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Proposals should be accompanied by solutions. An asterisk (*) indicates that nei-
ther the proposer nor the editors have supplied a solution. The editors encourage
undergraduate and pre-college students to submit solutions. Teachers can help by
assisting their students in submitting solutions. Student solutions should include
the class and school name. Solutions will be evaluated for publication by a com-
mittee of professors according to a combination of criteria. Questions concerning
proposals and/or solutions can be sent by e-mail to: mathproblems-ks@hotmail.com

Solutions to the problems stated in this issue should arrive before
08.04.2011

Problems

8. Proposed by Valmir Krasniqi and Armend Sh. Shabani, Department of Mathe-
matics, University of Prishtina, Republic of Kosova. If f is a non-negative function
on [0, 1] and f ′(x) ≥ 1. Prove that∫ 1

0

[f(x)]3 dx ≥
[∫ 1

0

f(x)dx

]2
9. Proposed by Roberto Tauraso, Department of Mathematics, Tor Vergata Uni-
versity, Rome, Italy. Show that for any prime p and for any non-negative integer
n,

p |Lpn − Ln,

where Ln is the n-th Lucas number defined by L0 = 2, L1 = 1 and for n ≥ 2, Ln =
Ln−1 + Ln−2.
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10. Proposed by Roberto Tauraso, Department of Mathematics, Tor Vergata Uni-
versity, Rome, Italy. Let n = 2010100. Compute the cardinality of the set

Sn =
{
d : d ∈ [1, n] ∩ N, d|n2, d - n

}
11. Proposed by Roberto Tauraso, Department of Mathematics, Tor Vergata Uni-
versity, Rome, Italy. Find a closed formula for∑

A⊂{1,...,n}
A 6=∅

∑
B⊂{1,...,n}

B 6=∅

∑
x∈A∪B

x

12. Proposed by Paolo Perfetti, Department of Mathematics, Tor Vergata Univer-
sity, Rome, Italy. Let a, b, c be positive numbers. Prove that∑

cyc

√
5a2 + 5c2 + 8b2

4ac
≥ 3 · 9

√
8(a+ b)2(b+ c)2(c+ a)2

(abc)2

13. Proposed by Mihály Bencze, Braşov, Romania. Let ak, 1 ≤ k ≤ n, be any
positive numbers. Prove that

(n− 1)


n∑
k=1

ak +
1

n∏
k=1

ak

 ≥
n− 1 + 2

∑
1≤i<j≤n

aiaj

2

∑
1≤i<j≤n

aiaj(ai + aj) + (n− 1)

n∑
k=1

a2k

14. Proposed by Mihály Bencze, Braşov, Romania. Solve the equation

64x − 17 = 343x−1 +
9

7
· 28x
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Solutions
No problem is ever permanently closed. We will be very pleased considering for
publication new solutions or comments on the past problems.

1. Proposed by Valmir Krasniqi, Department of Mathematics, University of Prish-
tina, Republic of Kosova. Let be f : (0,∞) → R. Show that the function g(x) =
f
(
1
x

)
is convex in (0,∞), if and only if the function h(x) = xf(x) is convex in

(0,∞).

Solution by Ovidiu Furdui, Cluj, Romania. First we assume that g is convex
on (0,∞) and we prove that h is convex. This implies that for all x, y > 0 and
α, β ≥ 0 with α+ β = 1 holds

f

(
1

αx+ βy

)
≤ αf

(
1

x

)
+ βf

(
1

y

)
. (1)

We need to prove that for all u, v > 0 and α′, β′ ≥ 0 with α′ + β′ = 1 one has that

(α′u+ β′v) f(α′u+ β′v) ≤ α′uf(u) + β′vf(v). (2)

Setting x = 1/u, y = 1/v, α = α′u
α′u+β′v , and β = β′v

α′u+β′v in (1) we get that (2)

holds. To prove the other implication put α′ = αx
αx+βy , β′ = βy

αx+βy , u = 1/x, and

v = 1/y in (2) and inequality (1) follows.

Also solved by Paolo Perfetti, Department of Mathematics, Tor Ver-
gata University, Rome, Italy; Arnau Massegué Buisan, Spain, and the
proposer.

2. Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia,
Barcelona, Spain.

