and we are done.
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12. Proposed by Paolo Perfetti, Department of Mathematics, Tor Vergata Univer-
sity, Rome, Italy. Let a, b, c be positive numbers. Prove that∑

cyc

√
5a2 + 5c2 + 8b2

4ac
≥ 3 · 9

√
8(a + b)2(b + c)2(c + a)2

(abc)2

Solution by the proposer. Since 5a2 + 5c2 + 8b2 = 4a2 + (a2 + 4b2) + (4b2 +
c2) + 5c2 ≥ 4(a2 + ab + bc + c2), as can be easily proven, then∑

cyc

√
5a2 + 5c2 + 8b2

4ac
≥
∑
cyc

√
a + b

c
+

b + c

a
≥ 3 · 9

√
8(a + b)2(b + c)2(c + a)2

(abc)2

Setting

x =
b + c

a
, y =

a + c

b
, z =

b + a

c
=⇒ a =

1
1 + x

, b =
1

1 + y
, c =

1
1 + z

from which follows x + y + z + 2 = xyz. The inequality claimed becomes
√

x + y +
√

y + z +
√

z + x ≥ 3 · 3
√

2(xyz)2/9 if x + y + z + 2 = xyz

Squaring and using
√

(a + b)(a + c) ≥ a +
√

bc (Cauchy–Schwarz), we obtain

4(x + y + z) + 2 (
√

xy +
√

yz +
√

zx) ≥ 9 · 22/3(xyz)4/9

By the AGM we show that

4(x + y + z) + 6(xyz)1/3 ≥ 9 · 22/3(xyz)4/9

Now put r = (xyz)1/9 and use x + y + z + 2 = xyz to get

4r9 − 9 · 22/3r4 + 6r3 − 8

= (r−2
1
3 )(4r8+4·2 1

3 r7+4·2 2
3 r6+8r5+8·2 1

3 r4−2
2
3 r3+4r2+4·2 1

3 r+4·2 2
3 ) ≥ 0 (1)

The constraint x + y + z + 2 = xyz yields xyz ≥ 2. Indeed

xyz = 2 + x + y + z ≥ 2 + 3(xyz)1/3

thus by defining p = (xyz)
1
3 ≥ 2, we get p3 − 3p − 2 = (p − 2)(p + 1)2 ≥ 0 that is

p ≥ 2 implying r ≥ 2
1
3 . Since

8 · 2 1
3 r4 − 2

2
3 r3 ≥ 0

then (1) is proved and we are done.

Editorial comment: We claim that equality is never achieved.

13. Proposed by Mihály Bencze, Braşov, Romania. Let ak, 1 ≤ k ≤ n, be any
positive numbers. Prove that

(n− 1)


n∑

k=1

ak +
1

n∏
k=1

ak

 ≥

n− 1 + 2
∑

1≤i<j≤n

aiaj

2

∑
1≤i<j≤n

aiaj(ai + aj) + (n− 1)
n∑

k=1

a2
k

Solution by the proposer. Using the Cauchy-Schwarz inequality we get:
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( n∑
k=1

ak +
1

n∏
k=1

ak

)(∑
a1 · a2

p +
n∏

k=1

ak

)
≥
(∑

a1ap + 1
)2

where p ∈ {2, 3, . . . , n} or

n∑
k=1

ak +
1

n∏
k=1

ak

≥

(∑
a1ap + 1

)2

∑
a1 · a2

p +
n∏

k=1

ak

therefore

(n− 1)
( n∑

k=1

ak +
1

n∏
k=1

ak

)
=

n∑
p=2

( n∑
k=1

ak +
1

n∏
k=1

ak

)
≥

≥
n∑

p=2

(∑
a1ap + 1

)2

∑
a1 · a2

p +
n∏

k=1

ak

≥

( n∑
p=2

(∑
a1ap + 1

))2

n∑
p=2

(∑
a1 · a2

p +
n∏

k=1

ak

)

=

(
n− 1 + 2

∑
1≤i<j≤n

aiaj

)2

∑
1≤i<j≤n

aiaj(ai + aj) + (n− 1)
n∏

k=1

ak

14 (Correction). Proposed by Mihály Bencze, Braşov, Romania. Solve the equa-
tion

64x − 27 = 343x−1 +
3
7
· 28x

Solution by the proposer. Setting a = 3, b = −4x, c = 7x−1 the given equation
becomes a3 + b3 + c3 − 3abc = 0 or equivalently,

(a + b + c)(
∑
cyc

a2 −
∑
cyc

ab) = 0

Now we consider the following two possibilities:

(1)
∑
cyc

a2 −
∑
cyc

ab = 0 ⇔ a = b = c which is impossible.

(2) a + b + c = 0 ⇒ 3 − 4x + 7x−1 = 0 or 7x−1 − 4x−1 = 3 · (4x − 1). Applying
Lagrange Theorem to the function f(t) = tx−1 we have that there exist α ∈ (1, 4)
and β ∈ (4, 7) such that

f(7)− f(4) = 3(x− 1)βx−2 and f(4)− f(1) = 3(x− 1)αx−2

From the preceding immediately follows that 3(x−1)βx−2 = 3(x−1)αx−2 ⇒ x = 1
is the unique solution.
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————————————————————————————————
MATHCONTEST SECTION

————————————————————————————————

This section of the Journal offers readers an opportunity to solve interesting and ele-
gant mathematical problems mainly appeared in Math Contest around the world
and most appropriate for training Math Olympiads. Proposals are always wel-
comed. The source of the proposals will appear when the solutions be published.

Proposals
11. Let n be a positive integer. Compute the following sum

n∑
k=0

k + 4
(k + 1)(k + 2)(k + 3)

(
n

k

)

12. Let α > 0 be a real number and let f : [−α, α] → R be a continuous function
two times derivable in (−α, α) such that f(0) = 0 and f ′′ is bounded in (−α, α).
Show that the sequence {xn}n≥1 defined by

xn =


n∑

k=1

f

(
k

n2

)
, n > 1

α ;

0, n ≤ 1
α

is convergent and determine its limit.

13. Let n be a positive integer. Compute
n∑

k=1

∑
1≤i1<...<ik≤n

2k

(i1 + 1)(i2 + 1) . . . (ik + 1)

14. Let Fn be the nth Fibonacci number defined by F0 = 0, F1 = 1 and for all
n ≥ 2, Fn = Fn−1 + Fn−2. Prove that

1
n2

n∑
k=1

(
Tk

Fk

)2

≥
T 2

n+1

9FnFn+1
,

where Tk is the kth triangular number defined by Tk =
(
k+1
2

)
for all k ≥ 1.

15. Prove that
1
2

+
∫ 1

0

3
√

x + ln(1 + x) dx

∫ 1

0

3
√

(x + ln(1 + x))2 dx < 2 ln 2
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Solutions
6. Let a, b, c be the lengths of the sides of a triangle ABC with circumradius r and
area A. Compute

cos A− cos B

A− rc
+

cos B − cos C

A− ra
+

cos C − cos A

A− rb

(Spanish First Stage 2007)

Solution by José Gibergans-Báguena and José Luis Dı́az-Barrero, Tech-
nical University of Catalonia (BARCELONA TECH), Barcelona, Spain.
Since A = pr, (p represents the semi-perimeter of 4ABC), then A−ra = rp−ra =
r(p− a) (cyclic) and the given expression can be written as

cos A− cos B

r(p− c)
+

cos B − cos C

r(p− a)
+

cos C − cos A

r(p− b)

=
1
r

(
cos A− cos B

p− c
+

cos B − cos C

p− a
+

cos C − cos A

p− b

)
=

2
r

(
cos A− cos B

a + b− c
+

cos B − cos C

b + c− a
+

cos C − cos A

a− b + c

)
Applying the Law of Cosine, yields

cos A− cos B

a + b− c
=

1
a + b− c

(
c2 + b2 − a2

2bc
− c2 + a2 − b2

2ac

)
=

b(c2 + b2 − a2)− a(c2 + a2 − b2

2abc(a + b− c)

=
(a− b)[c2 − (a + b)2]

2abc(a + b− c)
=

2p(b− a)
abc

Likewise,
cos B − cos C

b + c− a
=

2p(c− b)
abc

and
cos C − cos A

a− b + c
=

2p(a− c)
abc

. Hence,

cos A− cos B

A− rc
+

cos B − cos C

A− ra
+

cos C − cos A

A− rb

=
2
r

(
cos A− cos B

a + b− c
+

cos B − cos C

b + c− a
+

cos C − cos A

a− b + c

)
=

2
r

(
2p(b− a)

abc
+

2p(c− b)
abc

+
2p(a− c)

abc

)
= 0

and we are done.