Find all n−tuples (x1, x2, . . . , xn) of real numbers such that

x21 +
√
x22 + 7 =

√
x22 + 160,

x22 +
√
x23 + 7 =

√
x23 + 160,

. . . . . .

x2n−1 +
√
x2n + 7 =

√
x2n + 160,

x2n +
√
x21 + 7 =

√
x21 + 160.


Solution by Arnau Massegué Buisan, Spain. Putting x2i = ti, 1 ≤ i ≤ n, we
obtain

t1 +
√
t2 + 7 =

√
t2 + 160,

t2 +
√
t3 + 7 =

√
t3 + 160,

. . . . . .
tn−1 +

√
tn + 7 =

√
tn + 160,

tn +
√
t1 + 7 =

√
t1 + 160.

⇔
t1 =

√
t2 + 160−

√
t2 + 7,

t2 =
√
t3 + 160−

√
t3 + 7,

. . . . . .
tn−1 =

√
tn + 160−

√
tn + 7,

tn =
√
t1 + 160−

√
t1 + 7.


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Now we consider the function f : [0,+∞)→ R defined by

f(t) =
√
t+ 160−

√
t+ 7 =

153√
t+ 160 +

√
t+ 7

Since for 0 ≤ u < v is

f(u) =
153√

u+ 160 +
√
u+ 7

>
153√

v + 160 +
√
v + 7

= f(v),

then f is increasing and the same holds with f(· · · (f(f(t)))), as it is well-known.
On the other hand, from f(t2) = t1, f(t3) = t2, . . . , f(t1) = tn it follows that
f(· · · (f(f(t1)))) = t1. The preceding holds if and only if f(t1) = t1, as can be
easily checked. So, we have to find the fixed points of f. That is, we have to solve
the equation

√
t+ 160 −

√
t+ 7 = t or equivalently, 153 − t2 = 2t

√
t+ 7. Since

153− t2 ≥ 0, then t ∈ [0, 3
√

17]. Squaring the preceding equation yields,

t4 − 4t3 − 334t2 + 23409 = (t− 9)(t3 + 5t2 − 289t− 2601) = 0

Let g : [0, 3
√

17]→ R be defined by g(t) = t3 + 5t2− 289t− 2601. Using elementary

calculus we have that g(t) < 0 for all t ∈ [0, 3
√

17]. Therefore, the only fixed point
of f is t = 9, from which follows that x21 = x22 = . . . = x2n = 9 and the set of real
n−tuples solution of the system is

{(3, 3, · · · , 3), (−3, 3, · · · , 3), (3,−3, · · · , 3) . . . (3, 3, · · · − 3) . . . (−3,−3, · · · ,−3)}
Notice that it has 2n elements, and we are done.

Also solved by Ovidiu Furdui, Cluj, Romania and the proposer.

3. Proposed by José Luis Dı́az-Barrero, Polytechnical University of Catalonia,
Barcelona, Spain.

Let a1, a2, . . . , an be n positive real numbers and let k ≤ m be positive integers.
Prove that

n∑
i=1

F 2
i a

m
i ≥

1

FnFn+1

(
n∑
i=1

F 2
i a

k
i

)(
n∑
i=1

F 2
i a

m−k
i

)
,

where Fk is the nth Fibonacci number defined by F0 = 0, F1 = 1, and for all
n ≥ 2, Fn = Fn−1 + Fn−2.

Solution 1 by Arnau Massegué Buisan, Spain. Using the well-known identity∑n
i=1 F

2
i = FnFn+1 which can be easily proven by induction on n, we can rewrite

the inequality stated as(
n∑
i=1

F 2
i

)(
n∑
i=1

F 2
i a

m
i

)
≥

(
n∑
i=1

F 2
i a

k
i

)(
n∑
i=1

F 2
i a

m−k
i

)
After expanding the products and canceling equal terms the inequality becomes
equivalent to

n∑
i<j

F 2
i F

2
j (ami + amj ) ≥

n∑
i<j

F 2
i F

2
j (aki a

m−k
j + am−ki akj )

So, since F 2
i F

2
j ≥ 0 it is enough to show that ami + amj ≥ aki a

m−k
j + am−ki akj , but it

is a straightforward consequence of rearrangement inequality.



8

Solution 2 by the proposer. To prove our claim, we need the following result

Lema 1. Let a1, a2, . . . , an and b1, b2, . . . , bn be sequences of positive numbers.
Then, holds (

n∑
i=1

ami bi

)(
n∑
i=1

bi

)
−

(
n∑
i=1

aki bi

)(
n∑
i=1

am−ki bi

)

=
∑

1≤i<j≤n

bibj

(
aki − akj

)(
am−ki − am−kj

)
≥ 0,

where k ≤ m are positive integers.

Proof. We have(
n∑
i=1

ami bi

)(
n∑
i=1

bi

)
=
(
am1 b1 + am2 b2 + . . .+ amn bn

)(
b1 + b2 + . . .+ bn

)
=
(
am1 b

2
1 + am1 b1b2 + . . .+ am1 b1bn

)
+
(
am2 b2b1 + am2 b

2
2 + . . .+ am2 b2bn

)
+ · · ·+

(
amn bnb1 + amn bnb2 + . . .+ amn b

2
n

)
(3)

and(
n∑
i=1

aki bi

)(
n∑
i=1

am−ki bi

)
=
(
ak1b1+ak2b2+. . .+aknbn

)(
am−k1 b1+am−k2 b2+. . .+am−kn bn

)
=
(
am1 b

2
1+ak1a

m−k
2 b1b2+. . .+ak1a

m−k
n b1bn

)
+
(
ak2a

m−k
1 b2b1+am2 b

2
2+. . .+ak2a

m−k
n b2bn

)
+ · · ·+

(
akna

m−k
1 bnb1 + akna

m−k
2 bnb2 + . . .+ amn b

2
n

)
(4)

Subtracting (3) from (4), we get(
n∑
i=1

ami bi

)(
n∑
i=1

bi

)
−

(
n∑
i=1

aki bi

)(
n∑
i=1

am−ki bi

)

= b1b2

(
am1 −ak1am−k2 −ak2am−k1 +am2

)
+· · ·+bn−1bn

(
amn−1−akn−1am−kn −aknam−kn−1 +amn

)
=

∑
1≤i<j≤n

bibj

(
ami − aki am−kj − akj am−ki + amj

)
=

∑
1≤i<j≤n

bibj

(
aki − akj

)(
am−ki − am−kj

)
≥ 0

and the proof is complete. �

Putting bi = F 2
i , 1 ≤ i ≤ n, in the previous lemma and taking into account that

F 2
1 + F 2

2 + . . .+ F 2
n = FnFn+1 (as can be easily proven by induction), we get

FnFn+1

(
n∑
i=1

F 2
i a

m
i

)
−

(
n∑
i=1

F 2
i a

k
i

)(
n∑
i=1

F 2
i a

m−k
i

)

=
∑

1≤i<j≤n

F 2
i F

2
j

(
aki − akj

)(
am−ki − am−kj

)
≥ 0

Equality holds when a1 = a2 = . . . = an and this completes the proof.
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4. Proposed by Paolo Perfetti, Department of Mathematics, Tor Vergata University,
Rome, Italy. Let x, y be positive real numbers. Prove that

2xy

x+ y
+

√
x2 + y2

2
≤ √xy +

x+ y

2
+

(x+y2 − L(x, y))2

x+y
2

where L(x, y) = (x− y)/(ln(x)− ln(y)) if x 6= y and L(x, x) = x.

Solution by the proposer. Let A = (x+ y)/2 and G =
√
xy. On account of the

well-known inequality L ≤ (2G+A)/3 ≤ A, we can insert a term and to prove

2xy

x+ y
+

√
x2 + y2

2
≤ √xy+

x+ y

2
+

(
x+y−2√xy

3 )2(
x+y
2

) ≤ √xy+
x+ y

2
+

(x+y2 − L(x, y))2

x+y
2

RHS inequality trivially holds. To prove LHS inequality, we observe that symmetry
allows us to consider x/y ≥ 1 and the homogeneity to write the inequality in terms
of the variable t = x/y. That is,

4

9

(
t+1
2 −

√
t
)2(

t+1
2

) +
1 + t

2
+
√
t ≥ 2t

1 + t
+

√
1 + t2

2

Clearing the denominators the preceding inequality is equivalent to

13

18
(t+ 1)2 − 10

9
t ≥ 1

2
(t+ 1)