7. Let ln a, ln b and ln c be the lengths of the sides of a triangle ABC. Prove that

3
5
≤ ln a

ln(ab2c2)
+

ln b

ln(a2bc2)
+

ln c

ln(a2b2c)
< 1

(Shortlist XIX Ibero 2004)
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Solution 1 by Valmir Bucaj, Texas Lutheran University, Seguin, TX.
Since the sum of any two sides of a triangle is greater than the third, then we have∑

cyclic

ln a

ln(ab2c2)
=

∑
cyclic

ln a

ln a + 2(ln b + ln c)
<
∑

cyclic

ln a

ln a + 2 ln a

=
∑

cyclic

ln a

3 ln a
=
∑

cyclic

1
3

=
1
3

+
1
3

+
1
3

= 1

To prove the LHS inequality, we suppose that ln a ≥ ln b ≥ ln c. Since the conditions
for Chebyshev’s Inequality are satisfied, then applying Chebyshev’s Inequality and
AM −HM successively, we get

∑
cyclic

ln a

ln(ab2c2)
≥ 1

3
ln(abc)

∑
cyclic

1
ln(ab2c2)


≥ ln(abc)

3
9

∑
cyclic

ln(ab2c2)

−1

=
3 ln(abc)
5 ln(abc)

=
3
5
.

This completes the proof.

Solution 2 by José Luis Dı́az-Barrero, Technical University of Catalonia
(BARCELONA TECH), Barcelona, Spain. First, we write the statement in
the most convenient form

3
5
≤ ln a

ln a + 2(ln b + ln c)
+

ln b

ln b + 2(ln c + ln a)
+

ln c

ln c + 2(ln a + ln b)
< 1

RHS inequality trivially holds from
ln b + ln c

ln a
> 1,

ln c + ln a

ln b
> 1 and

ln a + ln b

ln c
> 1

To prove LHS inequality, we put

x =
ln a

ln a + ln b + ln c
, y =

ln b

ln a + ln b + ln c
, z =

ln c

ln a + ln b + ln c
,

and we have
ln a

ln a + 2(ln b + ln c)
+

ln b

ln b + 2(ln c + ln a)
+

ln c

ln c + 2(ln a + ln b)

=
x

2− x
+

y

2− y
+

z

2− z

Since
(

1
2− x

+
1

2− y
+

1
2− z

)[
(2− x) + (2− y) + (2− z)

]
≥ 9, or equivalently,(

1
2− x

+
1

2− y
+

1
2− z

)[
6− (x + y + z)

]
≥ 9,

then
1

2− x
+

1
2− y

+
1

2− z
≥ 9

5
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on account of the fact that x + y + z = 1. Therefore, from the preceding we have

x

2− x
+

y

2− y
+

z

2− z
=

x + 2− 2
2− x

+
y + 2− 2

2− y
+

z + 2− 2
2− z

= 2
(

1
2− x

+
1

2− y
+

1
2− z

)
− 3 ≥ 3

5
Notice that equality holds when ln a = ln b = ln c. That is, when 4ABC is equilate-
ral.

Also solved by José Gibergans-Báguena, Technical University of Catalo-
nia (BARCELONA TECH), Barcelona, Spain, Paolo Perfetti, Depart-
ment of Mathematics, Tor Vergata University, Rome, Italy.

8. Suppose that the three roots of the equation t3 − at2 + t− b = 0 are positive real
numbers. Show that 9b2(1 + 6ab) ≤ 1.

(Longlist OME 2006)

Solution by José Luis Dı́az-Barrero, Technical University of Catalonia
(BARCELONA TECH), Barcelona, Spain. First, we observe that the coe-
fficients b and c are nonzero. Dividing by b3 both sides of 9b2(1 + 6ab) ≤ 1 and
taking the cubic root of both sides of the resulting inequality, yields

9b2(1 + 6ab) ≤ 1 ⇔ 3 3

√
1
b

+ 6a ≤
3
√

3
b

Let x, y, z be the roots of t3 − at2 + t − b = 0. On account of Cardan’s formulae,
we have

x + y + z = a,

xy + yz + zx = 1,

xyz = b,

and the last inequality becomes

3 3

√
1

xyz
+ 6(x + y + z) ≤

3
√

3
xyz

,

or equivalently,
3
3
√

3
3

√
1

xyz
+ 6(x + y + z) ≤ 1

xyz

We have
1

xyz
+ 6(x + y + z) =

1 + 6x2yz + 6xy2z + 6xyz2

xyz

=
1 + 3xy(xz + yz) + 3yz(yx + zx) + 3zx(xy + yz)

xyz

Taking into account that xy + yz + zx = 1, we get

3
3
√

3
3

√
4− 3[(xy)2 + (yz)2 + (zx)2]

xyz
≤ 1

xyz
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Now, from xy + yz + zx = 1 and