√
2 + 2t2 − 1

9
(t+ 1)

√
t

Putting t = z2 in the preceding, we get

13

18
(z2 + 1)2 − 10

9
z2 ≥ 1

2
(z2 + 1)

√
2 + 2z4 − 1

9
(z2 + 1)z

That is, (
13

18
(z2 + 1)2 − 10

9
z2 +

1

9
(z2 + 1)z

)2

− 1

4
(z2 + 1)2(2 + 2z4) ≥ 0

or

P (z) =
7

324
+

13

81
z − 41

81
z2 +

19

81
z3 +

29

162
z4 +

19

81
z5 − 41

81
z6 +

13

81
z7 +

7

324
z8 ≥ 0

We have P (j)(1) = 0 for any 0 ≤ j ≤ 3, where P (j)(1) is the j-th derivative of P (z)
at z = 1. Moreover, P (k)(1) > 0 for any 4 ≤ k ≤ 7 and P (8)(t) > 0. It follows that
P (t) > 0 for any t 6= 1 and P (1) = 0. More specifically, we have

P (4)(1) = 64/3, P (5)(1) = 640/3, P (6)(1) = 880, P (7)(1) = 1680, P (8)(t) = 7840/9

Finally, we will prove that L ≤ (2G + A)/3 ≤ A. The inequality (2G + A)/3 ≤ A
trivially holds on account of AM-GM inequality. Using the variable t = x/y again,
LHS inequality becomes

t− 1

ln t
≤ 2

3

√
t+

1 + t

6
Now we consider the function f defined by

f(t) = ln t− 6
t− 1

4
√
t+ 1 + t

Since f(1) = 0 and f ′(t) = 2(t−1)4
t(4t+1+t2)2 ≥ 0, then f(t) ≥ 0. Equality holds when

x = y, and the proof is complete.
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5. Proposed by Paolo Perfetti, Department of Mathematics, Tor Vergata University,
Rome, Italy. Let [a] be the integer part of a. Evaluate∫ 1

0

∫ 1−x

0

dxdy([
x
y

]
+ 1
)2

Solution by Ovidiu Furdui, Cluj, Romania. More generally, we prove that if
k ≥ 1 is an integer, then∫ 1

0

∫ 1−x

0

dxdy([
x
y

]
+ 1
)k =

1

2

(−1)k −
k+1∑
j=2

(−1)k+jζ(j)

 ,

where ζ denotes the Zeta function. When k = 2, we have∫ 1

0

∫ 1−x

0

dxdy([
x
y

]
+ 1
)2 =

1

2
(ζ(3) + 1− ζ(2))

Using the substitution y = xt, we have

I =

∫ 1

0

∫ 1−x

0

dxdy([
x
y

]
+ 1
)k =

∫ 1

0

x

(∫ (1−x)/x

0

dt([
1
t

]
+ 1
)k
)
dx

Integrating by parts with

f(x) =

∫ (1−x)/x

0

dt([
1
t

]
+ 1
)k , f ′(x) = − 1

x2
· 1([

x
1−x

]
+ 1
)k , g′(x) = x, g(x) = x2/2,

we get

I =
x2

2

∫ (1−x)/x

0

dt([
1
t

]
+ 1
)k ∣∣∣∣x=1

x=0

+
1

2

∫ 1

0

dx([
x

1−x

]
+ 1
)k

=
1

2

∫ 1

0

dx([
x

1−x

]
+ 1
)k =

1

2

∫ 1

0

dx([
1−x
x

]
+ 1
)k

=
1

2

∫ 1

0

dx([
1
x

])k =
1

2

∫ ∞
1

dt

t2[t]k
=

1

2

∞∑
m=1

∫ m+1

m

dt

t2mk

=
1

2

∞∑
m=1

1

mk

(
1

m
− 1

m+ 1

)
=

1

2
ζ(k + 1)− 1

2

∞∑
m=1

1

mk(m+ 1)

Let Sk =

∞∑
m=1

1

mk(m+ 1)
. Since

1

mk(m+ 1)
=

1

mk
− 1

mk−1(m+1)
, then Sk = ζ(k)−

Sk−1. This implies that (−1)kSk = (−1)kζ(k) + (−1)k−1Sk−1, and by iteration, it
follows that

Sk = (−1)k+1 +

k∑
j=2

(−1)k+jζ(j).
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Thus,

I =
1

2

ζ(k + 1) + (−1)k −
k∑
j=2

(−1)k+jζ(j)


=

1

2

(−1)k −
k+1∑
j=2

(−1)k+jζ(j)

 ,

and we are done.

Also solved by the proposer

6. Proposed by Paolo Perfetti, Department of Mathematics, Tor Vergata University,
Rome, Italy. Let {ak}k≥1 be a sequence of real positive numbers. Define Sn =∑n
k=1 ak. Prove that if ak+1 ≤ akeak+1 then

lim
n→+∞

nane
−Sn = 0

Solution by the proposer. The condition ak+1 ≤ ake
ak+1 is equivalent to

ak+1e
−Sk+1 ≤ ake

−Sk that is the monotonicity of the sequence {ake−Sk}k≥1. The
series

∑∞
k=1 ake

−Sk is convergent. Indeed,

∞∑
k=1

ake
−Sk =

∞∑
k=1

(Sk − Sk−1)e−Sk ≤
∞∑
k=1

∫ Sk

Sk−1

e−xdx ≤
∫ ∞
0

e−xdx < +∞

Now we use the well known result according to which a convergent series
∑∞
k=1 ak

of general term not increasing and positive, implies

lim
k→∞

kak = 0

This result is a standard application of the Cauchy property of convergent se-
quences. Namely,

∞∑
k=1

bk converges ⇐⇒ ∀ ε ∃ nε : n,m > nε ⇒

∣∣∣∣∣
n∑

k=m

bk

∣∣∣∣∣ < ε

As a consequence, we have

(n−m+ 1)an <

n∑
k=m

ak < ε

that is the conclusion. The monotonicity of {ake−Sk}k≥1 and the convergence of∑∞
k=1 ake

−Sk completes the proof.

Also solved by Moubinool Omarjee, France

7. Proposed by Ovdiu Furdui and Alina Ŝıntămărian, Cluj, Rumania. Let k ≥ 1
and p ≥ 2 be positive integers and let (xn)n∈N be a sequence of positive numbers
such that lim

n→∞
xn
p
√
n

= L > 0. Find the value of,

lim
n→∞

xn + xn+1 + · · ·+ xkn
nxn
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Solution by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy. Since limn→∞

xn
p
√
n

= L, then

∀ ε > 0 ∃ nε : n > nε =⇒ (L− ε) p
√
n < xn < (L+ ε) p

√
n

Thus,

(L− ε)
kn∑
j=n

p
√
j <

kn∑
j=n

xj < (L+ ε)

kn∑
j=n

p
√
j

The monotonicity of x1/p for x > 0 yields∫ kn

n−1
x1/pdx ≤

kn∑
j=n

p
√
j ≤

∫ kn+1

n

x1/pdx,

and therefore

p

p+ 1

(
(kn)

p+1
p − (n− 1)

p+1
p

)
<

kn∑
j=n

p
√
j <

p

p+ 1

(
(kn+ 1)

p+1
p − n

p+1
p

)
This implies that

(L−ε)p
p+1

(
(kn)

p+1
p − (n− 1)

p+1
p

)
n p
√
n

p
√
n

xn
≤

kn∑
j=n

xj

n · xn

≤
(L+ε)p
p+1

(
(kn+ 1)

p+1
p − n

p+1
p

)
n p
√
n

p
√
n

xn
(5)

Computing the limits of the first and third terms of the preceding expression, yields(
(kn+ 1)

p+1
p − n

p+1
p

)
n p
√
n

·
p
√
n

xn
→

(
k

p+1
p − 1

)
L

,

and (
(kn)

p+1
p − (n− 1)

p+1
p

)
n p
√
n

·
p
√
n

xn
→

(
k

p+1
p − 1

)
L

.

Letting n→∞ in (5) we get

(L− ε)
L

· p

p+ 1

(
k

p+1
p − 1

)
≤ lim
n→∞

kn∑
j=n

xj

nxn
≤ (L+ ε)

L
· p

p+ 1

(
k

p+1
p − 1

)
,

and since ε > 0 is arbitrary, then the result follows.