3[(xy)2 + (yz)2 + (zx)2] ≥ (xy + yz + zx)2 = 1,

to prove the last inequality it suffices to prove

3
3
√

3
3

√
3

xyz
≤ 1

xyz

which follows immediately from AM-GM inequality. Indeed,

x2y2z2 = (xy)(yz)(zx) ≤
(

xy + yz + zx

3

)3

=
1
33

Multiplying both sides by xyz and reordering terms, yields

33

xyz
≤ 1

(xyz)3
⇔ 3

3
√

3
3

√
3

xyz
≤ 1

xyz

Equality holds when x = y = z =
1√
3
. That is, when a =

√
3 and b =

√
3

9
.

Also solved by Bruno Salgueiro Fanego, Viveiro, Spain; and José Gibergans-
Báguena, Technical University of Catalonia (BARCELONA TECH),
Barcelona, Spain, Paolo Perfetti, Department of Mathematics, Tor Ver-
gata University, Rome, Italy.

9. Let {an}n≥0 be the sequence defined by a0 = 1, a1 = 2, a2 = 1 and for all n ≥ 3,
a3

n = an−1an−2an−3. Find lim
n→∞

an.

(Longlist IMC 2006)

Solution by José Gibergans-Báguena and José Luis Dı́az-Barrero, Tech-
nical University of Catalonia (BARCELONA TECH), Barcelona, Spain.
Setting bn = log2 an, we get the sequence {bn}n≥0 defined by b0 = 0, b1 = 1, b2 = 0
and for all n ≥ 3, 3bn = bn−1 + bn−2 + bn−3. The characteristic equation of bn is
3t3 − t3 − t− 1 = 0 which roots are 1, − 1

3 (1− i
√

2), − 1
3 (1 + i

√
2). Therefore,

bn = a + b

(
−1

3
(1− i

√
2)
)n

+ c

(
−1

3
(1 + i

√
2)
)n

Taking into account of the initial conditions, we get the system of equations

a + b + c = 0

a + b

(
−1

3
(1− i

√
2)
)

+ c

(
−1

3
(1 + i

√
2)
)

= 1

a + b

(
−1

3
(1− i

√
2)
)2

+ c

(
−1

3
(1 + i

√
2)
)2

= 0

with solutions a =
1
3
, b = −1

6
(1 − 5i

√
2/2) and c = −1

6
(1 + 5i

√
2/2). Thus, if

limn→∞ an = L, then

log2 L = lim
n→∞

log2 an = lim
n→∞

bn =
1
3
⇒ L = 3

√
2

and we are done.
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Also solved by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy.

10. Let x, y, z be three distinct positive real numbers. Prove that

1
max{x, y, z}

<
∑

cyclic

lnx2x

(x− y)(x− z)
<

1
min{x, y, z}

(Longlist IMC 2009)

Solution by José Luis Dı́az-Barrero, Technical University of Catalonia
(BARCELONA TECH), Barcelona, Spain. The inequality claimed is equiv-
alent to

1
2 max{x, y, z}

<
x lnx

(x− y)(x− z)
+

y ln y

(y − x)(y − z)
+

z ln z

(z − x)(z − y)
<

1
2 min{x, y, z}

Taking into account that
x

(x− y)(x− z)
+

y

(y − x)(y − z)
+

z

(z − x)(z − y)
= 0,

as can be easily proven, we have that the last inequality is equivalent to
1

2 max{x, y, z}
<

x(lnx− 1)
(x− y)(x− z)

+
y(ln y − 1)

(y − x)(y − z)
+

z(ln z − 1)
(z − x)(z − y)

<
1

2 min{x, y, z}
Applying the well-known result [1] from the theory of divided differences

f [z0, z1, · · · , zn] =
n∑

j=0

f(zj)
n∏

k=0
k 6=j

1
zj − zk

to the function f(t) = t(ln t− 1), we get

f [x, y, z] =
f(x)

(x− y)(x− z)
+

f(y)
(y − x)(y − z)

+
f(z)

(z − x)(z − y)

=
x(lnx− 1)

(x− y)(x− z)
+

y(ln y − 1)
(y − x)(y − z)

+
z(ln z − 1)

(z − x)(z − y)
Now we need the following result.

Lema 1. Let f : [a, b] → R be a real valued function with second derivative f ′′(x)
continuous in [a, b] and x, y, z ∈ [a, b]. Then there exists c ∈

[
min{x, y, z},max{x, y, z}

]
such that f [x, y, z] =

f ′′(c)
2

.