Also solved by Arnau Massegué Buisan, Spain; Moubinool Omarjee,
France and the proposers.
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————————————————————————————————

MATHCONTEST SECTION
————————————————————————————————

This section of the Journal offers readers an opportunity to solve interesting and ele-
gant mathematical problems mainly appeared in Math Contest around the world
and most appropriate for training Math Olympiads. Proposals are always wel-
comed. The source of the proposals will appear when the solutions be published.

Proposals
6. Let a, b, c be the lengths of the sides of a triangle ABC with circumradius r and
area A. Compute

cosA− cosB

A− rc
+

cosB − cosC

A− ra
+

cosC − cosA

A− rb

7. Let ln a, ln b and ln c be the lengths of the sides of a triangle ABC. Prove that

3

5
≤ ln a

ln(ab2c2)
+

ln b

ln(a2bc2)
+

ln c

ln(a2b2c)
< 1

8. Suppose that the three roots of the equation t3 − at2 + t − b = 0 are positive
real numbers. Show that 9b2(1 + 6ab) ≤ 1.

9. Let {an}n≥0 be the sequence defined by a0 = 1, a1 = 2, a2 = 1 and for all n ≥ 3,
a3n = an−1an−2an−3. Find lim

n→∞
an.

10. Let x, y, z be three distinct positive real numbers. Prove that

1

max{x, y, z}
<
∑
cyclic

lnx2x

(x− y)(x− z)
<

1

min{x, y, z}
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Solutions
1. Let n be an even positive integer. Find all triples (x, y, z) of real numbers such
that

xny + ynz + znx = xyn + yzn + zxn

(BMO 2000)

Solution by Arnau Massegué Buisan, Spain. If n = 0 all x, y, z verifies the
equality. If n > 0 and x = y, y = z or z = x the equality also holds. To see that
these are the only solutions consider n > 0 and take y, z fixed, with y 6= z. Let
f(x) = xny+ynz+znx−xyn−yzn−zxn. Clearly f ′(x) = nxn−1(y−z)+(zn−yn)
and f ′′(x) = n(n − 1)xn−2(y − z). Since clearly f ′′ has only one zero and f ′′ has
constant sign, then f ′ is monotone so it has at most one zero, which implies that
f has at most two different zeroes. But y = x and y = z are two different zeroes
of f , then f does not have any other zero. In conclusion, there does not exist any
solution of the form x 6= y, y 6= z and z 6= x, for n > 0 and n even.

Also solved by José Luis Dı́az-Barrero, Polytechnical University of Cata-
lonia, Barcelona, Spain.

2. Let A1, A2, . . . , An be the vertices of a cyclic n−gon P. Suppose that the lengths
of the sides of P satisfy the inequalities AnA1 > A1A2 > A2A3 > . . . > An−1An.

Prove that Â1 < Â2 < Â3 < · · · < Ân−1 and Ân−1 > Ân > Â1, where Âi, 1 ≤ i ≤
n, are the interior angles of P.

(VI Spanish Math Olympiad 1968)

Solution by by José Luis Dı́az-Barrero, Polytechnical University of Cata-
lonia, Barcelona, Spain. Let α1, α2, . . . , αn, be the central angles corresponding
to the sides AnA1, A1A2, A2A3, . . . , An−1An. We have

α1 + α2 > α2 + α3, α2 + α3 > α3 + α4, . . . , αn−2 + αn−1 > αn−1 + αn

On the other hand,

Â1 = 180◦ − α1 + α2

2
, Â2 = 180◦ − α2 + α3

2
, . . . , Ân = 180◦ − αn−1 + αn

2

from which follows

180◦ − α1 + α2

2
< 180◦ − α2 + α3

2
< . . . < 180◦ − αn−1 + αn

2
,

or equivalently, Â1 < Â2 < Â3 < · · · < Ân−1. Since αn−1 > α1, then

An−1 = 180◦ − αn−1 + αn
2

> 180◦ − αn + α1

2
= An

Likewise, from αn < α2, we get

An = 180◦ − αn + α1

2
> 180◦ − α1 + α2

2
= A1,

and we are done.
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3. Let ma,mb,mc and R be the medians and the circum-radii of a triangle ABC,
respectively. Prove that

m2
a +m2

b +m2
c

R2(sin2A+ sin2B + sin2 C)

is a positive integer and determine its value.