Proof. Since f ′′(x) is continuous in [a, b], then it has a maximum and a minimum
in [a, b]. Let m = min

a≤x≤b
f ′′(x) and M = max

a≤x≤b
f ′′(x). Then from the integral repre-

sentation of f [x, y, z], we have

m

∫ 1

0

dt1

∫ t1

0

dt2 ≤ f [x, y, z] ≤ M

∫ 1

0

dt1

∫ t1

0

dt2

and
m

2
≤ f [x, y, z] ≤ M

2
or m ≤ 2f [x, y, z] ≤ M
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Since f ′′(x) is continuous, by applying the intermediate value theorem to it, we
have 2f [x, y, z] = f ′′(c) for some c ∈

[
min{x, y, z},max{x, y, z}

]
and the proof is

complete. �

Applying Lemma 1 to the function f(t) = t(ln t−1) to which f ′′(t) is the decreasing
function f ′′(t) = 1/t then there exists c ∈

[
min{x, y, z},max{x, y, z}

]
such that

f [x, y, z] =
1
2
f ′′(c) =

1
2c

. So,
1

2 max{x, y, z}
≤ 1

2c
≤ 1

2 min{x, y, z}
. Since x, y, z

are distinct then the statement follows and we are done.
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Solution 2 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy. Both the LHS and the RHS are symmetric and ho-
mogeneous. The symmetry is evident while for the homogeneity we multiply each
variable by α obtaining

1
max{αx, αy, αz}

<
∑
cyclic

2αx(lnα + lnx)
α2(x− y)(x− z)

<
1

min{αx, αy, αz}

Now we observe that ∑
cyclic

x

(x− y)(x− z)
= 0

thus we remain with
1

α max{x, y, z}
<
∑
cyclic

2 ln x

α(x− y)(x− z)
<

1
α min{x, y, z}

that is the homogeneity. By symmetry we can set x ≤ y ≤ z and by homogeneity
x = 1 thus we have

1
z

<
2y ln y

(y − 1)(y − z)
+

2z ln z

(z − 1)(z − y)
<

1
x

= 1

The RHS becomes
2z ln z

z − 1
− z ≤ 2y ln y

y − 1
− y (2)

Let f(z) =
2z ln z

z − 1
− z, z ≥ 1. Then,

f ′(z) = −z2 − 4z + 3 + 2 ln z

(z − 1)2
≤ 0 ⇐⇒ z2 − 4z + 3 + 2 ln z ≥ 0

(z2 − 4z + 3 + 2 ln z)|z=1 = 0, (z2 − 4z + 3 + 2 ln z)′ = 2z − 4 +
2
z

> 0 ∀ z ≥ 1

It follows that f(z) does not increase yielding (2) and concluding the proof of the
RHS.

As for the LHS of (2) we need to prove that
z − y

z
<

2z ln z

z − 1
− 2y ln y

y − 1
(3)
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Let f(ξ) =
2ξ ln ξ

ξ − 1
. By the Lagrange theorem f(z) − f(y) = f ′(c)(z − y) where

y < c < z and therefore f ′(ξ) = 2
ξ − 1− ln ξ

(ξ − 1)2
. We conclude the computation

writing a Lemma

Lema 2. For all ξ > 1 holds 2
ξ − 1− ln ξ

(ξ − 1)2
>

1
ξ
.

Proof. It is equivalent to show

F (ξ) = 2
ξ2 − ξ − ln ξ

(ξ − 1)2
− 1 > 0, F (1) = lim

ξ→1
f(ξ) = 0

F ′(ξ) =
2(ln(ξ)ξ + ln(ξ)− 2ξ + 2)

(x− 1)3
≥ 0 ⇐⇒ h(ξ) = (ln(ξ)ξ + ln(ξ)− 2ξ + 2) ≥ 0

h(1) = 0, h′(ξ) =
2(−ξ + ln(ξ)ξ + 1)

ξ
≥ 0 ⇐⇒ k(ξ) = −ξ + ln(ξ)ξ + 1 ≥ 0

k(1) = 0, k′(ξ) = ln(ξ) ≥ 0, ξ ≥ 1
thus the assertion of the Lemma. q.e.d. �

Now the c in f(z)− f(y) = f ′(c)(z− y) satisfies y < c < z and then by the Lemma
f ′(c) ≥ 1

c > 1
z proving (3) and concluding the proof.

Also solved by José Gibergans-Báguena, Technical University of Catalo-
nia (BARCELONA TECH), Barcelona, Spain.
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