(Catalonian Math Olympiad 2008)

Solution by Ercole Suppa, Teramo, Italy

By using the Apollonius’s formula

ma =
1

2

√
2b2 + 2c2 − a2 (cyclic),

we have

m2
a +m2

b +m2
c =

3

4

(
a2 + b2 + c2

)
(6)

On the other hand, on account of Sine’s Law, yields a = 2R sinA, b = 2R sinB,
c = 2R sinC. Therefore,

R2
(
sin2A+ sin2B + sin2 C

)
=

1

4

(
a2 + b2 + c2

)
(7)

From (6) and (7) it follows

m2
a +m2

b +m2
c

R2
(
sin2A+ sin2B + sin2 C

) = 3,

and the proof is complete.

Also solved by Arnau Massegué Buisan, Spain; Ricardo Barroso Campos,
Spain, and José Luis Dı́az-Barrero, Polytechnical University of Catalo-
nia, Barcelona, Spain.

4. Given 5 points of a sphere of radius r, show that two of the points are a distance
less than or equal to r

√
2 apart.

(II Barzilian Math Olympiad 1980)

Solution by José Luis Dı́az-Barrero, Polytechnical University of Catalo-
nia, Barcelona, Spain. We argue by contradiction. So, assume that we can find
5 points with the distance between any two of them greater than r

√
2. Then the

angle subtended by any two at the center of the sphere is greater than 90◦. Take
one of the points to be at the north pole. Then the other four must all be south
of the equator. Two must have longitude differing by at most 90◦. Now we claim
that these two points subtend an angle at most 90◦ at the center. Indeed, we may
take rectangular coordinates with origin at the center of the sphere so that both
points have all their coordinates non-negative. Suppose one point is (x, y, z) and
the other (u, v, w). Since both lie on the sphere, then

x2 + y2 + z2 = u2 + v2 + w2 = r2,

and the square of the distance between them is

(x− u)2 + (y − v)2 + (z − w)2 ≤ (x2 + y2 + z2) + (u2 + v2 + w2) = 2r2,
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so the distance between them is at most r
√

2, as required.

5. Let n be a positive integer. Prove that

F 4
nF

4
n+1 ≤

(
n∑
k=1

FkF2k

)(
n∑
k=1

F 2
k

3
√
Lk

)3

where Fn and Ln are the nth Fibonacci and Lucas numbers respectively.

(XVI József Wildt International Math Competition 2006)

Solution by José Luis Dı́az-Barrero, Polytechnical University of Catalo-
nia, Barcelona, Spain. We will use Jensen’s inequality. Namely,

f

(
n∑
k=1

qkxk

)
≤

n∑
k=1

qkf(xk)

valid for all set of nonnegative numbers q1, q2, . . . , qn of sum one and x1, x2, . . . , xn ∈
I the domain where f is convex. (When f is concave the inequality reverses).

Setting f(x) =
1
3
√
x
, that is convex in (0,+∞), qk =

F 2
k

FnFn+1
, 1 ≤ k ≤ n, and

xk = Lk, 1 ≤ k ≤ n, in Jensen’s inequality, yields

f

(
n∑
k=1

qkxk

)
=

(
n∑
k=1

F 2
kLk

FnFn+1

)−1/3
= (FnFn+1)1/3

(
n∑
k=1

F 2
kLk

)−1/3

≤
n∑
k=1

F 2
k

FnFn+1

(
1

Lk

)1/3

=

n∑
k=1

qkf(xk)

From the preceding expression immediately follows

(FnFn+1)1/3

(
n∑
k=1

F 2
kLk

)−1/3
≤ 1

FnFn+1

n∑
k=1

F 2
k

3
√
Lk

Taking into account the well known identity FkLk = F2k and rearranging terms,
we have

(FnFn+1)
4/3 ≤

(
n∑
k=1

F 2
k

3
√
Lk

)(
n∑
k=1

FkF2k

)1/3

from which the statement immediately follows. Notice that equality holds when
n = 1 and we are done.


